Let $ X $ and $ Y $ follow independent exponential-Rayleigh distributions when the shape and scale parameters are different. In this paper, the maximum likelihood and the Bayes estimates of the stress-strength parameter $ \delta = P(X < Y) $ are derived. Based on the sampling technique, we use the asymptotic distribution and the Bayes estimate of $ \delta $ to construct the corresponding confidence and credible intervals. Analyses of two data sets, one simulated data and the other real-life data, are given for illustrative purposes. Finally, Monte Carlo simulations are used to compare the different methods discussed here.
Citation: Mohammed S. Kotb, Ghaithah A. Alzhrani. Inference of $ P\left(X < Y\right) $ for two-parameter exponential-Rayleigh distribution with applications[J]. AIMS Mathematics, 2025, 10(7): 16526-16550. doi: 10.3934/math.2025740
Let $ X $ and $ Y $ follow independent exponential-Rayleigh distributions when the shape and scale parameters are different. In this paper, the maximum likelihood and the Bayes estimates of the stress-strength parameter $ \delta = P(X < Y) $ are derived. Based on the sampling technique, we use the asymptotic distribution and the Bayes estimate of $ \delta $ to construct the corresponding confidence and credible intervals. Analyses of two data sets, one simulated data and the other real-life data, are given for illustrative purposes. Finally, Monte Carlo simulations are used to compare the different methods discussed here.
| [1] |
D. Bamber, The area above the ordinal dominance graph and the area below the receiver operating graph, J. Math. Psychol., 12 (1975), 387–415. https://doi.org/10.1016/0022-2496(75)90001-2 doi: 10.1016/0022-2496(75)90001-2
|
| [2] |
I. J. Hall, Approximate one-sided tolerance limits for the difference or sum of two independent normal variates, J. Qual. Technol., 16 (1984), 15–19. https://doi.org/10.1080/00224065.1984.11978882 doi: 10.1080/00224065.1984.11978882
|
| [3] | S. Kotz, Y. Lumelskii, M. Pensky, The stress-strength model and its generalizations, Singapore: World Scientific Press, 2003. https://doi.org/10.1142/5015 |
| [4] |
J. Y. Chiang, N. Jiang, T. R. Tsai, Y. L. Lio, Inference of $\delta = P(X < Y)$ for Burr XII distributions with record samples, Commun. Stat.-Simul. Comput., 47 (2018), 822–838. https://doi.org/10.1080/03610918.2017.1295150 doi: 10.1080/03610918.2017.1295150
|
| [5] |
M. S. Kotb, M. Z. Raqab, Estimation of reliability for multi-component stress-strength model based on modified Weibull distribution, Stat. Paper., 62 (2021), 2763–2797. https://doi.org/10.1007/s00362-020-01213-0 doi: 10.1007/s00362-020-01213-0
|
| [6] |
Y. L. Lio, T. R. Tsai, Estimation of $\delta = P(X < Y)$ for Burr XII distribution based on the progressively first failure-censored samples, J. Appl. Stat., 39 (2012), 309–322. https://doi.org/10.1080/02664763.2011.586684 doi: 10.1080/02664763.2011.586684
|
| [7] |
B. Saraoglua, I. Kinacia, D. Kundu, On estimation of $R = P(Y < X)$ for exponential distribution under progressive type-Ⅱ censoring, J. Stat. Comput. Sim., 82 (2012), 729–744. https://doi.org/10.1080/00949655.2010.551772 doi: 10.1080/00949655.2010.551772
|
| [8] |
M. S. Kotb, M. A. Al Omari, Estimation of the stress-strength reliability for the exponentialRayleigh distribution, Math. Comput. Simulat., 228 (2025), 263–273. https://doi.org/10.1016/j.matcom.2024.09.005 doi: 10.1016/j.matcom.2024.09.005
|
| [9] | A. Al-Khedhairi, Parameters estimation for a linear exponential distribution based on grouped data, Int. Math. Forum, 3 (2008), 1643–1654. |
| [10] | M. R. Mahmoud, K. S. Sultan, H. M. Saleh, Progressively censored data from the linear exponential distribution: Moments and estimation, Metron, 64 (2006), 199–215. |
| [11] |
M. M. Mohie El-Din, M. S. Kotb, H. A. Newer, Inference for linear exponential distribution based on record ranked set sampling, J. Stat. Appl. Prob., 10 (2021), 515–524. http://dx.doi.org/10.18576/jsap/100219 doi: 10.18576/jsap/100219
|
| [12] | L. J. Bain, Statistical analysis of reliability and life testing model, Routledge, 1991. https://doi.org/10.1201/9780203738733 |
| [13] | B. Efron, The jackknife, the bootstrap and other re-sampling plans, In: Society for industrial and applied mathematics, 1982. |
| [14] |
M. S. Kotb, M. Z. Raqab, Inference for a simple step-stress model based on ordered ranked set sampling, Appl. Math. Model., 75 (2019), 23–36. https://doi.org/10.1016/j.apm.2019.05.022 doi: 10.1016/j.apm.2019.05.022
|
| [15] |
M. H. Chen, Q. M. Shao, Monte Carlo estimation of Bayesian credible and HPD intervals, J. Comput. Graph. Stat., 8 (1999), 69–92. https://doi.org/10.1080/10618600.1999.10474802 doi: 10.1080/10618600.1999.10474802
|
| [16] |
D. V. Lindley, Fiducial distributions and Bayes theorem, J. Roy. Stat. Soc. B, 20 (1958), 102–107. https://doi.org/10.1111/j.2517-6161.1958.tb00278.x doi: 10.1111/j.2517-6161.1958.tb00278.x
|
| [17] |
E. L. Kaplan, P. Meier, Nonparametric estimation from incomplete observations, J. Am. Stat. Assoc., 53 (1958), 457–481. https://doi.org/10.2307/2281868 doi: 10.2307/2281868
|