Research article Special Issues

Solitary wave solutions for the conformable time-fractional coupled Konno-Oono model via applications of three mathematical methods

  • Received: 01 June 2025 Revised: 22 June 2025 Accepted: 03 July 2025 Published: 16 July 2025
  • MSC : 35C05, 35C07, 35C08, 47J35

  • This research extensively investigates the solitary wave solutions of the fractional coupled Konno–Oono model, a prevalent framework in diverse scientific and engineering disciplines. Three mathematical methods called the simple equation method, the modified extended auxiliary equation mapping method, and the exponential-expansion method are gradually employed to derive the analytical solutions. Moreover, Mathematica 13.0 software is used to perform the analytical computations and graphical simulations. The explored outcomes have significant applications in the realm of magnetic fields. After the careful selection of parametric values under constrained conditions, some solutions are plotted in 2-dimensional and 3-dimensional spaces to understand the physical phenomena of the concerned model. Importantly, our findings affirm that the employed methods not only yield complete and uniform responses but also showcase simplicity, effectiveness, and remarkable computational efficiency. Hence, our research contributes valuable insights into the behavior of the fractional coupled Konno–Oono model, paving the way for enhanced comprehension and potential applications in magnetic field studies.

    Citation: Aly R. Seadawy, Asghar Ali, Taha Radwan, Wael W. Mohammed, Karim K. Ahmed. Solitary wave solutions for the conformable time-fractional coupled Konno-Oono model via applications of three mathematical methods[J]. AIMS Mathematics, 2025, 10(7): 16027-16044. doi: 10.3934/math.2025718

    Related Papers:

  • This research extensively investigates the solitary wave solutions of the fractional coupled Konno–Oono model, a prevalent framework in diverse scientific and engineering disciplines. Three mathematical methods called the simple equation method, the modified extended auxiliary equation mapping method, and the exponential-expansion method are gradually employed to derive the analytical solutions. Moreover, Mathematica 13.0 software is used to perform the analytical computations and graphical simulations. The explored outcomes have significant applications in the realm of magnetic fields. After the careful selection of parametric values under constrained conditions, some solutions are plotted in 2-dimensional and 3-dimensional spaces to understand the physical phenomena of the concerned model. Importantly, our findings affirm that the employed methods not only yield complete and uniform responses but also showcase simplicity, effectiveness, and remarkable computational efficiency. Hence, our research contributes valuable insights into the behavior of the fractional coupled Konno–Oono model, paving the way for enhanced comprehension and potential applications in magnetic field studies.



    加载中


    [1] E. M. E. Zayed, A. H. Arnous, DNA dynamics studied using the homogeneous balance method, Chinese Phys. Lett., 29 (2012), 080203. Available from: https://iopscience.iop.org/article/10.1088/0256-307X/29/8/080203.
    [2] A. Altalbe, A. Zaagan, A. Bekir, A. Cevikel, The nonlinear wave dynamic of the space-time fractional van der Waals equation via three analytical methods, Phys. Fluids, 36 (2024), 027140. https://doi.org/10.1016/j.ijleo.2019.164133 doi: 10.1016/j.ijleo.2019.164133
    [3] P. N. Ryabov, D. I. Sinelshchikov, M. B. Kochanov, Application of the Kudryashov method for finding exact solutions of the high order nonlinear evolution equations, Appl. Math. Comput., 218 (2011), 3965. https://doi.org/10.1016/j.amc.2011.09.027 doi: 10.1016/j.amc.2011.09.027
    [4] A. Cevikel, A. Bekir, O. Guner, Exploration of new solitons solutions for the Fitzhugh-Nagumo-type equations with conformable derivatives, Int. J. Mod. Phys. B, 37 (2023), 2350224. https://doi.org/10.1142/S0217979223502247 doi: 10.1142/S0217979223502247
    [5] M. Wang, X. Li, J. Zhang, The $(G'/G)$-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics, Phys. Lett. A, 372 (2008), 417–423. https://doi.org/10.1016/j.physleta.2007.07.051 doi: 10.1016/j.physleta.2007.07.051
    [6] M. T. Darvishi, M. Naja, S. B. Arbabi, H. Rezazadeh, A. Bekir, A. Cevikel, New extensions of (2+1)-dimensional BLMP models with soliton solutions, Opt. Quant. Electron., 55 (2023), 568. https://doi.org/10.1007/s11082-023-04862-1 doi: 10.1007/s11082-023-04862-1
    [7] S. Nestor, A. Houwe, H. Rezazadeh, A. Bekir, G. Betchewe, S. Y. Doka, New solitary waves for the Klein–Gordon-Zakharov equations, Mod. Phys. Lett. B, 34 (2020), 2050246. https://doi.org/10.1142/S0217984920502462 doi: 10.1142/S0217984920502462
    [8] A. Cevikel, Optical solutions for the (3+1)-dimensional YTSF equation, Opt. Quant. Electron., 55 (2023), 510. https://doi.org/10.1007/s11082-023-04787-9 doi: 10.1007/s11082-023-04787-9
    [9] S. Nestor, G. Betchewe, H. Rezazadeh, A. Bekir, S. Y. Doka, Exact optical solitons to the perturbed nonlinear Schrödinger equation with dual-power law of nonlinearity, Opt. Quant. Electron., 52 (2020), 1–16. https://doi.org/10.1007/s11082-020-02412-7 doi: 10.1007/s11082-020-02412-7
    [10] C. R. Jisha, R. K. Dubey, Wave interactions and structures of (4+1)-dimensional Boiti-Leon-Manna-Pempinelli equation, Nonlinear Dynam., 110 (2022), 3685–3696. https://doi.org/10.1007/s11071-022-07816-6 doi: 10.1007/s11071-022-07816-6
    [11] X. Zhao, F. Pang, H. Gegen, Interactions among two-dimensional nonlinear localized waves and periodic wave solution for a novel integrable (2+1)-dimensional KdV equation, Nonlinear Dynam., 110 (2022), 3629–3654. https://doi.org/10.1007/s11071-022-07785-w doi: 10.1007/s11071-022-07785-w
    [12] A. M. Wazwaz, N. S. Alatawi, W. Albalawi, S. A. E. Tantawy, Painlevé analysis for a new (3+1)-dimensional KP equation: Multiple-soliton and lump solutions, Eur. Phys. Lett., 140 (2022), 52002. Available from: https://iopscience.iop.org/article/10.1209/0295-5075/aca49f/meta.
    [13] H. F. Ismae, A. N. Akkilic, M. A. S. Murad, H. Bulut, W. Mahmoud, M. S. Osman, Boiti-Leon-Manna-Pempinelli equation including time-dependent coefficient (vcBLMPE): A variety of nonautonomous geometrical structures of wave solutions, Nonlinear Dynam., 110 (2022), 3699–3712. https://doi.org/10.1007/s11071-022-07817-5 doi: 10.1007/s11071-022-07817-5
    [14] S. Kumar, B. Mohan, A novel and efficient method for obtaining Hirota's bilinear form for the nonlinear evolution equation in $(n+1)$-dimensions, Part. Differ. Equ. Appl. Math., 5 (2022), 100274. https://doi.org/10.1016/j.padiff.2022.100274 doi: 10.1016/j.padiff.2022.100274
    [15] O. A. Ilhan, J. Manafian, H. M. Baskonus, M. Lakestani, Solitary wave solitons to one model in the shallow water waves, Eur. Phys. J. Plus., 136 (2021), 337. https://doi.org/10.1140/epjp/s13360-021-01327-w doi: 10.1140/epjp/s13360-021-01327-w
    [16] A. S. Khalifa, H. M. Ahmed, N. M. Badra, W. B. Rabie, Exploring solitons in optical twin-core couplers with Kerr law of nonlinear refractive index using the modified extended direct algebraic method, Opt. Quant. Electron., 56 (2024), 1060. https://doi.org/10.1007/s11082-024-06882-x doi: 10.1007/s11082-024-06882-x
    [17] O. D. Adeyemo, L. Zhang C. M. Khalique, Bifurcation theory, lie group-invariant solutions of subalgebras and conservation laws of a generalized (2+1)-dimensional BK equation type Ⅱ in plasma physics and fluid mechanics, Mathematics, 10 (2022), 2391. https://doi.org/10.3390/math10142391 doi: 10.3390/math10142391
    [18] M. E. Ramadan, H. M. Ahmed, A. S. Khalifa, K. K. Ahmed, Invariant solitons and travelling-wave solutions to a higher-order nonlinear Schrödinger equation in an optical fiber with an improved tanh-function algorithm, J. Appl. Anal. Comput., 15 (2025), 3270–3289. https://doi.org/10.11948/20250042 doi: 10.11948/20250042
    [19] Z. Islam, A. Abdeljabbar, M. A. N. A. Sheikh, M. A. Taher, Stability and spin solitonic dynamics of the HFSC model: Effects of neighboring interactions and crystal field anisotropy parameters, Opt. Quant. Electron., 56 (2024), 190. https://doi.org/10.1007/s11082-023-05739-z doi: 10.1007/s11082-023-05739-z
    [20] C. Li, L. Chen, G. Li, Optical solitons of space-time fractional Sasa-Satsuma equation by F-expansion method, Optik, 224 (2020), 165527. https://doi.org/10.1016/j.ijleo.2020.165527 doi: 10.1016/j.ijleo.2020.165527
    [21] A. Akbulut, R. Islam, Y. Arafat, F. Tascan, A novel scheme for SMCH equation with two different approaches, Comput. Methods Differ., 11 (2023), 263–280. https://doi.org/10.22034/cmde.2022.50363.2093 doi: 10.22034/cmde.2022.50363.2093
    [22] M. Nadeem, J. H. He, He–Laplace variational iteration method for solving the nonlinear equations arising in chemical kinetics and population dynamics, J. Math. Chem., 59 (2021), 1234–1245. https://doi.org/10.1007/s10910-021-01236-4 doi: 10.1007/s10910-021-01236-4
    [23] S. Noeiaghdam, D. Sidorov, A. M. Wazwaz, N. Sidorov, V. Sizikov, The numerical validation of the adomian decomposition method for solving Volterra integral equation with discontinuous kernels using the CESTAC method, Mathematics, 9 (2021), 260. https://doi.org/10.3390/math9030260 doi: 10.3390/math9030260
    [24] S. Hussain, A. Shah, A. Ullah, F. Haq, The q-homotopy analysis method for a solution of the Cahn-Hilliard equation in the presence of advection and reaction terms, J. Taibah Univ. Sci., 40 (2022), 813–819. https://doi.org/10.1080/16583655.2022.2119746 doi: 10.1080/16583655.2022.2119746
    [25] M. Modanli, S. T. Abdulazeez, A. M. Husien, A residual power series method for solving pseudo hyperbolic partial differential equations with nonlocal conditions, Numer. Meth. Part. D. E., 40 (2021), 2235–2243. https://doi.org/10.1002/num.22683 doi: 10.1002/num.22683
    [26] A. Qazza, A. Burqan, R. Saadeh, Application of ARA-Residual power series method in solving systems of fractional differential equations, Math. Probl. Eng., 2022 (2022), 6939045. https://doi.org/10.1155/2022/6939045 doi: 10.1155/2022/6939045
    [27] F. Dusunceli, E. Celik, M. Askin, H. Bulut, New exact solutions for the doubly dispersive equation using the improved Bernoulli sub-equation function method, Indian. J. Phys., 95 (2021) 309–314. https://doi.org/10.1007/s12648-020-01707-5 doi: 10.1007/s12648-020-01707-5
    [28] A. Akbar, A. M. Wazwaz, F. Mahmud, D. Baleanu, R. Roy, H. K. Barman, et al., Dynamical behavior of solitons of the perturbed nonlinear Schrödinger equation and microtubules through the generalized Kudryashov scheme, Res. Phys., 95 (2022), 106079. https://doi.org/10.1016/j.rinp.2022.106079 doi: 10.1016/j.rinp.2022.106079
    [29] M. S. Hashemi, M. Mirzazadeh, Optical solitons of the perturbed nonlinear Schrödinger equation using Lie symmetry method, Optik, 281 (2023), 170816. https://doi.org/10.1016/j.ijleo.2023.170816 doi: 10.1016/j.ijleo.2023.170816
    [30] R. M. E. Shiekh, M. Gaballah, Novel solitons and periodic wave solutions for Davey–Stewartson system with variable coefficients, J. Taibah Univ. Sci., 14 (2020), 783–789. https://doi.org/10.1080/16583655.2020.1774975 doi: 10.1080/16583655.2020.1774975
    [31] H. Rezazadeh, K. U. Tariq, J. Sabiu, A. Bekir, Abundant traveling wave solutions to the resonant nonlinear Schrödinger's equation with variable coefficients, Mod. Phys. Lett. B, 34 (2020). https://doi.org/10.1142/S0217984920501183 doi: 10.1142/S0217984920501183
    [32] A. Ali, A. R. Seadawy, D. Lu, Dispersive solitary wave soliton solutions of (2+1)-dimensional Boussineq dynamical equation via extended simple equation method, J. King Saud. Univ. Sci., 13 (2019), 653–658. https://doi.org/10.1016/j.jksus.2017.12.015 doi: 10.1016/j.jksus.2017.12.015
    [33] A. R. Seadawy, A. Ali, S. Althobaiti, K. E. Rashidy, Construction of abundant novel analytical solutions of the space-time fractional nonlinear generalized equal width model via Riemann–Liouville derivative with application of mathematical methods, Open Phys., 19 (2021), 657–668. https://doi.org/10.1515/phys-2021-0076 doi: 10.1515/phys-2021-0076
    [34] D. Lu, A. R. Seadawy, A. Ali, Dispersive traveling wave solutions of the equal-width and modified equal-width equations via mathematical methods and its applications, Res. Phys., 13 (2018), 313–320. https://doi.org/10.1016/j.rinp.2018.02.036 doi: 10.1016/j.rinp.2018.02.036
    [35] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 34 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
    [36] J. Ahmad, T. Younas, A comprehensive study of the conformable time-fractional coupled Konno-Oono equation: New methodologies and stability analysis in magnetic field, Opt. Quant. Electron., 56 (2024), 911. https://doi.org/10.1007/s11082-024-06752-6 doi: 10.1007/s11082-024-06752-6
    [37] H. Y. Liang, J. K. Wang, Z. X. Hou, Multiple kink-soliton, breather wave, interaction wave and the travelling wave solutions to the fractional (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation, Fractals, 2025. https://doi.org/10.1142/S0218348X25500823 doi: 10.1142/S0218348X25500823
    [38] W. L. Li, S. H. Chen, K. J. Wang, A variational principle of the nonlinear Schrodinger equation with fractal derivatives, Fractals, 2025. https://doi.org/10.1142/S0218348X25500690 doi: 10.1142/S0218348X25500690
    [39] T. S. Shaikh, M. Z. Baber, N. Ahmed, N. Shahid, A. Akgül, M. D. L. Sen, On the soliton solutions for the stochastic Konno-Oono system in magnet field with the presence of noise, Mathematics, 11 (2023), 1472. https://doi.org/10.3390/math11061472 doi: 10.3390/math11061472
    [40] E. M. Elbrolosy, A. A. Elmandouh, Dynamical behaviour of conformable time-fractional coupled Konno-Oono equation in magnetic field, Math. Probl. Eng., 1 (2022), 3157217. https://doi.org/10.1155/2022/3157217 doi: 10.1155/2022/3157217
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(588) PDF downloads(42) Cited by(6)

Article outline

Figures and Tables

Figures(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog