Here, we consider the stochastic Kakutani–Matsuuchi model (SKMM) perturbed by multiplicative noise in the Itô sense. This model describes the behavior of these waves as they propagate through a stratified fluid medium, such as the Earth's atmosphere or ocean. Internal gravity waves are generated by disturbances in the density or temperature of the fluid and can play a significant role in transporting energy and momentum throughout the system. By applying two different techniques, namely the extended tanh function method and the mapping method, we obtain new periodic soliton, dark soliton, bright soliton, anti-Kink soliton and Kink soliton solutions for SKMM. Because the Kakutani–Matsuuchi model is important in studying internal gravity waves in the atmosphere and oceans, the solutions of the SKMM are beneficial in understanding several fascinating scientific phenomena. Using MATLAB, we exhibit several 2D and 3D graphs that illustrate the impact of the noise on the solutions of SKMM.
Citation: Abeer H. Alblowy, Elsayed M. Elsayed, Wael W. Mohammed. New solitary solutions for stochastic Kakutani–Matsuuchi model of internal gravity waves[J]. AIMS Mathematics, 2025, 10(7): 15975-15990. doi: 10.3934/math.2025716
Here, we consider the stochastic Kakutani–Matsuuchi model (SKMM) perturbed by multiplicative noise in the Itô sense. This model describes the behavior of these waves as they propagate through a stratified fluid medium, such as the Earth's atmosphere or ocean. Internal gravity waves are generated by disturbances in the density or temperature of the fluid and can play a significant role in transporting energy and momentum throughout the system. By applying two different techniques, namely the extended tanh function method and the mapping method, we obtain new periodic soliton, dark soliton, bright soliton, anti-Kink soliton and Kink soliton solutions for SKMM. Because the Kakutani–Matsuuchi model is important in studying internal gravity waves in the atmosphere and oceans, the solutions of the SKMM are beneficial in understanding several fascinating scientific phenomena. Using MATLAB, we exhibit several 2D and 3D graphs that illustrate the impact of the noise on the solutions of SKMM.
| [1] |
T. Kakutani, K. Matsuuchi, Effect of viscosity of long gravity waves, J. Phys. Soc. Jpn., 39 (1975), 237–246. https://doi.org/10.1143/JPSJ.39.237 doi: 10.1143/JPSJ.39.237
|
| [2] | L. Arnold, Random dynamical systems, Berlin, Heidelberg: Springer, 1998. https://doi.org/10.1007/978-3-662-12878-7 |
| [3] |
W. W. Mohammed, N. Iqbal, T. Botmart, Additive noise effects on the stabilization of fractional-space diffusion equation solutions, Mathematics, 10 (2022), 1–14. https://doi.org/10.3390/math10010130 doi: 10.3390/math10010130
|
| [4] |
W. W. Mohammed, D. Blömker, Fast-diffusion limit for reaction-diffusion equations with multiplicative noise, J. Math. Anal. Appl., 496 (2021), 124808. https://doi.org/10.1016/j.jmaa.2020.124808 doi: 10.1016/j.jmaa.2020.124808
|
| [5] |
Y. S. Guo, W. Li, S. H. Dong, Gaussian solitary solution for a class of logarithmic nonlinear Schrödinger equation in (1 + n) dimensions, Results Phys., 44 (2023), 106187. https://doi.org/10.1016/j.rinp.2022.106187 doi: 10.1016/j.rinp.2022.106187
|
| [6] |
H. M. Baskonus, H. Bulut, T. A. Sulaiman, New complex hyperbolic structures to the Longren wave equation by using sine-gordon expansion method, Appl. Math. Nonlinear Sci., 4 (2019), 129–138. https://doi.org/10.2478/AMNS.2019.1.00013 doi: 10.2478/AMNS.2019.1.00013
|
| [7] |
B. Lu, The first integral method for some time fractional differential equations, J. Math. Anal. Appl., 395 (2012), 684–693. https://doi.org/10.1016/j.jmaa.2012.05.066 doi: 10.1016/j.jmaa.2012.05.066
|
| [8] |
F. M. Al-Askar, W. W. Mohammed, M. Alshammari, Impact of Brownian motion on the analytical solutions of the space-fractional stochastic approximate long water wave equation, Symmetry, 14 (2022), 740. https://doi.org/10.3390/sym14040740 doi: 10.3390/sym14040740
|
| [9] |
Z. Yan, Abundant families of Jacobi elliptic function solutions of the (2+1)-dimensional integrable Davey-Stewartson-type equation via a new method, Chaos Soliton. Fract., 18 (2003), 299–309. https://doi.org/10.1016/S0960-0779(02)00653-7 doi: 10.1016/S0960-0779(02)00653-7
|
| [10] |
M. Wang, X. Li, J. Zhang, The $(G^{\prime }/G)$ -expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics, Phys. Lett. A, 372 (2008), 417–423. https://doi.org/10.1016/j.physleta.2007.07.051 doi: 10.1016/j.physleta.2007.07.051
|
| [11] |
W. W. Mohammed, H. Ahmad, A. E. Hamza, E. S. Aly, M. El-Morshedy, E. M. Elabbasy, The exact solutions of the stochastic Ginzburg-Landau equation, Results Phys., 23 (2021), 103988. https://doi.org/10.1016/j.rinp.2021.103988 doi: 10.1016/j.rinp.2021.103988
|
| [12] |
A. M. Wazwaz, The sine-cosine method for obtaining solutions with compact and noncompact structures, Appl. Math. Comput., 159 (2004), 559–576. https://doi.org/10.1016/j.amc.2003.08.136 doi: 10.1016/j.amc.2003.08.136
|
| [13] |
M. S. Algolam, A. I Ahmed, H. M. Alshammary, F. E Mansour, The impact of standard Wiener process on the optical solutions of the stochastic nonlinear Kodama equation using two different methods, J. Low Freq. Noise Vib. Active Control, 43 (2024), 1939–1952. https://doi.org/10.1177/14613484241275313 doi: 10.1177/14613484241275313
|
| [14] |
K. Khan, M. A. Akbar, The $exp(-\phi (\varsigma))$-expansion method for finding travelling wave solutions of Vakhnenko-Parkes equation, Int. J. Dyn. Syst. Differ. Equ., 5 (2014), 72–83. https://doi.org/10.1504/IJDSDE.2014.067119 doi: 10.1504/IJDSDE.2014.067119
|
| [15] |
R. Castro López, G. H. Sun, O. Camacho-Nieto, C. Yá ñez-Márquez, S. H. Dong, Analytical traveling-wave solutions to a generalized Gross–Pitaevskii equation with some new time and space varying nonlinearity coefficients and external fields, Phys. Lett. A, 381 (2017), 2978–2985. https://doi.org/10.1016/j.physleta.2017.07.012 doi: 10.1016/j.physleta.2017.07.012
|
| [16] |
S. H. Dong, A new approach to the relativistic Schrö dinger equation with central potential: ansatz method, Int. J. Theor. Phys., 40 (2001), 559–567. https://doi.org/10.1023/A:1004119928867 doi: 10.1023/A:1004119928867
|
| [17] |
X. L. Mai, W. Li, S. H. Dong, Exact solutions to the nonlinear Schrödinger equation with time-dependent coefficients, Adv. High Energy Phys., 2021 (2021), 6694980. https://doi.org/10.1155/2021/6694980 doi: 10.1155/2021/6694980
|
| [18] |
C. Li, S. Zhao, Efficient numerical schemes for fractional water wave models, Comput. Math. Appl., 71 (2016), 238–254. https://doi.org/10.1016/j.camwa.2015.11.018 doi: 10.1016/j.camwa.2015.11.018
|
| [19] |
M. M. A. Khater, S. H. Alfalqi, Solitary wave solutions for the (1+1)-dimensional nonlinear Kakutani–Matsuuchi model of internal gravity waves, Results Phys., 59 (2024), 107615. https://doi.org/10.1016/j.rinp.2024.107615 doi: 10.1016/j.rinp.2024.107615
|
| [20] |
M. Abdelkawy, R. T. Alqahtani, Shifted Jacobi spectral collocation method for solving two-sided fractional water wave models, Eur. Phys. J. Plus, 132 (2017), 1–14. https://doi.org/10.1140/epjp/i2017-11311-6 doi: 10.1140/epjp/i2017-11311-6
|
| [21] |
W. Liu, Y. Liu, H. Li, Time difference physics-informed neural network for fractional water wave models, Results Appl. Math., 17 (2023), 100347. https://doi.org/10.1016/j.rinam.2022.100347 doi: 10.1016/j.rinam.2022.100347
|
| [22] | O. Calin, An informal introduction to stochastic calculus with applications, World Scientific, 2015. https://doi.org/10.1142/9620 |
| [23] |
E. Fan, Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A, 277 (2000), 212–218. https://doi.org/10.1016/s0375-9601(00)00725-8 doi: 10.1016/s0375-9601(00)00725-8
|
| [24] |
Y. Z. Peng, Exact solutions for some nonlinear partial differential equations, Phys. Lett. A, 314 (2003), 401–408. https://doi.org/10.1016/s0375-9601(03)00909-5 doi: 10.1016/s0375-9601(03)00909-5
|
| [25] |
E. Yomba, On exact solutions of the coupled Klein–Gordon–Schrödinger and the complex coupled KdV equations using mapping method, Chaos Solit. Fract., 21 (2004), 209–229. https://doi.org/10.1016/j.chaos.2003.10.028 doi: 10.1016/j.chaos.2003.10.028
|