Research article

Non-associative and non-commutative Poisson structures on Filiform Lie algebras

  • Published: 22 July 2025
  • MSC : 17B05, 17B30, 17B56

  • In this paper, we study the non-associative and non-commutative Poisson structures on filiform Lie algebras $ L_n $ and $ Q_{2m} $ and then characterize the commutative and associative Poisson structures on $ L_n $ and $ Q_{2m} $. Besides, we discuss the relationships between some non-associative algebras.

    Citation: Yuqiu Sheng, Jixia Yuan. Non-associative and non-commutative Poisson structures on Filiform Lie algebras[J]. AIMS Mathematics, 2025, 10(7): 16460-16476. doi: 10.3934/math.2025737

    Related Papers:

  • In this paper, we study the non-associative and non-commutative Poisson structures on filiform Lie algebras $ L_n $ and $ Q_{2m} $ and then characterize the commutative and associative Poisson structures on $ L_n $ and $ Q_{2m} $. Besides, we discuss the relationships between some non-associative algebras.



    加载中


    [1] A. Lichnerowicz, Les variétiés de Poisson et leurs algèbras de Lie associées, J. Differ. Geom., 12 (1977), 253–300. https://doi.org/10.4310/jdg/1214433987 doi: 10.4310/jdg/1214433987
    [2] A. Weinstein, Lectures on symplectic manifolds (CBMS regional conference series in mathematics), Providence: American Mathematical Society, 1977.
    [3] I. Kaygorodov, M. Khrypchenko, Transposed Poisson structures on the Lie algebra of upper triangular matrices, Port. Math., 81 (2024), 135–149. https://doi.org/10.4171/PM/2120 doi: 10.4171/PM/2120
    [4] C. Bai, R. Bai, L. Guo, Y. Wu, Transposed Poisson algebras, Novikov-Poisson algebras and 3-Lie algebras, J. Algebra, 632 (2023), 535–566. https://doi.org/10.1016/j.jalgebra.2023.06.006 doi: 10.1016/j.jalgebra.2023.06.006
    [5] M. Van den Bergh, Double Poisson algebras, Trans. Amer. Math. Soc., 360 (2008), 5711–5769. https://doi.org/10.1090/S0002-9947-08-04518-2 doi: 10.1090/S0002-9947-08-04518-2
    [6] S. Arthamonov, Modified double Poisson brackets, J. Algebra, 492 (2017), 212–233. https://doi.org/10.1016/j.jalgebra.2017.08.025 doi: 10.1016/j.jalgebra.2017.08.025
    [7] M. Fairon, Modified double brackets and a conjecture of S. Arthamonov, Communications in Mathematics, 33 (2025), 5. https://doi.org/10.46298/cm.13786 doi: 10.46298/cm.13786
    [8] B. Sartayev, Some generalizations of the variety of transposed Poisson algebras, Communications in Mathematics, 32 (2024), 55–62. https://doi.org/10.46298/cm.11346 doi: 10.46298/cm.11346
    [9] J. Lü, X. Wang, G. Zhuang, Universal enveloping algebras of Poisson Hopf algebras, J. Algebra, 426 (2015), 92–136. https://doi.org/10.1016/j.jalgebra.2014.12.010 doi: 10.1016/j.jalgebra.2014.12.010
    [10] S. Oh, Symplectic ideals of Poisson algebras and the Poisson structure associated to quantum matrices, Commun. Algebra, 27 (1999), 2163–2180. https://doi.org/10.1080/00927879908826555 doi: 10.1080/00927879908826555
    [11] D. Kaledin, Normalization of a Poisson algebra is Poisson, Proc. Steklov Inst. Math., 264 (2009), 70–73. https://doi.org/10.1134/S008154380901009X doi: 10.1134/S008154380901009X
    [12] P. Xu, Noncommutative Poisson algebras, Amer. J. Math., 116 (1994), 101–125. https://doi.org/10.2307/2374983 doi: 10.2307/2374983
    [13] Y. Yao, Y. Ye, P. Zhang, Quiver Poisson algebras, J. Algebra, 312 (2007), 570–589. https://doi.org/10.1016/j.jalgebra.2007.03.034 doi: 10.1016/j.jalgebra.2007.03.034
    [14] D. Farkas, G. Letzter, Ring theory from symplectic geometry, J. Pure Appl. Algebra, 125 (1998), 155–190. https://doi.org/10.1016/S0022-4049(96)00117-X doi: 10.1016/S0022-4049(96)00117-X
    [15] J. Liu, C. Bai, Y. Sheng, Noncommutative Poisson bialgebras, J. Algebra, 556 (2020), 35–66. https://doi.org/10.1016/j.jalgebra.2020.03.009 doi: 10.1016/j.jalgebra.2020.03.009
    [16] M. Vergne, Cohomologie des algèbres de Lie nilpotentes: apllication à létude de la variété des algèbres de Lie nilpotentes, Bull. Soc. Math. France, 98 (1970), 81–116.
    [17] I. Kaygorodov, M. Khrypchenko, P. Páez-Guillán, The geometric classification of non-associative algebras: a survey, Communications in Mathematics, 32 (2024), 185–284. https://doi.org/10.46298/cm.14458 doi: 10.46298/cm.14458
    [18] E. Barreiro, S. Benayadi, C. Rizzo, Nearly associative algebras, J. Algebra, 658 (2024), 821–868. https://doi.org/10.1016/j.jalgebra.2024.06.016 doi: 10.1016/j.jalgebra.2024.06.016
    [19] M. Khrypchenko, $\sigma$-matching and interchangeable structures on certain associative algebras, Communications in Mathematics, 33 (2025), 6. https://doi.org/10.46298/cm.13990 doi: 10.46298/cm.13990
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(505) PDF downloads(28) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog