Research article Special Issues

Estimating the stress-strength reliability parameter of the inverse power Lomax distribution

  • Published: 09 July 2025
  • MSC : 60E05, 62F10, 62F15

  • This research focused on estimating the stress-strength parameter by considering stress and strength as distinct random variables, both characterized by the inverse power Lomax (IPL) distribution. The maximum likelihood estimate (MLE) for stress-strength reliability was then calculated using the Newton-Raphson method. Using the asymptotic normality of MLEs, this study developed approximate confidence intervals. Bootstrap confidence intervals for the stress-strength reliability parameter ($ R $) were investigated. The Bayes estimator of $ R $ was considered. Furthermore, we utilized the Markov chain Monte Carlo (MCMC) method to create both symmetric and asymmetric loss functions, allowing for a more comprehensive analysis. The highest posterior density (HPD) credible intervals under a gamma prior distribution were calculated. The different approaches were assessed using a Monte Carlo simulation. Finally, a numerical example was given to show the effectiveness of the proposed methods.

    Citation: Abdelfattah Mustafa, M. I. Khan, Samah M. Ahmed. Estimating the stress-strength reliability parameter of the inverse power Lomax distribution[J]. AIMS Mathematics, 2025, 10(7): 15632-15652. doi: 10.3934/math.2025700

    Related Papers:

  • This research focused on estimating the stress-strength parameter by considering stress and strength as distinct random variables, both characterized by the inverse power Lomax (IPL) distribution. The maximum likelihood estimate (MLE) for stress-strength reliability was then calculated using the Newton-Raphson method. Using the asymptotic normality of MLEs, this study developed approximate confidence intervals. Bootstrap confidence intervals for the stress-strength reliability parameter ($ R $) were investigated. The Bayes estimator of $ R $ was considered. Furthermore, we utilized the Markov chain Monte Carlo (MCMC) method to create both symmetric and asymmetric loss functions, allowing for a more comprehensive analysis. The highest posterior density (HPD) credible intervals under a gamma prior distribution were calculated. The different approaches were assessed using a Monte Carlo simulation. Finally, a numerical example was given to show the effectiveness of the proposed methods.



    加载中


    [1] Z. W. Birnbaum, On a use of the Mann-Whitney statistic, In: Proceedings of the third Berkeley symposium on mathematical statistics and probability, volume 1: contributions to the theory of statistics, 1956, 13–17.
    [2] R. A. Johnson, Stress strength models for reliability, Handbook of statistics, 7 (1988), 27–54. https://doi.org/10.1016/S0169-7161(88)07005-1
    [3] A. M. Awad, M. K. Charraf, Estimation of $P(Y < X)$ in the Burr case: a comparative study, Commun. Stat.-Simul. Comput., 15 (1986), 389–403. http://doi.org/10.1080/03610918608812514 doi: 10.1080/03610918608812514
    [4] K. E. Ahmed, M. E. Fakhry, Z. F. Jaheen, Empirical Bayes estimation of $P(Y < X)$ and characterizations of Burr-Type X model, J. Stat. Plan. Infer., 64 (1997), 297–308. https://doi.org/10.1016/S0378-3758(97)00038-4 doi: 10.1016/S0378-3758(97)00038-4
    [5] A. H. Khan, T. R. Jan, Estimation of stress-strength reliability model using finite mixture of two parameter Lindley distributions, J. Stat. Appl. Pro., 4 (2015), 147–159.
    [6] B. Saraçoğlu, I. Kinaci, D. Kundu, On estimation of $R = P(Y X)$ for exponential distribution under progressive Type-II censoring, J. Stat. Comput. Sim., 82 (2012), 729–744. https://doi.org/10.1080/00949655.2010.551772 doi: 10.1080/00949655.2010.551772
    [7] D. Kundu, R. D. Gupta, Estimation of $P(X < Y)$ for generalized exponential distribution, Metrika, 61 (2005), 291–308. https://doi.org/10.1007/s001840400345 doi: 10.1007/s001840400345
    [8] S. Nadarajah, Reliability for Laplace distributions, Math. Probl. Eng., 2004 (2004), 169–183. https://doi.org/10.1155/S1024123X0431104X doi: 10.1155/S1024123X0431104X
    [9] J. G. Surles, W. J. Padgett, Inference for reliability and stress-strength for a scaled Burr-type X distribution, Lifetime Data Anal., 7 (2001), 187–200. https://doi.org/10.1023/A:1011352923990 doi: 10.1023/A:1011352923990
    [10] S. Nadarajah, Reliability for lifetime distributions, Math. Comput. Model., 37 (2003), 683–688. https://doi.org/10.1016/S0895-7177(03)00074-8 doi: 10.1016/S0895-7177(03)00074-8
    [11] D. Kundu, M. Z. Raqab, Estimation of $R = P[Y X]$ for three-parameter Weibull distribution, Stat. Probab. Lett., 79 (2009), 1839–1846. https://doi.org/10.1016/j.spl.2009.05.026 doi: 10.1016/j.spl.2009.05.026
    [12] M. Nassar, R. Alotaibi, C. Zhang, Product of spacing estimation of stress–strength reliability for alpha power exponential progressively Type-II censored data, Axioms, 12 (2023), 752. http://doi.org/10.3390/axioms12080752 doi: 10.3390/axioms12080752
    [13] K. Krishnamoorthy, Y. Lin, Confidence limits for stress-strength reliability involving Weibull models, J. Stat. Plan. Infer., 140 (2010), 1754–1764. https://doi.org/10.1016/j.jspi.2009.12.028 doi: 10.1016/j.jspi.2009.12.028
    [14] R. C. Gupta, C. Peng, Estimating reliability in proportional odds ratio models, Comput. Stat. Data Anal., 53 (2009), 1495–1510. https://doi.org/10.1016/j.csda.2008.10.014 doi: 10.1016/j.csda.2008.10.014
    [15] D. K. Al-Mutairi, M. E. Ghitany, R. C. Gupta, Estimation of reliability in a series system with random sample size, Comput. Stat. Data Anal., 55 (2011), 964–972. https://doi.org/10.1016/j.csda.2010.07.027 doi: 10.1016/j.csda.2010.07.027
    [16] S. Rostamian, N. Nematollahi, Estimation of stress–strength reliability in the inverse Gaussian distribution under progressively Type-II censored data, Math. Sci., 13 (2019), 175–191. https://doi.org/10.1007/s40096-019-0289-1 doi: 10.1007/s40096-019-0289-1
    [17] S. Ghanbari, A. Rezaei Roknabadi, M. Salehi, Estimation of stress–strength reliability for Marshall–Olkin distributions based on progressively Type-II censored samples, J. Appl. Stat., 49 (2022), 1913–1934. https://doi.org/10.1080/02664763.2021.1884207 doi: 10.1080/02664763.2021.1884207
    [18] S. Asadi, H. Panahi, Estimation of stress–strength reliability based on censored data and its evaluation for coating processes, Qual. Technol. Quant. Manag., 19 (2022), 379–401. https://doi.org/10.1080/16843703.2021.2001129 doi: 10.1080/16843703.2021.2001129
    [19] X. Hu, H. Ren, Statistical inference of the stress-strength reliability for inverse Weibull distribution under an adaptive progressive type-II censored sample, AIMS Math., 8 (2023), 28465–28487. https://doi.org/10.3934/math.20231457 doi: 10.3934/math.20231457
    [20] I. Elbatal, A. S. Hassan, L. S. Diab, A. Ben Ghorbal, M. Elgarhy, A. R. El-Saeed, Stress–strength reliability analysis for different distributions using progressive Type-II censoring with binomial removal, Axioms, 12 (2023), 1054. https://doi.org/10.3390/axioms12111054 doi: 10.3390/axioms12111054
    [21] N. S. Y. Temraz, Inference on the stress strength reliability with exponentiated generalized Marshall Olkin-G distribution, PLOS ONE, 18 (2023), e0280183. https://doi.org/10.1371/journal.pone.0280183 doi: 10.1371/journal.pone.0280183
    [22] T. Xavier, J. K. Jose, S. C. Bagui, Stress-strength reliability estimation of a series system with cold standby redundancy based on Kumaraswamy half-Logistic distribution, American Journal of Mathematical and Management Sciences, 42 (2023), 183–201. https://doi.org/10.1080/01966324.2023.2213835 doi: 10.1080/01966324.2023.2213835
    [23] A. S. Hassan, N. Alsadat, M. Elgarhy, H. Ahmad, H. F. Nagy, On estimating multi stress strength reliability for inverted Kumaraswamy under ranked set sampling with application in engineering, J. Nonlinear Math. Phys., 31 (2024), 30. https://doi.org/10.1007/s44198-024-00196-y doi: 10.1007/s44198-024-00196-y
    [24] A. Xu, R. Wang, X. Weng, Q. Wu, L. Zhuang, Strategic integration of adaptive sampling and ensemble techniques in federated learning for aircraft engine remaining useful life prediction, Appl. Soft Comput., 175 (2025), 113067. https://doi.org/10.1016/j.asoc.2025.113067 doi: 10.1016/j.asoc.2025.113067
    [25] A. Xu, G. Fang, L. Zhuang, C. Gu, A multivariate student-$t$ process model for dependent tail-weighted degradation data, IISE Trans., 57 (2025), 1071–1087. https://doi.org/10.1080/24725854.2024.2389538 doi: 10.1080/24725854.2024.2389538
    [26] A. S. Hassan, M. Abd-Allah, On the inverse power Lomax distribution, Ann. Data Sci., 6 (2019), 259–278. https://doi.org/10.1007/s40745-018-0183-y doi: 10.1007/s40745-018-0183-y
    [27] P. Kumar, H. Sharma, Prior preferences for the inverse power Lomax distribution: Bayesian method, Journal of Statistics Applications & Probability Letters, 10 (2023), 49–62. https://doi.org/10.18576/jsapl/100104 doi: 10.18576/jsapl/100104
    [28] X. Shi, Y. Shi, Inference for inverse power Lomax distribution with progressive first-failure censoring, Entropy, 23 (2021), 1099. https://doi.org/10.3390/e23091099 doi: 10.3390/e23091099
    [29] S. M. Ahmed, A. Mustafa, Estimation of the coefficients of variation for inverse power Lomax distribution, AIMS Math., 9 (2024), 33423–33441. https://doi.org/10.3934/math.20241595 doi: 10.3934/math.20241595
    [30] A. P. Basu, N. Ebrahimi, Bayesian approach to life testing and reliability estimation using asymmetric loss function, J. Stat. Plan. Infer., 29 (1991), 21–31. https://doi.org/10.1016/0378-3758(92)90118-C doi: 10.1016/0378-3758(92)90118-C
    [31] H. R. Varian, A Bayesian approach to real estate assessment, In: Studies in Bayesian econometrics and statistics: in honor of L. J. Savage, North Holland, Amsterdam, 1975,195–208.
    [32] U. Balasooriya, N. Balakrishnan, Reliability sampling plans for log-normal distribution based on progressively censored samples, IEEE Trans. Reliab., 49 (2000), 199–203. https://doi.org/10.1109/24.877338 doi: 10.1109/24.877338
    [33] G. Prakash, D. C. Singh, Shrinkage estimation in exponential Type-II censored data under LINEX loss, J. Korean Stat. Soc., 37 (2008), 53–61. https://doi.org/10.1016/j.jkss.2007.07.002 doi: 10.1016/j.jkss.2007.07.002
    [34] R. Calabria, G. Pulcini, Bayes 2-sample prediction for the inverse Weibull distribution, Commun. Stat.-Theor. Method., 23 (1994), 1811–1824. https://doi.org/10.1080/03610929408831356 doi: 10.1080/03610929408831356
    [35] J. F. Lawless, Statistical models and methods for lifetime data, New York: John Wiley and Sons, 2003. https://doi.org/10.1002/9781118033005
    [36] B. Efron, R. J. Tibshirani, An introduction to the bootstrap, 1 Eds., New York: Chapman and Hall/CRC, 1994. https://doi.org/10.1201/9780429246593
    [37] M. E. Ghitany, B. Atieh, S. Nadarajah, Lindley distribution and its application, Math. Comput. Simul., 78 (2008), 493–506. https://doi.org/10.1016/j.matcom.2007.06.007 doi: 10.1016/j.matcom.2007.06.007
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(666) PDF downloads(33) Cited by(1)

Article outline

Figures and Tables

Figures(12)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog