The current investigation deals with the bioconvective peristaltic flow of a Sutterby nanofluid in a channel. Here, symmetric channel walls are considered to be elastic. Thermal transport included effects such as thermal radiation, Joule heating, and dissipation. The characteristics of a first-order chemical reaction are integrated into mass transport. We utilized a large wavelength approximation with a small Reynolds number to simplify the system. After that, we used numerical techniques for the solution of a complex system of equations. Finally, the effects of several parameters are examined graphically. This research could have a big influence on optimizing heat and mass transfer in nanofluid-based systems, with potential implications for solar energy systems, thermal management devices, biosensors, fuel cell technology, pharmaceutical processing, and targeted drug delivery mechanisms.
Citation: Zahid Nisar, Humaira Yasmin. Mathematical analysis for bioconvection peristaltic transport of Sutterby nanofluid with chemical reaction[J]. AIMS Mathematics, 2025, 10(7): 15955-15974. doi: 10.3934/math.2025715
The current investigation deals with the bioconvective peristaltic flow of a Sutterby nanofluid in a channel. Here, symmetric channel walls are considered to be elastic. Thermal transport included effects such as thermal radiation, Joule heating, and dissipation. The characteristics of a first-order chemical reaction are integrated into mass transport. We utilized a large wavelength approximation with a small Reynolds number to simplify the system. After that, we used numerical techniques for the solution of a complex system of equations. Finally, the effects of several parameters are examined graphically. This research could have a big influence on optimizing heat and mass transfer in nanofluid-based systems, with potential implications for solar energy systems, thermal management devices, biosensors, fuel cell technology, pharmaceutical processing, and targeted drug delivery mechanisms.
| [1] | S. U. S. Choi, J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, In: 1995 International mechanical engineering congress and exhibition, San Francisco, CA (United States), 1995. |
| [2] |
J. Buongiorno, Convective transport in nanofluids, ASME J. Heat Transf., 128 (2006), 240–250. https://doi.org/10.1115/1.2150834 doi: 10.1115/1.2150834
|
| [3] |
L. Godson, B. Raja, D. Mohan Lal, S. E. A. Wongwises, Enhancement of heat transfer using nanofluids-an overview, Renew. Sustain. Energy Rev., 14 (2010), 629–641. https://doi.org/10.1016/j.rser.2009.10.004 doi: 10.1016/j.rser.2009.10.004
|
| [4] |
A. M. Hussein, R. A. Bakar, K. Kadirgama, Study of forced convection nanofluid heat transfer in the automotive cooling system, Case Stud. Therm. Eng., 2 (2014), 50–61. https://doi.org/10.1016/j.csite.2013.12.001 doi: 10.1016/j.csite.2013.12.001
|
| [5] |
T. Hayat, S. Nadeem, Heat transfer enhancement with Ag-CuO/water hybrid nanofluid, Results Phys., 7 (2017), 2317–2324. https://doi.org/10.1016/j.rinp.2017.06.034 doi: 10.1016/j.rinp.2017.06.034
|
| [6] |
M. A. Imran, A. Shaheen, E. M. Sherif, M. R.Gorji, A. H. Seikh, Analysis of peristaltic flow of Jeffrey six constant nano fluid in a vertical non-uniform tube, Chin. J. Phys., 66 (2020), 60–73. https://doi.org/10.1016/j.cjph.2019.11.029 doi: 10.1016/j.cjph.2019.11.029
|
| [7] |
F. M. Abbasi, S. A. Shehzad, Magnetized peristaltic transportation of boron-nitride and ethylene-glycol nanofluid through a curved channel, Chem. Phys. Lett., 803 (2022) 139860. https://doi.org/10.1016/j.cplett.2022.139860 doi: 10.1016/j.cplett.2022.139860
|
| [8] |
M. Ajithkumar, P. Lakshminarayana, K. Vajravelu, Diffusion effects on mixed convective peristaltic flow of a bi-viscous Bingham nanofluid through a porous medium with convective boundary condition, Phys. Fluids, 35 (2023), 032008. https://doi.org/10.1063/5.0142003 doi: 10.1063/5.0142003
|
| [9] |
Z. Nisar, T. Hayat, K. Muhammad, B. Ahmed, A. Aziz, Significance of Joule heating for radiative peristaltic flow of couple stress magnetic nanofluid, J. Magn. Magn. Mater., 581 (2023), 170951. https://doi.org/10.1016/j.jmmm.2023.170951 doi: 10.1016/j.jmmm.2023.170951
|
| [10] |
M. Ajithkumar, R. Meenakumari, G. Sucharitha, M. V. Reddy, K. Javid, P. Lakshminarayana, Bioconvective peristaltic transport of hydromagnetic Sutterby nanofluid through a chemically activated porous channel with gyrotactic microorganisms, J. Appl. Phys., 135 (2024), 194701. https://doi.org/10.1063/5.0203027 doi: 10.1063/5.0203027
|
| [11] |
Z. Nisar, B. Ahmed, M. E. Ghoneim, M. A. Elkotb, Thermal performance of mixed convective radiative peristaltic flow of Bingham nanofluid, Sens. Actuators A: Phys., 373 (2024), 115399. https://doi.org/10.1016/j.sna.2024.115399 doi: 10.1016/j.sna.2024.115399
|
| [12] |
T. Hayat, S. Amjad, Z. Nisar, A. Alsaedi, Peristalsis of hybrid nanomaterial in convectively heated asymmetric configuration, J. Therm. Anal. Calorim., 150 (2025), 175–185. https://doi.org/10.1007/s10973-024-13790-5 doi: 10.1007/s10973-024-13790-5
|
| [13] |
M. Sheikholeslami, N. Ataollahi, P. Scardi, M. A. Malagutti, Performance evaluation of a solar dish system with hybrid nanofluid cooling and sustainable thermoelectric power generation: Incorporating experimental property data, Sol. Energy Mater., 285 (2025), 113508. https://doi.org/10.1016/j.solmat.2025.113508 doi: 10.1016/j.solmat.2025.113508
|
| [14] | T.W. Latham, Fluid motion in a peristaltic pump, MS thesis, MIT Cambridge, 1966. |
| [15] |
A. H. Shapiro, M. Y. Jaffrin, S. L. Weinberg, Peristaltic pumping with long wavelength at low Reynolds number, J. Fluid Mech., 37 (1969), 799–825. https://doi.org/10.1017/S0022112069000899 doi: 10.1017/S0022112069000899
|
| [16] |
P. Trendelenburg, Physiological and pharmacological investigations of small intestinal peristalsis, N-S Arch. Pharmacol., 373 (2006), 101–133. https://doi.org/10.1007/s00210-006-0052-7 doi: 10.1007/s00210-006-0052-7
|
| [17] |
A. Bandopadhyay, D. Tripathi, S. Chakraborty, Electroosmosis-modulated peristaltic transport in microfluidic channels, Phys. Fluids, 28 (2016), 052002. https://doi.org/10.1063/1.4947115 doi: 10.1063/1.4947115
|
| [18] |
N. Imran, M. Javed, M. Sohail, P. Thounthong, Z. Abdelmalek, Theoretical exploration of thermal transportation with chemical reactions for sutterby fluid model obeying peristaltic mechanism, J. Mater. Res. Technol., 9 (2020), 7449–7459. https://doi.org/10.1016/j.jmrt.2020.04.071 doi: 10.1016/j.jmrt.2020.04.071
|
| [19] |
S. Akram, M. Athar, K. Saeed, A. Razia, Influence of an induced magnetic field on double diffusion convection for peristaltic flow of thermally radiative Prandtl nanofluid in non-uniform channel, Tribol. Int., 187 (2023), 108719. https://doi.org/10.1016/j.triboint.2023.108719 doi: 10.1016/j.triboint.2023.108719
|
| [20] |
Z. Nisar, T. Hayat, A. Alsaedi, S. Momani, Mathematical modelling for peristaltic flow of fourth-grade nanoliquid with entropy generation, Z. Angew. Math. Mech., 104 (2024), e202300034. https://doi.org/10.1002/zamm.202300034 doi: 10.1002/zamm.202300034
|
| [21] |
H. Alahmadi, J. Iqbal, F. M. Abbasi, Artificial neural network aided computing for two dimensional magnetohydrodynamic peristaltic movement of nanofluid with heat and mass transfer, Eng. Appl. Artif. Intell., 154 (2025), 110990. https://doi.org/10.1016/j.engappai.2025.110990 doi: 10.1016/j.engappai.2025.110990
|
| [22] |
S. Srinivas, J. B. Anasuya, V. Merugu, Interaction of pulsatile and peristaltic flow of a particle-fluid suspension with thermal effects, Int. Commun. Heat Mass Transf., 163 (2025), 108728. https://doi.org/10.1016/j.icheatmasstransfer.2025.108728 doi: 10.1016/j.icheatmasstransfer.2025.108728
|
| [23] |
M. Ishaq, M. B. Ashraf, M. U. Ashraf, S. Alshehery, A. A. Faqihi, H. M. Hadidi, Artificial neural network-based study of entropy optimization in Johnson-Segalman nanofluids through a peristaltic channel, Phys. Fluids, 37 (2025), 033103. https://doi.org/10.1063/5.0255518 doi: 10.1063/5.0255518
|
| [24] |
J. L. Sutterby, Laminar converging flow of dilute polymer solutions in conical sections: Part Ⅰ. Viscosity data, new viscosity model, tube flow solution, AIChE J., 12 (1966), 63–68. https://doi.org/10.1002/aic.690120114 doi: 10.1002/aic.690120114
|
| [25] |
N. S. Akbar, S. Nadeem, Nano Sutterby fluid model for the peristaltic flow in small intestines, J. Comput. Theor. Nanosci., 10 (2013), 2491–2499. https://doi.org/10.1166/jctn.2013.3238 doi: 10.1166/jctn.2013.3238
|
| [26] |
S. I. Abdelsalam, A. Magesh, P. Tamizharasi, A. Z. Zaher, Versatile response of a Sutterby nanofluid under activation energy: hyperthermia therapy, Int. J. Numer. Meth. Heat Fluid Flow., 34 (2024), 408–428. https://doi.org/10.1108/HFF-04-2023-0173 doi: 10.1108/HFF-04-2023-0173
|
| [27] |
P. Chinnasamy, R. Sivajothi, S. Sathish, M. Abbas, V. Jeyakrishnan, R. Goel, et al., Peristaltic transport of Sutterby nanofluid flow in an inclined tapered channel with an artificial neural network model and biomedical engineering application, Sci. Rep., 14 (2024), 555. https://doi.org/10.1038/s41598-023-49480-9 doi: 10.1038/s41598-023-49480-9
|
| [28] |
R. Revathi, T. Poornima, Dynamics of stagnant Sutterby fluid due to mixed convection with an emphasis on thermal analysis, J. Therm. Anal. Calorim., 149 (2024), 7059–7069. https://doi.org/10.1007/s10973-024-12943-w doi: 10.1007/s10973-024-12943-w
|
| [29] |
F. Ali, M. Kamal, M. Faizan, S. S. Zafar, Numerical treatment of the bio-convective Sutterby nanoliquid through a heat convective spinning disk, Mod. Phys. Lett. B., 39 (2025), 2450471. https://doi.org/10.1142/S0217984924504712 doi: 10.1142/S0217984924504712
|
| [30] |
J. R. Platt, "Bioconvection patterns" in cultures of free-swimming organisms, Science, 133 (1961), 1766–1767. https://doi.org/10.1126/science.133.3466.1766 doi: 10.1126/science.133.3466.1766
|
| [31] |
C. S. K. Raju, S. M. Ibrahim, S. Anuradha, P. Priyadharshini, Bio-convection on the nonlinear radiative flow of a Carreau fluid over a moving wedge with suction or injection, Eur. Phys. J. Plus, 131 (2016), 409. https://doi.org/10.1140/epjp/i2016-16409-7 doi: 10.1140/epjp/i2016-16409-7
|
| [32] |
T. Hayat, Z. Nisar, A. Alsaedi, Bioconvection and Hall current analysis for peristalsis of nanofluid, Int. Commun. Heat Mass Transf., 129 (2021), 105693. https://doi.org/10.1016/j.icheatmasstransfer.2021.105693 doi: 10.1016/j.icheatmasstransfer.2021.105693
|
| [33] |
A. M. Aly, A. A. Hyder, Fractional-time derivative in ISPH method to simulate bioconvection flow of a rotated star in a hexagonal porous cavity, AIMS Math., 8 (2023), 31050–31069. https://doi.org/10.3934/math.20231589 doi: 10.3934/math.20231589
|
| [34] |
M. Mustafa, S. Hina, T. Hayat, A. Alsaedi, Influence of wall properties on the peristaltic flow of a nanofluid: analytic and numerical solutions, Int. J. Heat Mass Transfer, 55 (2012), 4871–4877. https://doi.org/10.1016/j.ijheatmasstransfer.2012.04.060 doi: 10.1016/j.ijheatmasstransfer.2012.04.060
|