Research article Special Issues

Statistical inference for dependent competing-risk failures in land-based radar detection: A PHW model under generalized progressive hybrid censoring

  • Received: 01 May 2025 Revised: 19 June 2025 Accepted: 07 July 2025 Published: 16 July 2025
  • MSC : 60G35, 62F10, 62F15, 62N01, 62N02, 62N05

  • Dependent competing risks usually arise in modern reliability and survival studies, but remain under‑explored because of the mathematical and computational complexity they introduce. This paper developed a flexible inferential framework for systems based on mutually dependent failure causes when the lifetimes are governed by the proportional hazard Weibull (PHW) distribution. Data were collected through the generalized progressive hybrid censoring scheme (GPHCS), which reduced test duration while preserving information with a prefixed number of failures. From a computational perspective, the maximum likelihood estimators (MLEs) were derived via numerical optimization, such as the Newton-Raphson algorithm. To incorporate prior knowledge and quantify parameter uncertainty, Bayesian estimates were produced using conjugate gamma priors and a Metropolis within Gibbs sampler. Estimator performance was assessed through an extensive Monte Carlo simulation study. Results show that MLE and Bayesian procedures were unbiased, and Bayesian credible intervals were noticeably shorter than their asymptotic counterparts. The procedure was applied to a land-based surveillance radar data set in which the target loss risks are dependent. The fitted PHW model accurately captures the dynamics of radar return signals, and posterior analyses revealed how each covariate modulates detection reliability.

    Citation: Hanan Haj Ahmad, Mohamed Aboshady, Ahmed K. Elsherif, Dina A. Ramadan. Statistical inference for dependent competing-risk failures in land-based radar detection: A PHW model under generalized progressive hybrid censoring[J]. AIMS Mathematics, 2025, 10(7): 15991-16026. doi: 10.3934/math.2025717

    Related Papers:

  • Dependent competing risks usually arise in modern reliability and survival studies, but remain under‑explored because of the mathematical and computational complexity they introduce. This paper developed a flexible inferential framework for systems based on mutually dependent failure causes when the lifetimes are governed by the proportional hazard Weibull (PHW) distribution. Data were collected through the generalized progressive hybrid censoring scheme (GPHCS), which reduced test duration while preserving information with a prefixed number of failures. From a computational perspective, the maximum likelihood estimators (MLEs) were derived via numerical optimization, such as the Newton-Raphson algorithm. To incorporate prior knowledge and quantify parameter uncertainty, Bayesian estimates were produced using conjugate gamma priors and a Metropolis within Gibbs sampler. Estimator performance was assessed through an extensive Monte Carlo simulation study. Results show that MLE and Bayesian procedures were unbiased, and Bayesian credible intervals were noticeably shorter than their asymptotic counterparts. The procedure was applied to a land-based surveillance radar data set in which the target loss risks are dependent. The fitted PHW model accurately captures the dynamics of radar return signals, and posterior analyses revealed how each covariate modulates detection reliability.



    加载中


    [1] J. Fine, B. H. Lindqvist, Competing risks, Lifetime Data Anal., 20 (2014), 159–160. https://doi.org/10.1007/s10985-014-9294-8 doi: 10.1007/s10985-014-9294-8
    [2] S. Liang, W. Gui, Parametric estimation and analysis of lifetime models with competing risks under middle-censored Data, Appl. Sci., 15 (2025), 4288. https://doi.org/10.3390/app15084288 doi: 10.3390/app15084288
    [3] A. K. Mahto, C. Lodhi, Y. M. Tripathi, L. Wang, Inference for partially observed competing risks model for Kumaraswamy distribution under generalized progressive hybrid censoring, J. Appl. Stat., 49 (2022), 2064–2092. https://doi.org/10.1080/02664763.2021.1889999 doi: 10.1080/02664763.2021.1889999
    [4] H. H. Ahmad, D. A. Ramadan, E. M. Almetwally, Tampered random variable analysis in step-stress testing: Modeling, inference, and applications, Mathematics, 12 (2024), 1248. https://doi.org/10.3390/math12081248 doi: 10.3390/math12081248
    [5] H. H. Ahmad, E. M. Almetwally, D. A. Ramadan, Competing risks in accelerated life testing: A study on step-stress models with tampered random variables, Axioms, 14 (2025), 32. https://doi.org/10.3390/axioms14010032 doi: 10.3390/axioms14010032
    [6] P. Chandra, H. K. Mandal, Y. M. Tripathi, L. Wang, Inference for depending competing risks from Marshall-Olkin bivariate Kies distribution under generalized progressive hybrid censoring, J. Appl. Stat., 52 (2025), 936–965. https://doi.org/10.1080/02664763.2024.2405108 doi: 10.1080/02664763.2024.2405108
    [7] D. Samanta, D. Kundu, Bayesian inference of a dependent competing risk data, J. Stat. Comput. Simul., 91 (2021), 3069–3086. https://doi.org/10.1080/00949655.2021.1917575 doi: 10.1080/00949655.2021.1917575
    [8] Y. Tian, W. Gui, Statistical inference of dependent competing risks from Marshall-Olkin bivariate Burr-XII distribution under complex censoring, Commun. Stat. Simul. C., 53 (2024), 2988–3012. https://doi.org/10.1080/03610918.2022.2093373 doi: 10.1080/03610918.2022.2093373
    [9] F. A. Alqallaf, D. Kundu, A bivariate inverse generalized exponential distribution and its applications in dependent competing risks model, Commun. Stat. Simul. C., 51 (2022), 7019–7036. https://doi.org/10.1080/03610918.2020.1821888 doi: 10.1080/03610918.2020.1821888
    [10] M. A. Richards, Fundamentals of radar signal processing, New York: Mcgraw-hill, 2005.
    [11] B. R. Mahafza, Radar systems analysis and design using MATLAB, New York: Chapman and Hall/CRC, 2005. https://doi.org/10.1201/9781420057072
    [12] M. G. Selim, G. G. Mabrouk, A. K. Elsherief, A. Youssef, Nonlinear Optimization Techniques for Radar Signal Enhancement, 2023 5th Novel Intelligent and Leading Emerging Sciences Conference (NILES), IEEE, 2023,269–273, https://doi.org/10.1109/NILES59815.2023.10296549
    [13] Y. Zhang, J. Xi, S. Wang, D. Gao, G. Chang, Research on radar target recognition algorithms, 2023 3rd International Symposium on Artificial Intelligence and Intelligent Manufacturing (AIIM), IEEE, 2023, 30–33. https://doi.org/10.1109/AIIM60438.2023.10441184
    [14] N. Balakrishnan, Progressive censoring methodology: An appraisal, Test, 16 (2007), 211–259. https://doi.org/10.1007/s11749-007-0061-y doi: 10.1007/s11749-007-0061-y
    [15] N. Balakrishnan, E. Cramer, The art of progressive censoring: Applications to reliability and quality, New York: Birkhäuser, 2014. https://doi.org/10.1007/978-0-8176-4807-7
    [16] A. Childs, B. Chandrasekar, N. Balakrishnan, Exact likelihood inference for an exponential parameter under progressive hybrid censoring schemes, In: Statistical models and methods for biomedical and technical systems, Boston: Birkhäuser, 2008. https://doi.org/10.1007/978-0-8176-4619-6_23
    [17] B. Epstein, Truncated life tests in the exponential case, Ann. Soc. Polon. Math., 25 (1954), 555–564. 10.1214/aoms/117772872310.1214/aoms/1177728723 doi: 10.1214/aoms/117772872310.1214/aoms/1177728723
    [18] N. Ebrahimi, Estimating the parameters of an exponential distribution from hybrid life test, J. Stat. Plan. Infer., 14 (1986), 255–261. https://doi.org/10.1016/0378-3758(86)90163-1 doi: 10.1016/0378-3758(86)90163-1
