In this paper, we study the non-associative and non-commutative Poisson structures on filiform Lie algebras $ L_n $ and $ Q_{2m} $ and then characterize the commutative and associative Poisson structures on $ L_n $ and $ Q_{2m} $. Besides, we discuss the relationships between some non-associative algebras.
Citation: Yuqiu Sheng, Jixia Yuan. Non-associative and non-commutative Poisson structures on Filiform Lie algebras[J]. AIMS Mathematics, 2025, 10(7): 16460-16476. doi: 10.3934/math.2025737
In this paper, we study the non-associative and non-commutative Poisson structures on filiform Lie algebras $ L_n $ and $ Q_{2m} $ and then characterize the commutative and associative Poisson structures on $ L_n $ and $ Q_{2m} $. Besides, we discuss the relationships between some non-associative algebras.
| [1] |
A. Lichnerowicz, Les variétiés de Poisson et leurs algèbras de Lie associées, J. Differ. Geom., 12 (1977), 253–300. https://doi.org/10.4310/jdg/1214433987 doi: 10.4310/jdg/1214433987
|
| [2] | A. Weinstein, Lectures on symplectic manifolds (CBMS regional conference series in mathematics), Providence: American Mathematical Society, 1977. |
| [3] |
I. Kaygorodov, M. Khrypchenko, Transposed Poisson structures on the Lie algebra of upper triangular matrices, Port. Math., 81 (2024), 135–149. https://doi.org/10.4171/PM/2120 doi: 10.4171/PM/2120
|
| [4] |
C. Bai, R. Bai, L. Guo, Y. Wu, Transposed Poisson algebras, Novikov-Poisson algebras and 3-Lie algebras, J. Algebra, 632 (2023), 535–566. https://doi.org/10.1016/j.jalgebra.2023.06.006 doi: 10.1016/j.jalgebra.2023.06.006
|
| [5] |
M. Van den Bergh, Double Poisson algebras, Trans. Amer. Math. Soc., 360 (2008), 5711–5769. https://doi.org/10.1090/S0002-9947-08-04518-2 doi: 10.1090/S0002-9947-08-04518-2
|
| [6] |
S. Arthamonov, Modified double Poisson brackets, J. Algebra, 492 (2017), 212–233. https://doi.org/10.1016/j.jalgebra.2017.08.025 doi: 10.1016/j.jalgebra.2017.08.025
|
| [7] |
M. Fairon, Modified double brackets and a conjecture of S. Arthamonov, Communications in Mathematics, 33 (2025), 5. https://doi.org/10.46298/cm.13786 doi: 10.46298/cm.13786
|
| [8] |
B. Sartayev, Some generalizations of the variety of transposed Poisson algebras, Communications in Mathematics, 32 (2024), 55–62. https://doi.org/10.46298/cm.11346 doi: 10.46298/cm.11346
|
| [9] |
J. Lü, X. Wang, G. Zhuang, Universal enveloping algebras of Poisson Hopf algebras, J. Algebra, 426 (2015), 92–136. https://doi.org/10.1016/j.jalgebra.2014.12.010 doi: 10.1016/j.jalgebra.2014.12.010
|
| [10] |
S. Oh, Symplectic ideals of Poisson algebras and the Poisson structure associated to quantum matrices, Commun. Algebra, 27 (1999), 2163–2180. https://doi.org/10.1080/00927879908826555 doi: 10.1080/00927879908826555
|
| [11] |
D. Kaledin, Normalization of a Poisson algebra is Poisson, Proc. Steklov Inst. Math., 264 (2009), 70–73. https://doi.org/10.1134/S008154380901009X doi: 10.1134/S008154380901009X
|
| [12] |
P. Xu, Noncommutative Poisson algebras, Amer. J. Math., 116 (1994), 101–125. https://doi.org/10.2307/2374983 doi: 10.2307/2374983
|
| [13] |
Y. Yao, Y. Ye, P. Zhang, Quiver Poisson algebras, J. Algebra, 312 (2007), 570–589. https://doi.org/10.1016/j.jalgebra.2007.03.034 doi: 10.1016/j.jalgebra.2007.03.034
|
| [14] |
D. Farkas, G. Letzter, Ring theory from symplectic geometry, J. Pure Appl. Algebra, 125 (1998), 155–190. https://doi.org/10.1016/S0022-4049(96)00117-X doi: 10.1016/S0022-4049(96)00117-X
|
| [15] |
J. Liu, C. Bai, Y. Sheng, Noncommutative Poisson bialgebras, J. Algebra, 556 (2020), 35–66. https://doi.org/10.1016/j.jalgebra.2020.03.009 doi: 10.1016/j.jalgebra.2020.03.009
|
| [16] | M. Vergne, Cohomologie des algèbres de Lie nilpotentes: apllication à létude de la variété des algèbres de Lie nilpotentes, Bull. Soc. Math. France, 98 (1970), 81–116. |
| [17] |
I. Kaygorodov, M. Khrypchenko, P. Páez-Guillán, The geometric classification of non-associative algebras: a survey, Communications in Mathematics, 32 (2024), 185–284. https://doi.org/10.46298/cm.14458 doi: 10.46298/cm.14458
|
| [18] |
E. Barreiro, S. Benayadi, C. Rizzo, Nearly associative algebras, J. Algebra, 658 (2024), 821–868. https://doi.org/10.1016/j.jalgebra.2024.06.016 doi: 10.1016/j.jalgebra.2024.06.016
|
| [19] |
M. Khrypchenko, $\sigma$-matching and interchangeable structures on certain associative algebras, Communications in Mathematics, 33 (2025), 6. https://doi.org/10.46298/cm.13990 doi: 10.46298/cm.13990
|