Research article

Event-triggered impulsive control for exponential stabilization of fractional-order differential system

  • Published: 22 July 2025
  • MSC : 26A33, 33C05, 33C20

  • This paper presents a novel event-triggered control strategy for fractional-order systems. The analysis begins with an investigation of the stability of impulsive fractional differential equations using Lyapunov function methods. Based on this framework, impulsive control schemes both with and without delay are designed to be triggered by discrete events. The proposed strategies ensure exponential stability of all system states while rigorously avoiding Zeno behavior. The effectiveness and practical relevance of the approach are demonstrated through numerical simulations applied to chaotic financial systems.

    Citation: Mohsen DLALA, Abdelhamid ZAIDI, Farida ALHARBI. Event-triggered impulsive control for exponential stabilization of fractional-order differential system[J]. AIMS Mathematics, 2025, 10(7): 16551-16569. doi: 10.3934/math.2025741

    Related Papers:

  • This paper presents a novel event-triggered control strategy for fractional-order systems. The analysis begins with an investigation of the stability of impulsive fractional differential equations using Lyapunov function methods. Based on this framework, impulsive control schemes both with and without delay are designed to be triggered by discrete events. The proposed strategies ensure exponential stability of all system states while rigorously avoiding Zeno behavior. The effectiveness and practical relevance of the approach are demonstrated through numerical simulations applied to chaotic financial systems.



    加载中


    [1] R. Agarwal, S. Hristova, D. O'Regan, A survey of Lyapunov functions, stability and impulsive Caputo fractional differential equations, Fract. Calc. Appl. Anal., 19 (2016), 290–318. https://doi.org/10.1515/fca-2016-0017 doi: 10.1515/fca-2016-0017
    [2] R. Agarwal, S. Hristova, D. O'Regan, Non-instantaneous impulses in differential equations, Springer, 2017. https://doi.org/10.1007/978-3-319-66384-5
    [3] B. B. Zheng, Z. S. Wang, Event-based delayed impulsive control for fractional-order dynamic systems with application to synchronization of fractional-order neural networks, Neural Comput. Appl., 35 (2023), 20241–20251. https://doi.org/10.1007/s00521-023-08738-z doi: 10.1007/s00521-023-08738-z
    [4] A. Boukhouima, K. Hattaf, E. M. Lotfi, M. Mahrouf, D. F. Torres, N. Yousfi, Lyapunov functions for fractional-order systems in biology: Methods and applications, Chaos Soliton. Fract., 140 (2020), 110224. https://doi.org/10.1016/j.chaos.2020.110224 doi: 10.1016/j.chaos.2020.110224
    [5] K. Diethelm, N. J. Ford, A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn., 29 (2002), 3–22. https://doi.org/10.2469/cp.v2002.n7.4017 doi: 10.2469/cp.v2002.n7.4017
    [6] M. Diouf, N. Sene, Analysis of the financial chaotic model with the fractional derivative operator, Complexity, 2020 (2020). https://doi.org/10.1155/2020/9845031
    [7] M. Dlala, F. Al Harbi, Time-triggered impulsive control for fractional-order chaotic financial system: ETIC for fractional-order chaotic financial system, J. Qassim Univ. Sci., 3 (2024), 67–78. https://doi.org/10.9785/mdtr-2024-780158 doi: 10.9785/mdtr-2024-780158
    [8] M. Dlala, A. S. Almutairi, Rapid exponential stabilization of nonlinear wave equation derived from brain activity via event-triggered impulsive control, Mathematics, 9 (2021). https://doi.org/10.3390/math9050516
    [9] M. Dlala, Rapid exponential stabilization of nonlinear continuous systems via event-triggered impulsive control, Demonstr. Math., 55 (2022), 470–481. https://doi.org/10.1515/dema-2022-0032 doi: 10.1515/dema-2022-0032
    [10] M. Dlala, S. O. Alrashidi, Rapid exponential stabilization of Lotka-McKendrick's equation via event-triggered impulsive control, Math. Biosci. Eng., 18 (2021), 9121–9131. https://doi.org/10.3934/mbe.2021449 doi: 10.3934/mbe.2021449
    [11] P. Y. Dousseh, C. Ainamon, C. H. Miwadinou, A. V. Monwanou, J. B. C. Orou, Chaos in a financial system with fractional order and its control via sliding mode, IEEE Trans. Cybern., 50 (2021). https://doi.org/10.1155/2021/4636658
    [12] N. Espitia, I. Karafyllis, M. Krstic, Event-triggered boundary control of constant-parameter reaction-diffusion PDEs: A small-gain approach, Automatica, 128 (2021), 109562. https://doi.org/10.1016/j.automatica.2021.109562 doi: 10.1016/j.automatica.2021.109562
    [13] M. Fečkan, Y. Zhou, J. Wang, On the concept and existence of solution for impulsive fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 3050–3060. https://doi.org/10.1016/j.cnsns.2011.11.017 doi: 10.1016/j.cnsns.2011.11.017
    [14] M. Fečkan, M.-F. Danca, G. Chen, Fractional differential equations with impulsive effects, Fractal Fract., 8 (2024), 9. https://doi.org/10.3390/fractalfract8090500 doi: 10.3390/fractalfract8090500
    [15] T. Feng, Y. E. Wang, L. Liu, B. Wu, Observer-based event-triggered control for uncertain fractional-order systems, J. Franklin Inst., 357 (2020), 9423–9441. https://doi.org/10.1016/j.jfranklin.2020.07.017 doi: 10.1016/j.jfranklin.2020.07.017
    [16] R. Garrappa, Predictor-corrector PECE method for fractional differential equations, 2024.
    [17] X. Ge, Q. L. Han, X. M. Zhang, D. Ding, Dynamic event-triggered control and estimation: A survey, Int. J. Autom. Comput., 6 (2021), 857–886. https://doi.org/10.1007/s11633-021-1306-z doi: 10.1007/s11633-021-1306-z
    [18] D. He, L. Xu, Stability of conformable fractional delay differential systems with impulses, Appl. Math. Lett., 149 (2024), 108927. https://doi.org/10.1016/j.aml.2023.108927 doi: 10.1016/j.aml.2023.108927
    [19] W. Heemels, K. Johansson, P. Tabuada, An introduction to event-triggered and self-triggered control, Proc. IEEE Conf. Decis. Control, 2012, 3270–3285. https://doi.org/10.1155/2021/4636658
    [20] L. Hou, S. Long, S. Gao, The synchronization of fractional-order chaotic systems based on event-triggered strategies, Adv. Guid. Navig. Control, 2023, 4366–4375. https://doi.org/10.1007/978-981-19-6613-2_425
    [21] Z. Hu, X. Mu, Event-triggered impulsive control for nonlinear stochastic systems, IEEE Trans. Cybern., 52 (2022), 7805–7813. https://doi.org/10.1109/TCYB.2021.3052166 doi: 10.1109/TCYB.2021.3052166
    [22] D. Huong, Design of an event-triggered state feedback control for fractional-order interconnected systems, J. Control Autom. Electr. Syst., 35 (2024), 266–275. https://doi.org/10.1007/s40313-024-01067-z doi: 10.1007/s40313-024-01067-z
    [23] K. B. Kachhia, Chaos in fractional order financial model with fractal-fractional derivatives, Partial Differ. Equ. Appl. Math., 7 (2023), 100502. https://doi.org/10.1016/j.padiff.2023.100502 doi: 10.1016/j.padiff.2023.100502
    [24] I. Koca, Financial model with chaotic analysis, Results Phys., 51 (2023), 106633. https://doi.org/10.1016/j.rinp.2023.106633 doi: 10.1016/j.rinp.2023.106633
    [25] Y. Liao, Y. Zhou, F. Xu, X. B. Shu, A Study on the complexity of a new chaotic financial system, Complexity, 2020 (2020). https://doi.org/10.1155/2020/8821156
    [26] X. Li, D. Peng, J. Cao, Lyapunov stability for impulsive systems via event-triggered impulsive control, IEEE Trans. Autom. Control, 65 (2020), 4908–4913. https://doi.org/10.1109/TAC.2020.2964558 doi: 10.1109/TAC.2020.2964558
    [27] Y. Li, Y. Chen, I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Comput. Math. Appl., 59 (2010), 1810–1821. https://doi.org/10.1016/j.camwa.2009.08.019 doi: 10.1016/j.camwa.2009.08.019
    [28] H. Liu, T. Zhang, X. Li, Event-triggered control for nonlinear systems with impulse effect, Chaos Soliton. Fract., 153 (2021), 111499. https://doi.org/10.1016/j.chaos.2021.111499 doi: 10.1016/j.chaos.2021.111499
    [29] H. Liu, X. Li, Exponential stabilization of nonlinear impulsive systems via output-based event-triggered control, IEEE Trans. Syst. Man Cybern. Syst., 53 (2023), 2594–2603. https://doi.org/10.1109/TSMC.2022.3215435 doi: 10.1109/TSMC.2022.3215435
    [30] T. Liu, P. Zhang, Z.-P. Jiang, Robust event-triggered control of nonlinear systems, Springer, Singapore, 2020.
    [31] S. Luo, F. Deng, On event-triggered control of nonlinear stochastic systems, IEEE Trans. Autom. Control, 65 (2020), 369–375. https://doi.org/10.1109/TAC.2019.2916285 doi: 10.1109/TAC.2019.2916285
    [32] G. E. Mahlbacher, K. C. Reihmer, H. B. Frieboes, Mathematical modeling of tumor-immune cell interactions, J. Theor. Biol., 469 (2019), 47–60. https://doi.org/10.1016/j.jtbi.2019.03.002 doi: 10.1016/j.jtbi.2019.03.002
    [33] M. Jun-hai, C. Yu-shu, Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system (Ⅰ), Appl. Math. Mech., 22 (2001), 1240–1251. https://doi.org/10.1007/BF02437847 doi: 10.1007/BF02437847
    [34] K. S. Nisar, M. Farman, M. Abdel-Aty, J. Cao, A review on epidemic models in sight of fractional calculus, Alexandria Eng. J., 75 (2023), 81–113. https://doi.org/10.1016/j.aej.2023.05.071 doi: 10.1016/j.aej.2023.05.071
    [35] C. Peng, F. Li, A survey on recent advances in event-triggered communication and control, Inf. Sci., 457–458 (2018), 113–125. https://doi.org/10.1016/j.ins.2018.04.055 doi: 10.1016/j.ins.2018.04.055
    [36] I. Podlubny, K. V. Thimann, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, 1998.
    [37] R. Postoyan, P. Tabuada, D. Nesic, A. Anta, A framework for the event-triggered stabilization of nonlinear systems, IEEE Trans. Autom. Control, 60 (2015), 982–996. https://doi.org/10.1109/TAC.2014.2363603 doi: 10.1109/TAC.2014.2363603
    [38] I. Stamova, Global stability of impulsive fractional differential equations, Appl. Math. Comput., 237 (2014), 605–612. https://doi.org/10.1016/j.amc.2014.03.067 doi: 10.1016/j.amc.2014.03.067
    [39] H. Sun, Y. Zhang, D. Baleanu, W. Chen, Y. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul., 64 (2018), 213–231. https://doi.org/10.13109/zptm.2018.64.2.213 doi: 10.13109/zptm.2018.64.2.213
    [40] H. Tan, J. Wu, H. Bao, Event-triggered impulsive synchronization of fractional-order coupled neural networks, Appl. Math. Comput., 429 (2022), 127244. https://doi.org/10.1016/j.amc.2022.127244 doi: 10.1016/j.amc.2022.127244
    [41] V. E. Tarasov, No violation of the Leibniz rule. No fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 2945–2948. https://doi.org/10.1016/j.cnsns.2013.04.001 doi: 10.1016/j.cnsns.2013.04.001
    [42] V. E. Tarasov, On chain rule for fractional derivatives, Commun. Nonlinear Sci. Numer. Simul., 30 (2016), 1–4. https://doi.org/10.1016/j.cnsns.2015.06.007 doi: 10.1016/j.cnsns.2015.06.007
    [43] A. M. Tusset, M. E. K. Fuziki, J. M. Balthazar, D. I. Andrade, G. G. Lenzi, Dynamic analysis and control of a financial system with chaotic behavior including fractional order, Fractal Fract., 7 (2023). https://doi.org/10.1155/2020/8821156
    [44] J. Wang, M. Fečkan, A survey on impulsive fractional differential equations, Fract. Calc. Appl. Anal., 19 (2016), 806–831. https://doi.org/10.1515/fca-2016-0044 doi: 10.1515/fca-2016-0044
    [45] J. Wu, C. Peng, H. Yang, Y. L. Wang, Recent advances in event-triggered security control of networked systems: A survey, Int. J. Syst. Sci., 53 (2022), 2624–2643. https://doi.org/10.1080/00207721.2022.2053893 doi: 10.1080/00207721.2022.2053893
    [46] X. Xing, H. Wu, J. Cao, Event-triggered impulsive control for synchronization in finite time of fractional-order reaction-diffusion complex networks, Neurocomputing, 557 (2023), 126703. https://doi.org/10.1016/j.neucom.2023.126703 doi: 10.1016/j.neucom.2023.126703
    [47] L. Xu, B. Bao, H. Hu, Stability of impulsive delayed switched systems with conformable fractional-order derivatives, Int. J. Syst. Sci., 56 (2025), 1271–1288. https://doi.org/10.1080/00207721.2024.2421454 doi: 10.1080/00207721.2024.2421454
    [48] J. Xu, J. Huang, An overview of recent advances in the event-triggered consensus of multi-agent systems with actuator saturations, Mathematics, 10 (2022). https://doi.org/10.3390/math10203879 doi: 10.3390/math10203879
    [49] S. Yang, C. Hu, J. Yu, H. Jiang, Exponential stability of fractional-order impulsive control systems with applications in synchronization, IEEE Trans. Cybern., 50 (2020), 3157–3168. https://doi.org/10.1109/TCYB.2019.2906497 doi: 10.1109/TCYB.2019.2906497
    [50] N. Yu, W. Zhu, Event-triggered impulsive chaotic synchronization of fractional-order differential systems, Appl. Math. Comput., 388 (2020), 125554. https://doi.org/10.1016/j.amc.2020.125554 doi: 10.1016/j.amc.2020.125554
    [51] N. Yu, W. Zhu, Exponential stabilization of fractional-order continuous-time dynamic systems via event-triggered impulsive control, Nonlinear Anal. Model. Control, 27 (2022), 592–608. https://doi.org/10.15388/namc.2022.27.26638 doi: 10.15388/namc.2022.27.26638
    [52] P. Zhang, T. Liu, J. Chen, Z. P. Jiang, Recent developments in event-triggered control of nonlinear systems: An overview, Unmanned Syst., 11 (2023), 27–56. https://doi.org/10.1142/S2301385023310039 doi: 10.1142/S2301385023310039
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(663) PDF downloads(39) Cited by(0)

Article outline

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog