Research article Special Issues

Blockchain-driven cybersecurity detection model using quantum bidirectional gated recurrent unit with metaheuristic algorithms on IoT environment

  • Received: 15 April 2025 Revised: 28 May 2025 Accepted: 09 June 2025 Published: 21 July 2025
  • MSC : 37H99, 92D20

  • The fast development of the Internet of Things (IoT) has led to a rising number of interrelated devices, creating novel chances for data automation and collection. This growth also presents unique cybersecurity threats. In IoT devices, cyberattacks can result in serious consequences such as unauthorized access, data breaches, and disruption of critical services. Thus, numerous research surveys have concentrated on the design of intrusion detection systems (IDS). Furthermore, blockchain (BC) technology is implemented to enhance security. BC delivers a robust device for securing data and transactions of IoT systems. By leveraging BC's technology, IoT systems benefit from improved privacy and security. In this study, I proposed a Blockchain Driven Cybersecurity Detection Using Metaheuristic Optimization Algorithms and a Deep Learning Model (BCCD-MOADLM). My main intention of the BCCD-MOADLM model was to detect and classify cybersecurity in an IoT environment using advanced optimization models. BC has emerged as a promising solution for improving the privacy and security of IoT networks. Furthermore, the data pre-processing stage applied z-score normalization to transform input data into a compatible format. The Osprey optimization algorithm (OOA) technique was employed for the dimensionality reduction. Moreover, the quantum bidirectional gated recurrent unit (QBiGRU) technique was used for cybersecurity classification. The parameter selection for QBiGRU was performed using the Pelican optimizer algorithm (POA) technique. The experimental evaluation of the BCCD-MOADLM approach was examined under the BoT-IoT dataset. The comparison outcomes of the BCCD-MOADLM approach portrayed a superior accuracy value of 99.32% over existing models.

    Citation: Abeer A. K. Alharbi. Blockchain-driven cybersecurity detection model using quantum bidirectional gated recurrent unit with metaheuristic algorithms on IoT environment[J]. AIMS Mathematics, 2025, 10(7): 16371-16392. doi: 10.3934/math.2025732

    Related Papers:

  • The fast development of the Internet of Things (IoT) has led to a rising number of interrelated devices, creating novel chances for data automation and collection. This growth also presents unique cybersecurity threats. In IoT devices, cyberattacks can result in serious consequences such as unauthorized access, data breaches, and disruption of critical services. Thus, numerous research surveys have concentrated on the design of intrusion detection systems (IDS). Furthermore, blockchain (BC) technology is implemented to enhance security. BC delivers a robust device for securing data and transactions of IoT systems. By leveraging BC's technology, IoT systems benefit from improved privacy and security. In this study, I proposed a Blockchain Driven Cybersecurity Detection Using Metaheuristic Optimization Algorithms and a Deep Learning Model (BCCD-MOADLM). My main intention of the BCCD-MOADLM model was to detect and classify cybersecurity in an IoT environment using advanced optimization models. BC has emerged as a promising solution for improving the privacy and security of IoT networks. Furthermore, the data pre-processing stage applied z-score normalization to transform input data into a compatible format. The Osprey optimization algorithm (OOA) technique was employed for the dimensionality reduction. Moreover, the quantum bidirectional gated recurrent unit (QBiGRU) technique was used for cybersecurity classification. The parameter selection for QBiGRU was performed using the Pelican optimizer algorithm (POA) technique. The experimental evaluation of the BCCD-MOADLM approach was examined under the BoT-IoT dataset. The comparison outcomes of the BCCD-MOADLM approach portrayed a superior accuracy value of 99.32% over existing models.



    加载中


    [1] O. Abdulkader, A. M. Bamhdi, V. Thayananthan, F. Elbouraey, B. Al-Ghamdi, A lightweight blockchain based cybersecurity for IoT environments, In: 2019 6th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2019 5th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom), IEEE, 2019,139−144. https://doi.org/10.1109/CSCloud/EdgeCom.2019.000-5
    [2] A. A. A. El-Latif, B. Abd-El-Atty, I. Mehmood, K. Muhammad, S. E. Venegas-Andraca, J. Peng, Quantum-inspired blockchain-based cybersecurity: securing smart edge utilities in IoT-based smart cities, Inform. Process. Manag., 58 (2021), 102549. https://doi.org/10.1016/j.ipm.2021.102549 doi: 10.1016/j.ipm.2021.102549
    [3] F. Alkurdi, I. Elgendi, K. S. Munasinghe, D. Sharma, A. Jamalipour, Blockchain in IoT security: A survey, In: 2018 28th International Telecommunication Networks and Applications Conference (ITNAC), IEEE, 2018, 1−4. https://doi.org/10.1109/ATNAC.2018.8615409
    [4] K. M. Giannoutakis, G. Spathoulas, C. K. Filelis-Papadopoulos, A. Collen, M. Anagnostopoulos, K. Votis, et al., A blockchain solution for enhancing cybersecurity defence of IoT, In: 2020 IEEE international conference on blockchain (blockchain), IEEE, 2020,490−495. https://doi.org/10.1109/Blockchain50366.2020.00071
    [5] R. Alajlan, N. Alhumam, M. Frikha, Cybersecurity for blockchain-based IoT systems: A review, Appl. Sci., 13 (2023), 7432. https://doi.org/10.3390/app13137432 doi: 10.3390/app13137432
    [6] W. Li, S. Tug, W. Meng, Y. Wang, Designing collaborative blockchained signature-based intrusion detection in IoT environments, Future Gener. Comput. Syst., 96 (2019), 481−489. https://doi.org/10.1016/j.future.2019.02.064 doi: 10.1016/j.future.2019.02.064
    [7] B. Alotaibi, Utilizing blockchain to overcome cyber security concerns in the internet of things: A review, IEEE Sens. J., 19 (2019), 10953−10971. https://doi.org/10.1109/JSEN.2019.2935035 doi: 10.1109/JSEN.2019.2935035
    [8] P. Kumar, R. Kumar, A. Aljuhani, D. Javeed, A. Jolfaei, A. N. Islam, Digital twin-driven SDN for smart grid: A deep learning integrated blockchain for cybersecurity, Sol. Energy, 263 (2023), 111921. https://doi.org/10.1016/j.solener.2023.111921 doi: 10.1016/j.solener.2023.111921
    [9] M. Gimenez-Aguilar, J. M. De Fuentes, L. Gonzalez-Manzano, D. Arroyo, Achieving cybersecurity in blockchain-based systems: A survey, Future Gener. Comput. Syst., 124 (2021), 91−118. https://doi.org/10.1016/j.future.2021.05.007 doi: 10.1016/j.future.2021.05.007
    [10] V. Nagamalla, R. K. Sanapala, Integrating predictive big data analytics with behavioral machine learning models for proactive threat intelligence in industrial IoT cybersecurity, Int. J. Wirel. Ad Hoc Commun., 7 (2023). https://doi.org/10.54216/IJWAC.070201 doi: 10.54216/IJWAC.070201
    [11] E. Ntizikira, L. Wang, J. Chen, K. Saleem, Enhancing IoT security through emotion recognition and blockchain-driven intrusion prevention, Internet Things, 29 (2025), 101442. https://doi.org/10.1016/j.iot.2024.101442 doi: 10.1016/j.iot.2024.101442
    [12] R. Dahiya, L. Samal, D. Samal, J. Kumar, V. Sharma, D. K. Sahni, et al., A blockchain based security system framework in healthcare domain using IoT, J. Electr. Syst., 20 (2024), 2039−2050. https://doi.org/10.52783/jes.1805 doi: 10.52783/jes.1805
    [13] K. Dhanushkodi, K. Venkataramani, N. P. K R, R. Sethuraman, BGHO‐E2EB model: Enhancing IoT security with gaussian artificial hummingbird optimization and blockchain technology, T. Emerg. Telecommun. T., 36 (2025), e70037. https://doi.org/10.1002/ett.70037 doi: 10.1002/ett.70037
    [14] M. Akbar, M. M. Waseem, S. H. Mehanoor, P. Barmavatu, Blockchain-based cyber-security trust model with multi-risk protection scheme for secure data transmission in cloud computing, Cluster Comput., 2024, 1−15. https://doi.org/10.1007/s10586-024-04481-9 doi: 10.1007/s10586-024-04481-9
    [15] G. Archana, R. Goyal, K. M. Kumar, Blockchain-driven optimized chaotic encryption scheme for medical image transmission in IoT-Edge environment, Int. J. Comput. Intell. Syst., 18 (2025), 11. https://doi.org/10.1007/s44196-024-00731-1 doi: 10.1007/s44196-024-00731-1
    [16] K. V. Pichandi, S. Qamar, R. Manikandan, Network security enhancement in data-driven intelligent architecture based on cloud IoT blockchain cryptanalysis, Data-Driven Systems and Intelligent Applications, CRC Press, 2024,137−154. https://doi.org/10.1201/9781003388449-8
    [17] S. Rathnamala, T. Vijayashanthi, M. Prabhananthakumar, A. Panthakkan, S. Atalla, W. Mansoor, Enhanced hybrid deep learning approach for botnet attacks detection in IoT environment, arXiv preprint, 2025.
    [18] H. M. Rai, K. K. Shukla, L. Tightiz, S. Padmanaban, Enhancing data security and privacy in energy applications: Integrating IoT and blockchain technologies, Heliyon, 10 (2024). https://doi.org/10.1016/j.heliyon.2024.e38917 doi: 10.1016/j.heliyon.2024.e38917
    [19] U. Sakthivelu, C. N. S. V. Kumar, Enhanced cyberthreat detection and classification with CMCOADL-TDC using deep learning and optimization techniques, Tehnički Vjesnik, 32 (2025), 891−899. https://doi.org/10.17559/TV-20240619001788 doi: 10.17559/TV-20240619001788
    [20] L. Tightiz, J. Yoo, Quantum-fuzzy expert timeframe predictor for post-TAVR monitoring, Mathematics, 12 (2024), 2625. https://doi.org/10.3390/math12172625 doi: 10.3390/math12172625
    [21] S. I. Popoola, Y. Tsado, A. A. Ogunjinmi, E. Sanchez-Velazquez, Y. Peng, D. B. Rawat, Multi-stage deep learning for intrusion detection in industrial internet of things, IEEE Access, 13 (2025), 60532−60555. https://doi.org/10.1109/ACCESS.2025.3557959 doi: 10.1109/ACCESS.2025.3557959
    [22] S. M. Hassan, M. M. Mohamad, F. B. Muchtar, Advanced intrusion detection in MANETs: A survey of machine learning and optimization techniques for mitigating black/gray hole attacks, IEEE Access, 12 (2024), 150046−150090. https://doi.org/10.1109/ACCESS.2024.3457682 doi: 10.1109/ACCESS.2024.3457682
    [23] A. Payyampally, S. M. Thampi, P. Mukherjee, Advanced intrusion detection techniques and trends in IoT networks, Securing the Connected World: Exploring Emerging Threats and Innovative Solutions, Springer, Cham, 2025, 47−113. https://doi.org/10.1007/978-3-031-82826-3_3
    [24] A. K. Kumar, S. Rathnamala, T. Vijayashanthi, M. Prabhananthakumar, A. Panthakkan, S. Atalla, et al., Enhanced hybrid deep learning approach for botnet attacks detection in IoT environment, In: 2024 7th International Conference on Signal Processing and Information Security (ICSPIS), IEEE, 2024, 1−6. https://doi.org/10.1109/ICSPIS63676.2024.10812621
    [25] A. Nazir, J. He, N. Zhu, A. Wajahat, F. Ullah, S. Qureshi, et al., Empirical evaluation of ensemble learning and hybrid CNN-LSTM for IoT threat detection on heterogeneous datasets, J. Supercomput., 81 (2025), 775. https://doi.org/10.1007/s11227-025-07255-1 doi: 10.1007/s11227-025-07255-1
    [26] S. AboulEla, N. Ibrahim, S. Shehmir, A. Yadav, R. Kashef, Navigating the cyber threat landscape: An in-depth analysis of attack detection within IoT ecosystems, AI, 5 (2024), 704−732. https://doi.org/10.3390/ai5020037 doi: 10.3390/ai5020037
    [27] M. A. Alkhonaini, M. A. Alohali, M. Aljebreen, M. M. Eltahir, M. H. Alanazi, A. Yafoz, et al., Sandpiper optimization with hybrid deep learning model for blockchain-assisted intrusion detection in IoT environment, Alex. Eng. J., 112 (2025), 49−62. https://doi.org/10.1016/j.aej.2024.10.032 doi: 10.1016/j.aej.2024.10.032
    [28] W. Wang, B. Yan, B. Chai, R. Shen, A. Dong, J. Yu, EBIAS: ECC-enabled blockchain-based identity authentication scheme for IoT device, High-Confid. Comput., 5 (2025), 100240. https://doi.org/10.1016/j.hcc.2024.100240 doi: 10.1016/j.hcc.2024.100240
    [29] R. Saranya, S. S. Priscila, Development of intrusion detection using logistic regression with various pre-processing approaches, International Conference on Advancements in Smart Computing and Information Security, Cham: Springer Nature Switzerland, 2023,302−312. https://doi.org/10.1007/978-3-031-59097-9_22
    [30] A. Gaurav, B. B. Gupta, R. W. Attar, A. Alhomoud, V. Arya, K. T. Chui, Driver identification in advanced transportation systems using osprey and salp swarm optimized random forest model, Sci. Rep., 15 (2025), 2453. https://doi.org/10.1038/s41598-022-12509-6 doi: 10.1038/s41598-022-12509-6
    [31] T. Zhang, C. Yu, S. Zhang, CA-SQBG: Cross-attention guided Siamese quantum BiGRU for drug-drug interaction extraction, Comput. Biol. Med., 186 (2025), 109655. https://doi.org/10.1016/j.compbiomed.2025.109655 doi: 10.1016/j.compbiomed.2025.109655
    [32] S. Wu, X. Cheng, H. Li, sEMG signal-based human lower-limb intention recognition algorithm using improved extreme learning machine, J. Adv. Comput. Intell., 29 (2025), 53−63. https://doi.org/10.20965/jaciii.2025.p0053 doi: 10.20965/jaciii.2025.p0053
    [33] https://research.unsw.edu.au/projects/bot-iot-dataset
    [34] M. Rahman, S. Al Shakil, M. R. Mustakim, A survey on intrusion detection system in IoT networks, Cyber Secur. Appl., 3 (2025). https://doi.org/10.1016/j.csa.2024.100082 doi: 10.1016/j.csa.2024.100082
    [35] M. Zeeshan, Q. Riaz, M. A. Bilal, M. K. Shahzad, H. Jabeen, S. A. Haider, et al., Protocol-based deep intrusion detection for DoS and DDoS attacks using UNSW-NB15 and Bot-IoT data-sets, IEEE Access, 10 (2021), 2269−2283. https://doi.org/10.1109/ACCESS.2021.3137201 doi: 10.1109/ACCESS.2021.3137201
    [36] S. Alosaimi, S. M. Almutairi, An intrusion detection system using BoT-IoT, Appl. Sci., 13 (2023), 5427. https://doi.org/10.3390/app13095427 doi: 10.3390/app13095427
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(540) PDF downloads(23) Cited by(0)

Article outline

Figures and Tables

Figures(10)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog