Research article

Inference of $ P\left(X < Y\right) $ for two-parameter exponential-Rayleigh distribution with applications

  • Published: 22 July 2025
  • MSC : 62F10, 62F15, 62F25, 62N01

  • Let $ X $ and $ Y $ follow independent exponential-Rayleigh distributions when the shape and scale parameters are different. In this paper, the maximum likelihood and the Bayes estimates of the stress-strength parameter $ \delta = P(X < Y) $ are derived. Based on the sampling technique, we use the asymptotic distribution and the Bayes estimate of $ \delta $ to construct the corresponding confidence and credible intervals. Analyses of two data sets, one simulated data and the other real-life data, are given for illustrative purposes. Finally, Monte Carlo simulations are used to compare the different methods discussed here.

    Citation: Mohammed S. Kotb, Ghaithah A. Alzhrani. Inference of $ P\left(X < Y\right) $ for two-parameter exponential-Rayleigh distribution with applications[J]. AIMS Mathematics, 2025, 10(7): 16526-16550. doi: 10.3934/math.2025740

    Related Papers:

  • Let $ X $ and $ Y $ follow independent exponential-Rayleigh distributions when the shape and scale parameters are different. In this paper, the maximum likelihood and the Bayes estimates of the stress-strength parameter $ \delta = P(X < Y) $ are derived. Based on the sampling technique, we use the asymptotic distribution and the Bayes estimate of $ \delta $ to construct the corresponding confidence and credible intervals. Analyses of two data sets, one simulated data and the other real-life data, are given for illustrative purposes. Finally, Monte Carlo simulations are used to compare the different methods discussed here.



    加载中


    [1] D. Bamber, The area above the ordinal dominance graph and the area below the receiver operating graph, J. Math. Psychol., 12 (1975), 387–415. https://doi.org/10.1016/0022-2496(75)90001-2 doi: 10.1016/0022-2496(75)90001-2
    [2] I. J. Hall, Approximate one-sided tolerance limits for the difference or sum of two independent normal variates, J. Qual. Technol., 16 (1984), 15–19. https://doi.org/10.1080/00224065.1984.11978882 doi: 10.1080/00224065.1984.11978882
    [3] S. Kotz, Y. Lumelskii, M. Pensky, The stress-strength model and its generalizations, Singapore: World Scientific Press, 2003. https://doi.org/10.1142/5015
    [4] J. Y. Chiang, N. Jiang, T. R. Tsai, Y. L. Lio, Inference of $\delta = P(X < Y)$ for Burr XII distributions with record samples, Commun. Stat.-Simul. Comput., 47 (2018), 822–838. https://doi.org/10.1080/03610918.2017.1295150 doi: 10.1080/03610918.2017.1295150
    [5] M. S. Kotb, M. Z. Raqab, Estimation of reliability for multi-component stress-strength model based on modified Weibull distribution, Stat. Paper., 62 (2021), 2763–2797. https://doi.org/10.1007/s00362-020-01213-0 doi: 10.1007/s00362-020-01213-0
    [6] Y. L. Lio, T. R. Tsai, Estimation of $\delta = P(X < Y)$ for Burr XII distribution based on the progressively first failure-censored samples, J. Appl. Stat., 39 (2012), 309–322. https://doi.org/10.1080/02664763.2011.586684 doi: 10.1080/02664763.2011.586684
    [7] B. Saraoglua, I. Kinacia, D. Kundu, On estimation of $R = P(Y < X)$ for exponential distribution under progressive type-Ⅱ censoring, J. Stat. Comput. Sim., 82 (2012), 729–744. https://doi.org/10.1080/00949655.2010.551772 doi: 10.1080/00949655.2010.551772
    [8] M. S. Kotb, M. A. Al Omari, Estimation of the stress-strength reliability for the exponentialRayleigh distribution, Math. Comput. Simulat., 228 (2025), 263–273. https://doi.org/10.1016/j.matcom.2024.09.005 doi: 10.1016/j.matcom.2024.09.005
    [9] A. Al-Khedhairi, Parameters estimation for a linear exponential distribution based on grouped data, Int. Math. Forum, 3 (2008), 1643–1654.
    [10] M. R. Mahmoud, K. S. Sultan, H. M. Saleh, Progressively censored data from the linear exponential distribution: Moments and estimation, Metron, 64 (2006), 199–215.
    [11] M. M. Mohie El-Din, M. S. Kotb, H. A. Newer, Inference for linear exponential distribution based on record ranked set sampling, J. Stat. Appl. Prob., 10 (2021), 515–524. http://dx.doi.org/10.18576/jsap/100219 doi: 10.18576/jsap/100219
    [12] L. J. Bain, Statistical analysis of reliability and life testing model, Routledge, 1991. https://doi.org/10.1201/9780203738733
    [13] B. Efron, The jackknife, the bootstrap and other re-sampling plans, In: Society for industrial and applied mathematics, 1982.
    [14] M. S. Kotb, M. Z. Raqab, Inference for a simple step-stress model based on ordered ranked set sampling, Appl. Math. Model., 75 (2019), 23–36. https://doi.org/10.1016/j.apm.2019.05.022 doi: 10.1016/j.apm.2019.05.022
    [15] M. H. Chen, Q. M. Shao, Monte Carlo estimation of Bayesian credible and HPD intervals, J. Comput. Graph. Stat., 8 (1999), 69–92. https://doi.org/10.1080/10618600.1999.10474802 doi: 10.1080/10618600.1999.10474802
    [16] D. V. Lindley, Fiducial distributions and Bayes theorem, J. Roy. Stat. Soc. B, 20 (1958), 102–107. https://doi.org/10.1111/j.2517-6161.1958.tb00278.x doi: 10.1111/j.2517-6161.1958.tb00278.x
    [17] E. L. Kaplan, P. Meier, Nonparametric estimation from incomplete observations, J. Am. Stat. Assoc., 53 (1958), 457–481. https://doi.org/10.2307/2281868 doi: 10.2307/2281868
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(415) PDF downloads(31) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog