The complementary second Zagreb index of a graph $ G $ is defined as $ cM_{2}(G) = \sum_{uv \in E(G)} |d_{G}(u)^{2}-d_{G}(v)^{2}| $. In this paper, we prove that a graph having maximum complementary second Zagreb index among all graphs of order $ n $ is isomorphic to $ K_{m} \vee \overline{K_{n-m}} $ for some $ 1 \leq m < \lceil \frac{n}{2} \rceil $, confirming a conjecture of Furtula and Oz.
Citation: Hui Gao. Extremal graphs with maximum complementary second Zagreb index[J]. AIMS Mathematics, 2025, 10(7): 16105-16116. doi: 10.3934/math.2025721
The complementary second Zagreb index of a graph $ G $ is defined as $ cM_{2}(G) = \sum_{uv \in E(G)} |d_{G}(u)^{2}-d_{G}(v)^{2}| $. In this paper, we prove that a graph having maximum complementary second Zagreb index among all graphs of order $ n $ is isomorphic to $ K_{m} \vee \overline{K_{n-m}} $ for some $ 1 \leq m < \lceil \frac{n}{2} \rceil $, confirming a conjecture of Furtula and Oz.
| [1] | A. Bondy, U. S. R. Murty, Graph theory, London: Springer, 2008. |
| [2] |
K. C. Das, A. Ghalavand, On the connection between energy and Zagreb indices of graphs, J. Appl. Math. Comput., 71 (2025), 3555–3575. https://doi.org/10.1007/s12190-025-02376-5 doi: 10.1007/s12190-025-02376-5
|
| [3] |
B. Furtula, M. S. Oz, Complementary topological indices, MATCH Commun. Math. Comput. Chem., 93 (2025), 247–263. https://doi.org/10.46793/match.93-1.247F doi: 10.46793/match.93-1.247F
|
| [4] |
I. Gutman, Sombor indices-back to geometry, Open J. Discret. Appl. Math., 5 (2022), 1–5. https://doi.org/10.30538/psrp-odam2022.0072 doi: 10.30538/psrp-odam2022.0072
|
| [5] | I. Gutman, O. E. Polansky, Mathematical concepts in organic chemistry, Berlin: Springer, 1986. http://doi.org/10.1007/978-3-642-70982-1 |
| [6] |
M. Imran, R. C. Luo, M. K. Jamil, M. Azeem, K. M. Fahd, Geometric perspective to degree-based topological indices of supramolecular chain, Results in Engineering, 16 (2022), 100716. http://doi.org/10.1016/j.rineng.2022.100716 doi: 10.1016/j.rineng.2022.100716
|
| [7] | A. Jahanbani, H. Shooshtary, Nano-Zagreb index and multiplicative nano-Zagreb index of some graph operations, International Journal of Computing Science and Applied Mathematics, 5 (2019), 15–22. |
| [8] |
V. R. Kulli, Minus F and square F-indices and their polynomials of certain dendrimers, Earthline Journal of Mathematical Sciences, 1 (2019), 171–185. http://doi.org/10.34198/ejms.1219.171185 doi: 10.34198/ejms.1219.171185
|
| [9] |
V. R. Kulli, Multiplicative connectivity indices of nanostructures, Journal of Ultra Scientist of Physical Sciences, 29 (2017), 1–10. http://doi.org/10.22147/jusps-A/290101 doi: 10.22147/jusps-A/290101
|
| [10] |
Q. Li, H. Q. Wei, D. L. Hua, J. L. Wang, J. X. Yang, Stabilization of semi-Markovian jumping uncertain complex-valued networks with time-varying delay: A sliding-mode control approach, Neural Process. Lett., 56 (2024), 111. http://doi.org/10.1007/s11063-024-11585-1 doi: 10.1007/s11063-024-11585-1
|
| [11] |
J.-B. Liu, C. X. Wang, S. H. Wang, B. Wei, Zagreb indices and multiplicative zagreb indices of eulerian graphs, Bull. Malays. Math. Sci. Soc., 42 (2019), 67–78. http://doi.org/10.1007/s40840-017-0463-2 doi: 10.1007/s40840-017-0463-2
|
| [12] |
S. Mondal, K. C. Das, Complete solution to open problems on exponential augmented Zagreb index of chemical trees, Appl. Math. Comput., 482 (2024), 128983. http://doi.org/10.1016/j.amc.2024.128983 doi: 10.1016/j.amc.2024.128983
|
| [13] |
M. B. Nathanson, D. A. Ross, Continuity of the roots of a polynomial, Commun. Algebra, 52 (2024), 2509–2518. http://doi.org/10.1080/00927872.2023.2301540 doi: 10.1080/00927872.2023.2301540
|
| [14] |
H. Saber, T. Alraqad, A. Ali, A. M. Alanazi, Z. Raza, On a conjecture concerning the complementary second Zagreb index, MATCH Commun. Math. Comput. Chem., 94 (2025), 447–460. http://doi.org/10.46793/match.94-2.447S doi: 10.46793/match.94-2.447S
|
| [15] |
Z. K. Tang, Q. Y. Li, H. Y. Deng, Trees with extremal values of the Sombor-index-like graph invariants, MATCH Commun. Math. Comput. Chem., 90 (2023), 203–222. http://doi.org/10.46793/match.90-1.203T doi: 10.46793/match.90-1.203T
|
| [16] | S. Yousaf, A. A. Bhatti, A. Ali, A note on the modified Albertson index, Util. Math., 117 (2020), 139–146. |