We used a new type of characteristics to solve a class of homogeneous linear multivariate partial differential equations on $ C^p $. For $ x $ in $ R^p $ and $ n $ in $ Z^p $, set $ \partial_x^n = \prod_{j = 1}^p \left(\partial/\partial x_j\right)^{n_j} $. Given square matrices $ \left\{N_j\right\} $ and $ \left\{S_n\right\} $ in $ C^{s\times s} $, set
$ \begin{align*} Y(x) = \exp \left(\sum\limits_{j = 1}^p x_jN_j\right) \mbox{ in } C^{s\times s} \end{align*} $
and $ T_n(x) = Y(x)\ S_n\ Y(-x) $ in $ C^{s\times s} $. When $ \left\{ N_j\right\} $ commute, we show that the linear partial differential equation
$ \begin{align*} \sum\limits_{n = 0_p}^q T_{n}(x)\ \partial_x^n f(x) = 0_s \mbox{ for } f(x)\mbox{ in }C^s \end{align*} $
has solutions $ f(x) = f_n(x, \nu) $ for each admissible $ n\leq sq $ and any $ \nu $ in $ C^p $ such that $ d(\nu) = 0 $, where
$ \begin{align*} d(\nu) = {\rm det}\ D(\nu), \ D(\nu) = \sum\limits_{n = 0_p}^q S_n\ \prod\limits_{j = 1}^p \left(\nu_j I_s+N_j\right)^{n_j}. \end{align*} $
The research aims to develop a new method, based on a novel type of characteristics, for solving a broad class of multivariate homogeneous linear partial differential equations with matrix coefficients of a specific exponential-conjugate form, extending classical Cauchy characteristic techniques beyond the univariate case and providing explicit basis solutions parameterized over complex surfaces.
Citation: Christopher S. Withers, Saralees Nadarajah. A class of multivariate linear partial differential equations on $ C^p $[J]. AIMS Mathematics, 2025, 10(7): 15588-15618. doi: 10.3934/math.2025698
We used a new type of characteristics to solve a class of homogeneous linear multivariate partial differential equations on $ C^p $. For $ x $ in $ R^p $ and $ n $ in $ Z^p $, set $ \partial_x^n = \prod_{j = 1}^p \left(\partial/\partial x_j\right)^{n_j} $. Given square matrices $ \left\{N_j\right\} $ and $ \left\{S_n\right\} $ in $ C^{s\times s} $, set
$ \begin{align*} Y(x) = \exp \left(\sum\limits_{j = 1}^p x_jN_j\right) \mbox{ in } C^{s\times s} \end{align*} $
and $ T_n(x) = Y(x)\ S_n\ Y(-x) $ in $ C^{s\times s} $. When $ \left\{ N_j\right\} $ commute, we show that the linear partial differential equation
$ \begin{align*} \sum\limits_{n = 0_p}^q T_{n}(x)\ \partial_x^n f(x) = 0_s \mbox{ for } f(x)\mbox{ in }C^s \end{align*} $
has solutions $ f(x) = f_n(x, \nu) $ for each admissible $ n\leq sq $ and any $ \nu $ in $ C^p $ such that $ d(\nu) = 0 $, where
$ \begin{align*} d(\nu) = {\rm det}\ D(\nu), \ D(\nu) = \sum\limits_{n = 0_p}^q S_n\ \prod\limits_{j = 1}^p \left(\nu_j I_s+N_j\right)^{n_j}. \end{align*} $
The research aims to develop a new method, based on a novel type of characteristics, for solving a broad class of multivariate homogeneous linear partial differential equations with matrix coefficients of a specific exponential-conjugate form, extending classical Cauchy characteristic techniques beyond the univariate case and providing explicit basis solutions parameterized over complex surfaces.
| [1] | T. Myint-U, Partial differential equations of mathematical physics, New York: Elsevier, 1973. |
| [2] | W. E. Williams, Partial differential equations, Oxford: Clarendon Press, 1980. |
| [3] |
P. M. Goorjian, The uniqueness of the Cauchy problem for partial differential equations which may have multiple characteristics, Trans. Amer. Math. Soc., 146 (1969), 493–509. http://dx.doi.org/10.2307/1995188 doi: 10.2307/1995188
|
| [4] | A. Menikoff, Uniqueness of the Cauchy problem for a class of partial differential equations with double characteristics, Indiana Univ. Math. J., 25 (1976), 1–21. |
| [5] | M. Zeman, Uniqueness of solutions of the Cauchy problem for linear partial differential equations with characteristics of variable multiplicity, J. Diff. Equ., 27 (1978), 1–18. |
| [6] | F. Treves, Basic linear partial differential equations, New York: Academic Press, 1978. |
| [7] |
C. S. Withers, S. Nadarajah, Some linear differential equations generated by matrices, AIMS Math., 7 (2022), 9588–9602. http://dx.doi.org/10.3934/math.2022533 doi: 10.3934/math.2022533
|
| [8] | G. Stephenson, Partial differential equations for scientists and engineers, London: Longman, 1985. |
| [9] | L. Comtet, Advanced combinatorics, Dordrecht: Reidel, 1974. |