In this paper, we explored Caputo-Hadamard fractional Wirtinger-type inequalities using Taylor's formula. The main findings were derived by utilizing Hölder's inequality to derive results for Caputo-Hadamard fractional derivatives in terms of $ \textbf{L}_{q} $ norms for $ q > 1 $. Through graphical interpretation, we confirmed the validity of the results. A flowchart summarizing the logical progression from lemma to theorem was added for clarity. Furthermore, inequalities were also derived for Hadamard fractional derivatives. Finally, we discussed the applications of Wirtinger-type inequalitie which incorporates arithmetic mean and geometric mean-type inequalities.
Citation: Muhammad Samraiz, Humaira Javaid, Muath Awadalla, Hajer Zaway. Caputo-Hadamard fractional Wirtinger-type inequalities via Taylor expansion with applications to classical means[J]. AIMS Mathematics, 2025, 10(7): 16334-16354. doi: 10.3934/math.2025730
In this paper, we explored Caputo-Hadamard fractional Wirtinger-type inequalities using Taylor's formula. The main findings were derived by utilizing Hölder's inequality to derive results for Caputo-Hadamard fractional derivatives in terms of $ \textbf{L}_{q} $ norms for $ q > 1 $. Through graphical interpretation, we confirmed the validity of the results. A flowchart summarizing the logical progression from lemma to theorem was added for clarity. Furthermore, inequalities were also derived for Hadamard fractional derivatives. Finally, we discussed the applications of Wirtinger-type inequalitie which incorporates arithmetic mean and geometric mean-type inequalities.
| [1] |
M. Joshi, S. Bhosale, V. Vyawahare, A survey of fractional calculus applications in artificial neural networks, Artif. Intell. Rev., 56 (2023), 13897–13950. https://doi.org/10.1007/s10462-023-10474-8 doi: 10.1007/s10462-023-10474-8
|
| [2] |
B. Ataşlar-Ayyıldız, Robust trajectory tracking control for serial robotic manipulators using fractional order-based PTID controller, Fractal Fract., 7 (2023), 250. https://doi.org/10.3390/fractalfract7030250 doi: 10.3390/fractalfract7030250
|
| [3] | B. Vinagre, I. Podlubny, A. Hernandez, V. Feliu, Some approximations of fractional order operators used in control theory and applications, Fract. Calc. Appl. Anal., 3 (2000), 231–248. |
| [4] | R. Magin, Fractional calculus in bioengineering: a tool to model complex dynamics, Proceedings of the 13th International Carpathian Control Conference (ICCC), 2012,464–469. https://doi.org/10.1109/CarpathianCC.2012.6228688 |
| [5] | V. Uchaikin, Fractional derivatives for physicists and engineers, Berlin: Springer, 2013. https://doi.org/10.1007/978-3-642-33911-0 |
| [6] | W. Chen, H. Sun, X. Li, Fractional derivative modeling in mechanics and engineering, Singapore: Springer, 2022. https://doi.org/10.1007/978-981-16-8802-7 |
| [7] |
C. Fang, H. Sun, J. Gu, Application of fractional calculus methods to viscoelastic response of amorphous shape memory polymers, J. Mech., 31 (2015), 427–432. https://doi.org/10.1017/jmech.2014.98 doi: 10.1017/jmech.2014.98
|
| [8] |
A. Chakraborty, P. Veeresha, Effects of global warming, time delay and chaos control on the dynamics of a chaotic atmospheric propagation model within the frame of Caputo fractional operator, Commun. Nonlinear Sci., 128 (2024), 107657. https://doi.org/10.1016/j.cnsns.2023.107657 doi: 10.1016/j.cnsns.2023.107657
|
| [9] | A. Kilbas, H. Srivastava, J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006. |
| [10] | A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191–1204. |
| [11] |
M. Ortigueira, J. Machado, What is a fractional derivative? J. Comput. Phys., 293 (2015), 4–13. https://doi.org/10.1016/j.jcp.2014.07.019 doi: 10.1016/j.jcp.2014.07.019
|
| [12] |
F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2012 (2012), 142. https://doi.org/10.1186/1687-1847-2012-142 doi: 10.1186/1687-1847-2012-142
|
| [13] |
B. Kodamasingh, S. Sahoo, W. Shaikh, K. Nonlaopon, S. Ntouyas, M. Tariq, Some new integral inequalities involving fractional operator with applications to probability density functions and special means, Axioms, 11 (2022), 602. https://doi.org/10.3390/axioms11110602 doi: 10.3390/axioms11110602
|
| [14] | G. Hardy, J. Littlewood, G. Polya, Inequalities, Cambridge: Cambridge University Press, 1988. |
| [15] |
P. Beesack, Hardy's inequality and its extensions, Pac. J. Math., 11 (1961), 39–61. https://doi.org/10.2140/pjm.1961.11.39 doi: 10.2140/pjm.1961.11.39
|
| [16] | P. Li, A. Treibergs, Applications of eigenvalue techniques to geometry, In: Contemporary geometry, Boston: Springer, 1991, 21–52. https://doi.org/10.1007/978-1-4684-7950-8_3 |
| [17] | G. Pólya, G. Szegö, Isoperimetric inequalities in mathematical physics, New Jersey: Princeton University Press, 2016. |
| [18] |
S. Erden, Wirtinger-type inequalities for higher order differentiable functions, Turk. J. Math., 44 (2020), 656–661. https://doi.org/10.3906/mat-1910-77 doi: 10.3906/mat-1910-77
|
| [19] | R. Osserman, The isoperimetric inequality, Bull. Amer. Math. Soc., 84 (1978), 1182–1238. |
| [20] | C. Swanson, Wirtinger's inequality, SIAM J. Math. Anal., 9 (1978), 484–491. https://doi.org/10.1137/0509029 |
| [21] | A. Böttcher, H. Widom, From Toeplitz eigenvalues through Green's kernels to higher-order Wirtinger-Sobolev inequalities, In: The extended field of operator theory, Basel: Birkhäuser, 2007, 73–87. https://doi.org/10.1007/978-3-7643-7980-3_4 |
| [22] | H. Alzer, A continuous and a discrete variant of Wirtinger's inequality, Mathematica Pannonica, 3 (1992), 83–89. |
| [23] |
M. Alomari, On Beesack-Wirtinger inequality, Results Math. 72 (2017), 1213–1225. https://doi.org/10.1007/s00025-016-0644-6 doi: 10.1007/s00025-016-0644-6
|
| [24] |
P. Beesack, Integral inequalities involving a function and its derivative, The American Mathematical Monthly, 78 (1971), 705–741. https://doi.org/10.1080/00029890.1971.11992843 doi: 10.1080/00029890.1971.11992843
|
| [25] | M. Sarıkaya, On the new Wirtinger-type inequalities, Konuralp Journal of Mathematics, 7 (2019), 112–116. |
| [26] | J. Steele, The Cauchy-Schwarz master class: an introduction to the art of mathematical inequalities, Cambridge: Cambridge University Press, 2004. https://doi.org/10.1017/CBO9780511817106 |
| [27] |
B. He, H. Zhou, C. Kou, Stability analysis of Hadamard and Caputo-Hadamard fractional nonlinear systems without and with delay, Fract. Calc. Appl. Anal., 25 (2022), 2420–2445. https://doi.org/10.1007/s13540-022-00106-3 doi: 10.1007/s13540-022-00106-3
|
| [28] |
Z. Wang, L. Sun, The Allen-Cahn equation with a time Caputo-Hadamard derivative: mathematical and numerical analysis, Communications in Analysis and Mechanics, 15 (2023), 611–637. https://doi.org/10.3934/cam.2023031 doi: 10.3934/cam.2023031
|
| [29] |
T. Zhao, C. Li, D. Li, Efficient spectral collocation method for fractional differential equation with Caputo-Hadamard derivative, Fract. Calc. Appl. Anal., 26 (2023), 2903–2927. https://doi.org/10.1007/s13540-023-00216-6 doi: 10.1007/s13540-023-00216-6
|
| [30] |
S. Saker, Applications of Wirtinger inequalities on the distribution of zeros of the Riemann Zeta-function, J. Inequal. Appl., 2010 (2010), 215416. https://doi.org/10.1155/2010/215416 doi: 10.1155/2010/215416
|
| [31] |
A. Seuret, F. Gouaisbaut, On the use of the Wirtinger inequalities for time-delay systems, IFAC Proceedings Volumes, 45 (2012), 260–265. https://doi.org/10.3182/20120622-3-US-4021.00035 doi: 10.3182/20120622-3-US-4021.00035
|
| [32] |
B. Du, Anti-periodic solutions problem for inertial competitive neutral-type neural networks via Wirtinger inequality, J. Inequal. Appl., 2019 (2019), 187. https://doi.org/10.1186/s13660-019-2136-1 doi: 10.1186/s13660-019-2136-1
|
| [33] |
V. Lynnyk, B. Rehák, Non-fragile sampled control design for an interconnected large-scale system via Wirtinger inequality, Axioms, 13 (2024), 702. https://doi.org/10.3390/axioms13100702 doi: 10.3390/axioms13100702
|
| [34] |
S. Erden, M. Sarıkaya, B. Gokkurt Ozdemir, N. Uyanık, Wirtinger-type inequalities for Caputo fractional derivatives via Taylor's formula, J. Inequal. Appl., 2024 (2024), 115. https://doi.org/10.1186/s13660-024-03194-2 doi: 10.1186/s13660-024-03194-2
|