Research article

Several constructions of constant dimension code using equal-division method

  • Published: 09 July 2025
  • MSC : 11T71, 94B05

  • Constant dimension codes (CDCs) have garnered significant attention in recent years, primarily owing to their crucial applications in random network coding. A central problem in the study of CDCs involves determining the maximum achievable cardinality, denoted as $ {A_q(n, 2\delta, k)} $ for given parameters. In this paper, we propose a new approach to constructing CDCs based on the equal-division method, which we subsequently combine with existing optimal codes from prior literature. The resulting codes yield improved lower bounds for $ {A_q(n, 2\delta, k)} $ compared to previously established results across certain parameters. Furthermore, we extend our approach by incorporating multiple constructions based on distinct ways of equal division. The newly constructed CDCs have larger cardinality under some parameters.

    Citation: Yongfeng Niu, Liang Wu, Yizhuo Zhang, Huiling Yu. Several constructions of constant dimension code using equal-division method[J]. AIMS Mathematics, 2025, 10(7): 15619-15631. doi: 10.3934/math.2025699

    Related Papers:

  • Constant dimension codes (CDCs) have garnered significant attention in recent years, primarily owing to their crucial applications in random network coding. A central problem in the study of CDCs involves determining the maximum achievable cardinality, denoted as $ {A_q(n, 2\delta, k)} $ for given parameters. In this paper, we propose a new approach to constructing CDCs based on the equal-division method, which we subsequently combine with existing optimal codes from prior literature. The resulting codes yield improved lower bounds for $ {A_q(n, 2\delta, k)} $ compared to previously established results across certain parameters. Furthermore, we extend our approach by incorporating multiple constructions based on distinct ways of equal division. The newly constructed CDCs have larger cardinality under some parameters.



    加载中


    [1] R. Koetter, F. R. Kschischang, Coding for errors and erasures in random network coding, IEEE Trans. Inf. Theory, 54 (2008), 3579–3591. https://doi.org/10.1109/TIT.2008.926449 doi: 10.1109/TIT.2008.926449
    [2] Y. Li, H. Liu, Cyclic constant dimension subspace codes via the sum of sidon spaces, Des. Codes Cryptogr., 91 (2023), 1193–1207. https://doi.org/10.1007/S10623-022-01146-9 doi: 10.1007/S10623-022-01146-9
    [3] Y. Li, H. Liu, S. Mesnager, New constructions of constant dimension subspace codes with large sizes, Des. Codes Cryptogr., 92 (2024), 1423–1437. https://doi.org/10.1007/S10623-023-01350-1 doi: 10.1007/S10623-023-01350-1
    [4] M. Niu, J. Xiao, Y. Gao, New constructions of large cyclic subspace codes via sidon spaces, Adv. Math. Commun., 18 (2024), 1123–1137. https://doi.org/10.3934/amc.2022074 doi: 10.3934/amc.2022074
    [5] M. Niu, J. Xiao, Y. Gao, New constructions of constant dimension codes by improved inserting construction, Appl. Math. Comput., 446 (2023), 127885. https://doi.org/10.1016/J.AMC.2023.127885 doi: 10.1016/J.AMC.2023.127885
    [6] Y. Niu, Q. Yue, D. Huang, New constant dimension subspace codes from parallel linkage construction and multilevel construction, Cryptogr. Commun., 14 (2022), 201–214. https://doi.org/10.1007/S12095-021-00504-Z doi: 10.1007/S12095-021-00504-Z
    [7] H. Lao, H. Chen, F. Li, S. Lyu, New constant dimension subspace codes from the mixed dimension construction, IEEE Trans. Inf. Theory, 69 (2023), 4333–4344. https://doi.org/10.1109/TIT.2023.3255929 doi: 10.1109/TIT.2023.3255929
    [8] H. Gluesing-Luerssen, C. Troha, Construction of subspace codes through linkage, Adv. Math. Commun., 10 (2016), 525–540. https://doi.org/10.3934/amc.2016023 doi: 10.3934/amc.2016023
    [9] L. Xu, H. Chen, New constant-dimension subspace codes from maximum rank distance codes, IEEE Trans. Inf. Theory, 64 (2018), 6315–6319. https://doi.org/10.1109/TIT.2018.2839596 doi: 10.1109/TIT.2018.2839596
    [10] H. Chen, X. He, J. Weng, L. Xu, New constructions of subspace codes using subsets of MRD codes in several blocks, IEEE Trans. Inf. Theory, 66 (2020), 5317–5321. https://doi.org/10.1109/TIT.2020.2975776 doi: 10.1109/TIT.2020.2975776
    [11] F. Li, Construction of constant dimension subspace codes by modifying linkage construction, IEEE Trans. Inf. Theory, 66 (2020), 2760–2764. https://doi.org/10.1109/TIT.2019.2960343 doi: 10.1109/TIT.2019.2960343
    [12] H. Lao, H. Chen, New constant dimension subspace codes from multilevel linkage construction, Adv. Math. Commun., 18 (2024), 956–966. https://doi.org/10.3934/amc.2022039 doi: 10.3934/amc.2022039
    [13] X. He, Y. Chen, Z. Zhang, K. Zhou, Parallel sub-code construction for constant-dimension codes, Des. Codes Cryptogr., 90 (2022), 2991–3001. https://doi.org/10.1007/s10623-022-01065-9 doi: 10.1007/s10623-022-01065-9
    [14] X. Hong, X. Cao, New constant dimension subspace codes from improved parallel subcode construction, Discrete Appl. Math., 356 (2024), 142–148. https://doi.org/10.1016/J.DAM.2024.05.023 doi: 10.1016/J.DAM.2024.05.023
    [15] Y. Niu, Q. Yue, D. Huang, New constant dimension subspace codes from generalized inserting construction, IEEE Commun. Lett., 25 (2021), 1066–1069. https://doi.org/10.1109/LCOMM.2020.3046042 doi: 10.1109/LCOMM.2020.3046042
    [16] Y. Niu, Q. Yue, D. Huang, Construction of constant dimension codes via improved inserting construction, Appl. Algebra Eng. Commun. Comput., 34 (2023), 1045–1062. https://doi.org/10.1007/S00200-021-00537-0 doi: 10.1007/S00200-021-00537-0
    [17] S. Liu, Y. Chang, T. Feng, Parallel multilevel constructions for constant dimension codes, IEEE Trans. Inf. Theory, 66 (2020), 6884–6897. https://doi.org/10.1109/TIT.2020.3004315 doi: 10.1109/TIT.2020.3004315
    [18] S. Liu, L. Ji, Double multilevel constructions for constant dimension codes, IEEE Trans. Inf. Theory, 69 (2023), 157–168. https://doi.org/10.1109/TIT.2022.3200052 doi: 10.1109/TIT.2022.3200052
    [19] P. Delsarte, Bilinear forms over a finite field, with applications to coding theory, J. Comb. Theory, 25 (1978), 226–241. https://doi.org/10.1016/0097-3165(78)90015-8 doi: 10.1016/0097-3165(78)90015-8
    [20] D. Silva, F. R. Kschischang, R. Koetter, A rank-metric approach to error control in random network coding, IEEE Trans. Inf. Theory, 54 (2008), 3951–3967. https://doi.org/10.1109/TIT.2008.928291 doi: 10.1109/TIT.2008.928291
    [21] T. Etzion, N. Silberstein, Error-correcting codes in projective spaces via rank-metric codes and ferrers diagrams, IEEE Trans. Inf. Theory, 55 (2009), 2909–2919. https://doi.org/10.1109/TIT.2009.2021376 doi: 10.1109/TIT.2009.2021376
    [22] C. F. Gauss, Disquisitiones arithmeticae, London: Yale University Press, 1966.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(492) PDF downloads(22) Cited by(0)

Article outline

Figures and Tables

Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog