Research article

A class of multivariate linear partial differential equations on $ C^p $

  • Published: 08 July 2025
  • MSC : 35E99

  • We used a new type of characteristics to solve a class of homogeneous linear multivariate partial differential equations on $ C^p $. For $ x $ in $ R^p $ and $ n $ in $ Z^p $, set $ \partial_x^n = \prod_{j = 1}^p \left(\partial/\partial x_j\right)^{n_j} $. Given square matrices $ \left\{N_j\right\} $ and $ \left\{S_n\right\} $ in $ C^{s\times s} $, set

    $ \begin{align*} Y(x) = \exp \left(\sum\limits_{j = 1}^p x_jN_j\right) \mbox{ in } C^{s\times s} \end{align*} $

    and $ T_n(x) = Y(x)\ S_n\ Y(-x) $ in $ C^{s\times s} $. When $ \left\{ N_j\right\} $ commute, we show that the linear partial differential equation

    $ \begin{align*} \sum\limits_{n = 0_p}^q T_{n}(x)\ \partial_x^n f(x) = 0_s \mbox{ for } f(x)\mbox{ in }C^s \end{align*} $

    has solutions $ f(x) = f_n(x, \nu) $ for each admissible $ n\leq sq $ and any $ \nu $ in $ C^p $ such that $ d(\nu) = 0 $, where

    $ \begin{align*} d(\nu) = {\rm det}\ D(\nu), \ D(\nu) = \sum\limits_{n = 0_p}^q S_n\ \prod\limits_{j = 1}^p \left(\nu_j I_s+N_j\right)^{n_j}. \end{align*} $

    The research aims to develop a new method, based on a novel type of characteristics, for solving a broad class of multivariate homogeneous linear partial differential equations with matrix coefficients of a specific exponential-conjugate form, extending classical Cauchy characteristic techniques beyond the univariate case and providing explicit basis solutions parameterized over complex surfaces.

    Citation: Christopher S. Withers, Saralees Nadarajah. A class of multivariate linear partial differential equations on $ C^p $[J]. AIMS Mathematics, 2025, 10(7): 15588-15618. doi: 10.3934/math.2025698

    Related Papers:

  • We used a new type of characteristics to solve a class of homogeneous linear multivariate partial differential equations on $ C^p $. For $ x $ in $ R^p $ and $ n $ in $ Z^p $, set $ \partial_x^n = \prod_{j = 1}^p \left(\partial/\partial x_j\right)^{n_j} $. Given square matrices $ \left\{N_j\right\} $ and $ \left\{S_n\right\} $ in $ C^{s\times s} $, set

    $ \begin{align*} Y(x) = \exp \left(\sum\limits_{j = 1}^p x_jN_j\right) \mbox{ in } C^{s\times s} \end{align*} $

    and $ T_n(x) = Y(x)\ S_n\ Y(-x) $ in $ C^{s\times s} $. When $ \left\{ N_j\right\} $ commute, we show that the linear partial differential equation

    $ \begin{align*} \sum\limits_{n = 0_p}^q T_{n}(x)\ \partial_x^n f(x) = 0_s \mbox{ for } f(x)\mbox{ in }C^s \end{align*} $

    has solutions $ f(x) = f_n(x, \nu) $ for each admissible $ n\leq sq $ and any $ \nu $ in $ C^p $ such that $ d(\nu) = 0 $, where

    $ \begin{align*} d(\nu) = {\rm det}\ D(\nu), \ D(\nu) = \sum\limits_{n = 0_p}^q S_n\ \prod\limits_{j = 1}^p \left(\nu_j I_s+N_j\right)^{n_j}. \end{align*} $

    The research aims to develop a new method, based on a novel type of characteristics, for solving a broad class of multivariate homogeneous linear partial differential equations with matrix coefficients of a specific exponential-conjugate form, extending classical Cauchy characteristic techniques beyond the univariate case and providing explicit basis solutions parameterized over complex surfaces.



    加载中


    [1] T. Myint-U, Partial differential equations of mathematical physics, New York: Elsevier, 1973.
    [2] W. E. Williams, Partial differential equations, Oxford: Clarendon Press, 1980.
    [3] P. M. Goorjian, The uniqueness of the Cauchy problem for partial differential equations which may have multiple characteristics, Trans. Amer. Math. Soc., 146 (1969), 493–509. http://dx.doi.org/10.2307/1995188 doi: 10.2307/1995188
    [4] A. Menikoff, Uniqueness of the Cauchy problem for a class of partial differential equations with double characteristics, Indiana Univ. Math. J., 25 (1976), 1–21.
    [5] M. Zeman, Uniqueness of solutions of the Cauchy problem for linear partial differential equations with characteristics of variable multiplicity, J. Diff. Equ., 27 (1978), 1–18.
    [6] F. Treves, Basic linear partial differential equations, New York: Academic Press, 1978.
    [7] C. S. Withers, S. Nadarajah, Some linear differential equations generated by matrices, AIMS Math., 7 (2022), 9588–9602. http://dx.doi.org/10.3934/math.2022533 doi: 10.3934/math.2022533
    [8] G. Stephenson, Partial differential equations for scientists and engineers, London: Longman, 1985.
    [9] L. Comtet, Advanced combinatorics, Dordrecht: Reidel, 1974.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(604) PDF downloads(26) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog