Research article

On generalized $ \alpha $-$ \psi $-Geraghty contractive mappings with integral type and fixed point theorems in quasi-partial metric spaces

  • Received: 02 April 2025 Revised: 22 June 2025 Accepted: 08 July 2025 Published: 16 July 2025
  • MSC : 47H09, 47H10, 54H25

  • In this paper, we mainly studied the existence and uniqueness of fixed points of $ \alpha $-$ \psi $-Geraghty contractive mappings of integral type in quasi-partial metric spaces. We also gave examples to support our results.

    Citation: He Liu, Hongyan Guan. On generalized $ \alpha $-$ \psi $-Geraghty contractive mappings with integral type and fixed point theorems in quasi-partial metric spaces[J]. AIMS Mathematics, 2025, 10(7): 16045-16067. doi: 10.3934/math.2025719

    Related Papers:

  • In this paper, we mainly studied the existence and uniqueness of fixed points of $ \alpha $-$ \psi $-Geraghty contractive mappings of integral type in quasi-partial metric spaces. We also gave examples to support our results.



    加载中


    [1] S. Banach, Surles operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181
    [2] S. G. Matthews, Partial metric topology, Ann. NY Acad. Sci., 728 (1994), 183–197. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x doi: 10.1111/j.1749-6632.1994.tb44144.x
    [3] E. Karapinar, I. M. Erhan, A. Ozturk, Fixed point theorems on quasi-partial metric spaces, Math. Comput. Model., 57 (2013), 2442–2448. https://doi.org/10.1016/j.mcm.2012.06.036 doi: 10.1016/j.mcm.2012.06.036
    [4] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha$-$\psi$-contractive type mappings, Nonlinear Anal., 75 (2012), 2154–2165. https://doi.org/10.1016/j.na.2011.10.014 doi: 10.1016/j.na.2011.10.014
    [5] E. Karapinar, L. Gholizadeh, H. H. Alsulami, M. Noorwali, $\alpha$-$(\psi, \phi)$ Contractive mappings on quasi-partial metric spaces, Fixed Point Theory A., 105 (2015), 1–20. https://doi.org/10.1186/s13663-015-0352-z doi: 10.1186/s13663-015-0352-z
    [6] A. Branciari, A fixed point theorem for mapings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci., 29 (2002), 531–536. https://doi.org/10.1155/S0161171202007524 doi: 10.1155/S0161171202007524
    [7] D. Doitchinov, On completeness in quasi-metric spaces, Topol. Appl., 30 (1988), 127–148. https://doi.org/10.1016/0166-8641(88)90012-0 doi: 10.1016/0166-8641(88)90012-0
    [8] M. Jleli, B. Samet, Remarks on $G$-metric spaces and fixed point theorems, Fixed Point Theory A., 2012 (2012), 1–7. https://doi.org/10.1186/1687-1812-2012-210 doi: 10.1186/1687-1812-2012-210
    [9] Y. Hao, H. Guan, On some common fixed point results for weakly contraction mappings with application, J. Funct. Space., 2021 (2021), 5573983. https://doi.org/10.1155/2021/5573983 doi: 10.1155/2021/5573983
    [10] G. Jungck, Compatible mapings and common fixed points, Int. J. Math. Math. Sci., 9 (1986), 771–779. https://doi.org/10.1155/S0161171286000935 doi: 10.1155/S0161171286000935
    [11] M. U. Ali, T. Kamran, E. Karapinar, An approach to existence of fixed points of generalized contractive multivalued mapings of integral type via admissible mapping, Abstr. Appl. Anal., 2014 (2014), 141489. https://doi.org/10.1155/2014/141489 doi: 10.1155/2014/141489
    [12] H. Guan, J. Gou, Common fixed point theorems for contractive mappings of integral type in $b$-metric spaces, Math. Notes, 115 (2024), 538–554. https://doi.org/10.1134/S0001434624030258 doi: 10.1134/S0001434624030258
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(379) PDF downloads(31) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog