Adjusting the values of arguments is a widely applied method to establish the semantics of argumentation frameworks (AFs). In this process, the influence of a single attacker's value is mentioned or implicitly used many times. However, this effect has not been studied specifically. As a result, its role in semantic exploration cannot be brought into full play. Thus, my objective was to study this effect, so as to provide a new tool for semantics research. In this paper, the strength of this influence was called the relative attack strength (RAS). It was formally defined and computed by a three-variable function $ ras $. Then, nine basic properties of RAS were studied. As an application, I established a new semantics for fuzzy AFs based on RAS, which covered the Gödel semantics. The main contribution lies in the proposal of RAS and the discussion of its properties. This provides a new tool for the further study of argumentation semantics. The other contribution is the establishment of new semantics. On one hand, it fills a gap in theory. On the other hand, it shows the effectiveness of RAS in semantic research of AFs.
Citation: Jiachao Wu. Relative attack strength and its application in argumentation frameworks[J]. AIMS Mathematics, 2025, 10(7): 16355-16370. doi: 10.3934/math.2025731
Adjusting the values of arguments is a widely applied method to establish the semantics of argumentation frameworks (AFs). In this process, the influence of a single attacker's value is mentioned or implicitly used many times. However, this effect has not been studied specifically. As a result, its role in semantic exploration cannot be brought into full play. Thus, my objective was to study this effect, so as to provide a new tool for semantics research. In this paper, the strength of this influence was called the relative attack strength (RAS). It was formally defined and computed by a three-variable function $ ras $. Then, nine basic properties of RAS were studied. As an application, I established a new semantics for fuzzy AFs based on RAS, which covered the Gödel semantics. The main contribution lies in the proposal of RAS and the discussion of its properties. This provides a new tool for the further study of argumentation semantics. The other contribution is the establishment of new semantics. On one hand, it fills a gap in theory. On the other hand, it shows the effectiveness of RAS in semantic research of AFs.
| [1] |
P. Baroni, M. Caminada, M. Giacomin, An introduction to argumentation semantics, Knowl. Eng. Rev., 26 (2011), 365–410. https://doi.org/10.1017/S0269888911000166 doi: 10.1017/S0269888911000166
|
| [2] | M. Caminada, On the issue of reinstatement in argumentation, In: Logics in artificial intelligence, Berlin, Heidelberg: Springer, 2006,111–123. http://dx.doi.org/10.1007/11853886_11 |
| [3] |
P. M. Dung, On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and $n$-person games, Artif. Intell., 77 (1995), 321–357. https://doi.org/10.1016/0004-3702(94)00041-X doi: 10.1016/0004-3702(94)00041-X
|
| [4] |
K. Atkinson, T. Bench-Capon, Argumentation schemes in AI and law, Argum. Comput., 12 (2021), 417–434. https://doi.org/10.3233/AAC-200543 doi: 10.3233/AAC-200543
|
| [5] | R. Stranders, M. de Weerdt, C. Witteveen, Fuzzy argumentation for trust, In: Computational logic in multi-agent systems, Berlin, Heidelberg: Springer, 2007,214–230. https://doi.org/10.1007/978-3-540-88833-8_12 |
| [6] |
L. Amgoud, H. Prade, Using arguments for making and explaining decisions, Artif. Intell., 173 (2009), 413–436. https://doi.org/10.1016/j.artint.2008.11.006 doi: 10.1016/j.artint.2008.11.006
|
| [7] |
J. Jiang, X. Liu, Z. Wang, W. Ding, S. Zhang, H. Xu, Large group decision-making with a rough integrated asymmetric cloud model under multi-granularity linguistic environment, Inform. Sciences, 678 (2024), 120994. https://doi.org/10.1016/j.ins.2024.120994 doi: 10.1016/j.ins.2024.120994
|
| [8] |
C. Zhu, X. Liu, W. Ding, S. Zhang, Cloud model-based multi-stage multi-attribute decision-making method under probabilistic interval-valued hesitant fuzzy environment, Exp. Syst. Appl., 255 (2024), 124595. https://doi.org/10.1016/j.eswa.2024.124595 doi: 10.1016/j.eswa.2024.124595
|
| [9] |
C. Cayrol, M. C. Lagasquie-Schiex, Bipolarity in argumentation graphs: Towards a better understanding, Int. J. Approx. Reason., 54 (2013), 876–899. https://doi.org/10.1016/j.ijar.2013.03.001 doi: 10.1016/j.ijar.2013.03.001
|
| [10] |
T. Kampik, N. Potyka, X. Yin, K. Čyras, F. Toni, Contribution functions for quantitative bipolar argumentation graphs: A principle-based analysis, Int. J. Approx. Reason., 173 (2024), 109255. https://doi.org/10.1016/j.ijar.2024.109255 doi: 10.1016/j.ijar.2024.109255
|
| [11] | N. Tamani, M. Croitoru, Fuzzy argumentation system for decision support, In: Information processing and management of uncertainty in knowledge-based systems, Cham: Springer, 2014, 77–86. http://dx.doi.org/10.1007/978-3-319-08795-5_9 |
| [12] |
D. M. Gabbay, Semantics for higher level attacks in extended argumentation frames part 1: Overview, Stud. Logica, 93 (2009), 357. https://doi.org/10.1007/s11225-009-9211-4 doi: 10.1007/s11225-009-9211-4
|
| [13] |
P. Baroni, F. Cerutti, M. Giacomin, G. Guida, AFRA: Argumentation framework with recursive attacks, Int. J. Approx. Reason., 52 (2011), 19–37. https://doi.org/10.1016/j.ijar.2010.05.004 doi: 10.1016/j.ijar.2010.05.004
|
| [14] |
C. Cayrol, J. Fandinno, L. Fariñas, M. C. Lagasquie-Schiex, Valid attacks in argumentation frameworks with recursive attacks, Ann. Math. Artif. Intell., 89 (2021), 53–101. https://doi.org/10.1007/s10472-020-09693-4 doi: 10.1007/s10472-020-09693-4
|
| [15] |
J. Wu, H. Li, Renovation sets and their applications in higher-order argumentation frameworks, J. Logic Comput., 35 (2025), 147–171. https://doi.org/10.1093/logcom/exad067 doi: 10.1093/logcom/exad067
|
| [16] |
L. Amgoud, C. Cayrol, Inferring from inconsistency in preference-based argumentation frameworks, J. Autom. Reason., 29 (2002), 125–169. https://doi.org/10.1023/A:1021603608656 doi: 10.1023/A:1021603608656
|
| [17] |
S. Modgil, Reasoning about preferences in argumentation frameworks, Artif. Intell., 173 (2009), 901–934. https://doi.org/10.1016/j.artint.2009.02.001 doi: 10.1016/j.artint.2009.02.001
|
| [18] |
G. Alfano, M. Calautti, S. Greco, F. Parisi, I. Trubitsyna, Explainable acceptance in probabilistic and incomplete abstract argumentation frameworks, Artif. Intell., 323 (2023), 103967. https://doi.org/10.1016/j.artint.2023.103967 doi: 10.1016/j.artint.2023.103967
|
| [19] | H. Li, N. Oren, T. J. Norman, Probabilistic argumentation frameworks, In: Theorie and applications of formal argumentation, Berlin, Heidelberg: Springer, 2011, 1–16. https://doi.org/10.1007/978-3-642-29184-5_1 |
| [20] | C. da Costa Pereira, A. G. B. Tettamanzi, S. Villata, Changing ones mind: Erase or rewind? possibilistic belief revision with fuzzy argumentation based on trust, In: Proceedings of the twenty-second international joint conference on artificial intelligence, HAL, 2011,164–171. https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-039 |
| [21] |
J. Wu, H. Li, W. Sun, Gödel semantics of fuzzy argumentation frameworks with consistency degrees, AIMS Mathematics, 5 (2020), 4045–4064. https://doi.org/10.3934/math.2020260 doi: 10.3934/math.2020260
|
| [22] |
S. Zhao, J. Wu, An efficient algorithm of fuzzy reinstatement labelling, AIMS Mathematics, 7 (2022), 11165–11187. https://doi.org/10.3934/math.2022625 doi: 10.3934/math.2022625
|
| [23] |
P. E. Dunne, A. Hunter, P. McBurney, S. Parsons, M. Wooldridge, Weighted argument systems: Basic definitions, algorithms, and complexity results, Artif. Intell., 175 (2011), 457–486. https://doi.org/10.1016/j.artint.2010.09.005 doi: 10.1016/j.artint.2010.09.005
|
| [24] |
C. Fasciano, G. Loseto, A. Pinto, M. Ruta, F. Scioscia, A propagation-based ranking semantics in explainable bipolar weighted argumentation, Eng. Appl. Artif. Intell., 142 (2025), 109767. https://doi.org/10.1016/j.engappai.2024.109767 doi: 10.1016/j.engappai.2024.109767
|
| [25] | P. Dondio, Multi-valued and probabilistic argumentation frameworks, In: Computational models of argument, IOS Press, 2014,253–260. https://doi.org/10.3233/978-1-61499-436-7-253 |
| [26] |
J. Wu, A Boolean model for conflict-freeness in argumentation frameworks, AIMS Mathematics, 8 (2023), 3913–-3919. https://doi.org/10.3934/math.2023195 doi: 10.3934/math.2023195
|
| [27] | C. Gratie, A. Florea, Fuzzy labeling for argumentation frameworks, In: Argumentation in multi-agent systems, Berlin, Heidelberg: Springer, 2012, 1–8. https://doi.org/10.1007/978-3-642-33152-7_1 |
| [28] | L. Amgoud, J. Ben-Naim, Ranking-based semantics for argumentation frameworks, In: Scalable uncertainty management, Berlin, Heidelberg: Springer, 2013,134–147. https://doi.org/10.1007/978-3-642-40381-1_11 |
| [29] |
C. Cayrol, M. C. Lagasquie-Schiex, Graduality in argumentation, J. Artif. Intell. Res., 23 (2005), 245–297. https://doi.org/10.1613/jair.1411 doi: 10.1613/jair.1411
|
| [30] | J. Janssen, M. De Cock, D. Vermeir, Fuzzy argumentation frameworks, In: Information processing and management of uncertainty in knowledge-based systems, 2008,513–520. |
| [31] | J. Wu, H. Li, N. Oren, T. J. Norman, Gödel fuzzy argumentation frameworks, In: Computational models of argument, IOS Press, 2016,447–458. https://doi.org/10.3233/978-1-61499-686-6-447 |
| [32] |
A. Hunter, A probabilistic approach to modelling uncertain logical arguments, Int. J. Approx. Reason., 54 (2013), 47–81. https://doi.org/10.1016/j.ijar.2012.08.003 doi: 10.1016/j.ijar.2012.08.003
|
| [33] |
L. Amgoud, D. Doder, S. Vesic, Evaluation of argument strength in attack graphs: Foundations and semantics, Artif. Intell., 302 (2022), 103607. https://doi.org/10.1016/j.artint.2021.103607 doi: 10.1016/j.artint.2021.103607
|
| [34] |
D. M. Gabbay, Equational approach to argumentation networks, Argum. Comput., 3 (2012), 87–142. https://doi.org/10.1080/19462166.2012.704398 doi: 10.1080/19462166.2012.704398
|
| [35] |
D. M. Gabbay, O. Rodrigues, Equilibrium states in numerical argumentation networks, Log. Univers., 9 (2015), 411–473. https://doi.org/10.1007/s11787-015-0119-7 doi: 10.1007/s11787-015-0119-7
|
| [36] | H. Barringer, D. Gabbay, J. Woods, Temporal dynamics of support and attack networks: From argumentation to zoology, In: Mechanizing mathematical reasoning, Berlin, Heidelberg: Springer, 2005, 59–98. https://doi.org/10.1007/978-3-540-32254-2_5 |
| [37] |
N. Alaoui, DWT-based digital watermarking for various attacks, Acadlore Trans. Mach. Learn, 2 (2023), 226–234. https://doi.org/10.56578/ataiml020405 doi: 10.56578/ataiml020405
|
| [38] |
Z. Husain, Enhancing image segmentation using generalized convex fuzzy sets and statistical consistency, Inf. Dyn. Appl., 4 (2025), 53–65. https://doi.org/10.56578/ida040105 doi: 10.56578/ida040105
|
| [39] |
L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
|