This work presents a practical iterative algorithm, extending the inertial Mann iteration, for solving split fixed-point problems with demicontractive mappings in real Hilbert spaces. We rigorously establish both its weak and strong convergence under clearly defined parametric conditions. Our methodology utilizes versatile two-step selection techniques with both fixed and variable step sizes. Compelling numerical experiments confirm the algorithm's accuracy and computational efficiency in approximating solutions to these challenging problems.
Citation: Hasanen A. Hammad, Habib ur Rehman, Manuel De la Sen. Convergence behavior of practical iterative schemes for split fixed point problems under fixed and variable stepsize strategies[J]. AIMS Mathematics, 2025, 10(7): 16068-16104. doi: 10.3934/math.2025720
This work presents a practical iterative algorithm, extending the inertial Mann iteration, for solving split fixed-point problems with demicontractive mappings in real Hilbert spaces. We rigorously establish both its weak and strong convergence under clearly defined parametric conditions. Our methodology utilizes versatile two-step selection techniques with both fixed and variable step sizes. Compelling numerical experiments confirm the algorithm's accuracy and computational efficiency in approximating solutions to these challenging problems.
| [1] |
C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Probl., 20 (2003), 103. https://doi.org/10.1088/0266-5611/20/1/006 doi: 10.1088/0266-5611/20/1/006
|
| [2] |
Y. Censor, T. Bortfeld, B. Martin, A. Trofimov, A unified approach for inversion problems in intensity-modulated radiation therapy, Phys. Med. Biol., 51 (2006), 2353. https://doi.org/10.1088/0031-9155/51/10/001 doi: 10.1088/0031-9155/51/10/001
|
| [3] |
G. López, V. Martín-Márquez, F. Wang, H. K. Xu, Solving the split feasibility problem without prior knowledge of matrix norms, Inverse Probl., 28 (2012), 085004. https://doi.org/10.1088/0266-5611/28/8/085004 doi: 10.1088/0266-5611/28/8/085004
|
| [4] |
Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algor., 8 (1994), 221–239. https://doi.org/10.1007/BF02142692 doi: 10.1007/BF02142692
|
| [5] |
C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Probl., 18 (2002), 441. https://doi.org/10.1088/0266-5611/18/2/310 doi: 10.1088/0266-5611/18/2/310
|
| [6] |
S. Reich, M. T. Truong, T. N. H. Mai, The split feasibility problem with multiple output sets in Hilbert spaces, Optim. Lett., 14 (2020), 2335–2353. https://doi.org/10.1007/s11590-020-01555-6 doi: 10.1007/s11590-020-01555-6
|
| [7] |
S. Reich, T. M. Tuyen, Projection algorithms for solving the split feasibility problem with multiple output sets, J. Optim. Theory Appl., 190 (2021), 861–878. https://doi.org/10.1007/s10957-021-01910-2 doi: 10.1007/s10957-021-01910-2
|
| [8] |
A. Moudafi, The split common fixed-point problem for demicontractive mappings, Inverse Probl., 26 (2010), 055007. https://doi.org/10.1088/0266-5611/26/5/055007 doi: 10.1088/0266-5611/26/5/055007
|
| [9] |
A. Moudafi, A note on the split common fixed-point problem for quasi-nonexpansive operators, Nonlinear Anal. Theor., 74 (2011), 4083–4087. https://doi.org/10.1016/j.na.2011.03.041 doi: 10.1016/j.na.2011.03.041
|
| [10] |
A. Cegielski, General method for solving the split common fixed point problem, J. Optim. Theory Appl., 165 (2015), 385–404. https://doi.org/10.1007/s10957-014-0662-z doi: 10.1007/s10957-014-0662-z
|
| [11] |
A. Padcharoen, P. Kumam, Y. J. Cho, Split common fixed point problems for demicontractive operators, Numer. Algor., 82 (2019), 297–320. https://doi.org/10.1007/s11075-018-0605-0 doi: 10.1007/s11075-018-0605-0
|
| [12] |
F. Alvarez, Weak convergence of a relaxed and inertial hybrid projection proximal point algorithm for maximal monotone operators in Hilbert space, SIAM J. Optim., 14 (2004), 773–782. https://doi.org/10.1137/S1052623403427859 doi: 10.1137/S1052623403427859
|
| [13] |
F. Alvarez, H. Attouch, An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal., 9 (2001), 3–11. https://doi.org/10.1023/A:1011253113155 doi: 10.1023/A:1011253113155
|
| [14] |
B. T. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math. Math. Phys., 4 (1964), 1–17. https://doi.org/10.1016/0041-5553(64)90137-5 doi: 10.1016/0041-5553(64)90137-5
|
| [15] |
S. Hu, Y. Wang, B. Tan, F. Wang, Inertial iterative method for solving variational inequality problems of pseudo-monotone operators and fixed point problems of nonexpansive mappings in Hilbert spaces, J. Ind. Manag. Optim., 19 (2023), 2655–2675. https://doi.org/10.3934/jimo.2022060 doi: 10.3934/jimo.2022060
|
| [16] |
T. V. Thang, Inertial subgradient projection algorithms extended to equilibrium problems, Bull. Iran. Math. Soc., 48 (2022), 2349–2370. https://doi.org/10.1007/s41980-021-00649-w doi: 10.1007/s41980-021-00649-w
|
| [17] |
G. H. Taddele, P. Kumam, V. Berinde, An extended inertial Halpern-type ball-relaxed CQ algorithm for multiple-sets split feasibility problem, Ann. Funct. Anal., 13 (2022), 48. https://doi.org/10.1007/s43034-022-00190-9 doi: 10.1007/s43034-022-00190-9
|
| [18] |
H. A. Hammad, H. ur Rehman, M. De la Sen, Shrinking projection methods for a closed and convex accelerating relaxed inertial Tseng-type algorithm with applications, Math. Probl. Eng., 2020 (2020), 7487383. https://doi.org/10.1155/2020/7487383 doi: 10.1155/2020/7487383
|
| [19] |
T. M. Tuyen, H. A. Hammad, Effect of shrinking projection and CQ-methods on two inertial forward-backward algorithms for solving variational inclusion problems, Rend. Circ. Mat. Palermo II. Ser., 70 (2021), 1669–1683. https://doi.org/10.1007/s12215-020-00581-8 doi: 10.1007/s12215-020-00581-8
|
| [20] |
H. A. Hammad, W. Cholamjiak, D. Yambangwai, H. Dutta, A modified shrinking projection method for numerical reckoning fixed points of $G$-nonexpansive mappings in Hilbert spaces with graph, Miskolc Math. Notes, 20 (2019), 941–956. https://doi.org/10.18514/MMN.2019.2954 doi: 10.18514/MMN.2019.2954
|
| [21] |
H. A. Hammad, H. ur Rehman, M. De la Sen, Advanced algorithms and common solutions to variational inequalities, Symmetry, 12 (2020), 1198. https://doi.org/10.3390/sym12071198 doi: 10.3390/sym12071198
|
| [22] |
H. Li, Y. Wu, F. Wang, Convergence analysis for solving equilibrium problems and split feasibility problems in Hilbert spaces, Optimization, 72 (2023), 1863–1898. https://doi.org/10.1080/02331934.2022.2043857 doi: 10.1080/02331934.2022.2043857
|
| [23] |
P. Majee, C. Nahak, On inertial proximal algorithm for split variational inclusion problems, Optimization, 67 (2018), 1701–1716. https://doi.org/10.1080/02331934.2018.1486838 doi: 10.1080/02331934.2018.1486838
|
| [24] |
M. Rashid, A. Kalsoom, A. H. Albargi, A. Hussain, H. Sundas, Convergence result for solving the split fixed point problem with multiple output sets in nonlinear spaces, Mathematics, 12 (2024), 1825. https://doi.org/10.3390/math12121825 doi: 10.3390/math12121825
|
| [25] |
M. Iqbal, A. Ali, H. A. Sulami, A. Hussain, Iterative stability analysis for generalized $\alpha$-nonexpensive mappings with fixed points, Axioms, 13 (2024), 156. https://doi.org/10.3390/axioms13030156 doi: 10.3390/axioms13030156
|
| [26] |
J. Bai, W. W. Hager, H. Zhang, An inexact accelerated stochastic ADMM for separable convex optimization, Comput. Optim. Appl., 81 (2022), 479–518. https://doi.org/10.1007/s10589-021-00338-8 doi: 10.1007/s10589-021-00338-8
|
| [27] |
F. Wang, The split feasibility problem with multiple output sets for demicontractive mappings, J. Optim. Theory Appl., 195 (2022), 837–853. https://doi.org/10.1007/s10957-022-02096-x doi: 10.1007/s10957-022-02096-x
|
| [28] |
A. Hanjing, S. Suantai, The split fixed point problem for demicontractive mappings and applications, Fixed Point Theor., 21 (2020), 507–524. https://doi.org/10.24193/fpt-ro.2020.2.37 doi: 10.24193/fpt-ro.2020.2.37
|
| [29] |
P. E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., 16 (2008), 899–912. https://doi.org/10.1007/s11228-008-0102-z doi: 10.1007/s11228-008-0102-z
|
| [30] |
H. Xu, An iterative approach to quadratic optimization, J. Optim. Theory Appl., 116 (2003), 659–678. https://doi.org/10.1023/A:1023073621589 doi: 10.1023/A:1023073621589
|
| [31] | Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), 591–597. |
| [32] | G. Stampacchia, Formes bilineaires coercitives sur les ensembles convexes, C. R. Acad. Sci. Paris, 258 (1964), 4413–4416. |
| [33] |
J. L. Lions, G. Stampacchia, Variational inequalities, Commun. Pure Appl. Math., 20 (1967), 493–519. https://doi.org/10.1002/cpa.3160200302 doi: 10.1002/cpa.3160200302
|
| [34] |
O. T. Mewomo, T. O. Alakoya, A. Taiwo, A. Gibali, Solving split equality equilibrium and fixed point problems in Banach spaces, Optim. Eruditorum, 1 (2024), 17–44. https://doi.org/10.69829/oper-024-0101-ta03 doi: 10.69829/oper-024-0101-ta03
|
| [35] |
L. J. Zhu, J. C. Yao, Y. Yao, Approximating solutions of a split fixed point problem of demicontractive operators, Carpathian J. Math., 40 (2024), 195–206. https://doi.org/10.37193/CJM.2024.01.14 doi: 10.37193/CJM.2024.01.14
|
| [36] |
B. Tan, X. Qin, On relaxed inertial projection and contraction algorithms for solving monotone inclusion problems, Adv. Comput. Math., 50 (2024), 59. https://doi.org/10.1007/s10444-024-10156-1 doi: 10.1007/s10444-024-10156-1
|
| [37] | P. Majee, S. Bai, S. Padhye, On fast iterative methods for solving the split fixed point problem of multiple output sets involving demicontractive mappings, 2023. https://doi.org/10.21203/rs.3.rs-3497469/v1 |