    [19] R. D. Gupta, D. Kundu, Hybrid censoring schemes with exponential failure distribution, Commun. Stat. Theor. M., 27 (1998), 3065–3083. https://doi.org/10.1080/03610929808832273 doi: 10.1080/03610929808832273
    [20] C. T. Lin, Y. L. Huang, N. Balakrishnan, Exact Bayesian variable sampling plans for the exponential distribution based on Type-Ⅰ and Type-Ⅱ hybrid censored samples, Commun. Stat. Simul. Comput., 37 (2008), 1101–1116. https://doi.org/10.1080/03610910801923869 doi: 10.1080/03610910801923869
    [21] J. Gorny, E. Cramer, Type-Ⅰ hybrid censoring of multiple samples, J. Comput. Appl. Math., 366 (2020), 112404. https://doi.org/10.1016/j.cam.2019.112404 doi: 10.1016/j.cam.2019.112404
    [22] D. Kundu, On hybrid censored Weibull distribution, J. Stat. Plan. Infer., 137 (2007), 2127–2142. https://doi.org/10.1016/j.jspi.2006.06.043 doi: 10.1016/j.jspi.2006.06.043
    [23] D. Kundu, A. Joarder, Analysis of Type-Ⅱ progressively hybrid censored data, Comput. Stat. Data Anal., 50 (2006), 2509–2528. https://doi.org/10.1016/j.csda.2005.05.002 doi: 10.1016/j.csda.2005.05.002
    [24] T. Sen, R. Bhattacharya, Y. M. Tripathi, B. Pradhan, Inference and optimum life testing plans based on type-Ⅱ progressive hybrid censored generalized exponential data, Commun. Stat. Simul. Comput., 49 (2020), 3254–3282. https://doi.org/10.1080/03610918.2018.1538456 doi: 10.1080/03610918.2018.1538456
    [25] Y. Cho, H. Sun, K. Lee, Exact likelihood inference for an exponential parameter under generalized progressive hybrid censoring scheme, Stat. Methodol., 23 (2015), 18–34. https://doi.org/10.1016/j.stamet.2014.09.002 doi: 10.1016/j.stamet.2014.09.002
    [26] Y. Cho, H. Sun, K. Lee, Estimating the entropy of a Weibull distribution under generalized progressive hybrid censoring, Entropy, 17 (2015), 102–122. https://doi.org/10.3390/e17010102 doi: 10.3390/e17010102
    [27] A. Koley, D. Kundu, On generalized progressive hybrid censoring in presence of competing risks, Metrika, 80 (2017), 401–426. https://doi.org/10.1007/s00184-017-0611-6 doi: 10.1007/s00184-017-0611-6
    [28] S. Salem, O. E. Abo-Kasem, A. Hussien, On joint Type-Ⅱ generalized progressive hybrid censoring scheme, Comput. J. Math. Stat. Sci., 2 (2023), 123–158.
    [29] S. Dutta, S. Kayal, Estimation and prediction for Burr type Ⅲ distribution based on unified progressive hybrid censoring scheme, J. Appl. Stat., 51 (2024), 1–33. https://doi.org/10.1080/02664763.2022.2113865 doi: 10.1080/02664763.2022.2113865
    [30] L. Zhang, X. Chen, A. Khatab, Y. An, X. Feng, Joint optimization of selective maintenance and repairpersons assignment problem for mission-oriented systems operating under s-dependent competing risks, Reliab. Eng. Syst. Safe., 242 (2024), 109796, https://doi.org/10.1016/j.ress.2023.109796 doi: 10.1016/j.ress.2023.109796
    [31] D. Kundu, A bivariate load-sharing model, J. Appl. Stat., 52 (2025), 1446–1469. https://doi.org/10.1080/02664763.2024.2428267 doi: 10.1080/02664763.2024.2428267
    [32] N. Balakrishnan, D. Kundu, Hybrid censoring: Models, inferential results and applications, Comput. Stat. Data Anal., 57 (2013), 166–209. https://doi.org/10.1016/j.csda.2012.03.025 doi: 10.1016/j.csda.2012.03.025
    [33] G. Casella, R. Berger, Statistical inference, Oxford University, 2002.
    [34] J. F. Lawless, Statistical models and methods for lifetime data, John Wiley & Sons, 2002. https://doi.org/10.1002/9781118033005
    [35] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys., 21 (1953), 1087–1092. https://doi.org/10.1063/1.1699114 doi: 10.1063/1.1699114
    [36] W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57 (1970), 97–109.
    [37] I. Ntzoufras, Bayesian modeling using WinBUGS, John Wiley & Sons, 2011.
    [38] C. Robert, G. Casella, Monte Carlo statistical methods, New York: Springera, 2013. https://doi.org/10.1007/978-1-4757-4145-2
    [39] S. Chib, E. Greenberg, Understanding the Metropolis-Hastings algorithm, Am. Stat., 49 (1995), 327–335. https://doi.org/10.1080/00031305.1995.10476177 doi: 10.1080/00031305.1995.10476177
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(513) PDF downloads(16) Cited by(0)

Article outline

Figures and Tables

Figures(9)  /  Tables(14)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog