In this paper, we first define an equivalence relation for curves in $ \mathbb{E}^n $. Based on this equivalence relation, we investigate the relationships between the Frenet frame and curvatures of equivalent curves. Next, we introduce the concept of linearly dependent curvatures in $ \mathbb{E}^n $ and examine its implications for equivalent curves. Building on this concept and the proposed equivalence relation, we present a method to construct (1, 3)-Bertrand curves in $ \mathbb{E}^4 $. Additionally, we derive the relationships between the harmonic curvatures of equivalent curves and use these relationships to establish several properties of equivalent helical curves. These results enable systematic construction of curves with prescribed geometric properties.
Citation: Ahmet Mollaoğulları, Mehmet Gümüş, Didem Karalarlıoğlu Camcı, Kazım İlarslan, Çetin Camcı. Equivalent curves in $ \mathbb{E}^{n} $[J]. AIMS Mathematics, 2025, 10(7): 15653-15662. doi: 10.3934/math.2025701
In this paper, we first define an equivalence relation for curves in $ \mathbb{E}^n $. Based on this equivalence relation, we investigate the relationships between the Frenet frame and curvatures of equivalent curves. Next, we introduce the concept of linearly dependent curvatures in $ \mathbb{E}^n $ and examine its implications for equivalent curves. Building on this concept and the proposed equivalence relation, we present a method to construct (1, 3)-Bertrand curves in $ \mathbb{E}^4 $. Additionally, we derive the relationships between the harmonic curvatures of equivalent curves and use these relationships to establish several properties of equivalent helical curves. These results enable systematic construction of curves with prescribed geometric properties.
| [1] | J. Miller, Note on Tortuous curves, Proc. Edinburgh Math. Soc., 24 (1905), 51–55. |
| [2] |
Ç. Camcı, K. İlarslan, A new method for construction of PH-Helical curves in $E^{3}$, Compt. Rendus Acad. Bulgare Sci., 72 (2019), 301–308. http://doi.org/10.7546/crabs.2019.03.03 doi: 10.7546/crabs.2019.03.03
|
| [3] |
A. Mollaoğulları, M. Gümüş, K. İlarslan, Ç. Camcı, A new method to obtain PH-Helical curves in $E^{n}$, J. New Theory, 37 (2021), 45–57. https://doi.org/10.53570/jnt.1027564 doi: 10.53570/jnt.1027564
|
| [4] |
J. Monterde, The Bertrand curve associated to a Salkowsky curve, J. Geom., 111 (2020), 21. https://doi.org/10.1007/s00022-020-00533-8 doi: 10.1007/s00022-020-00533-8
|
| [5] | M. Carmo, Differential geometry of curves and surfaces, Saddle River: Prentice-Hall, 1976. |
| [6] |
W. C. Graustein, On two related transformations of space curves, Amer. J. Math., 39 (1917), 233–240. https://doi.org/10.2307/2370293 doi: 10.2307/2370293
|
| [7] |
V. Bhat, R. H. Baskar, Transformations of a space curve and applications to elastic curves, J. Geome. Topol., 21 (2018), 119–140. http://doi.org/10.17654/GT021020119 doi: 10.17654/GT021020119
|
| [8] | A. T. Ağırman, H. Kocayiğit, On spacelike $(1, 3)$-Bertrand curves in $E_{2}^{4}$, Hagia Sophia J. Geom., 3 (2021), 1–11. |
| [9] |
A. Elsharkawy, A. Ali, M. Hanif, C. Cesarano, An advanced approach to Bertrand curves in 4-dimensional Minkowski space, J. Contemp. Appl. Math., 15 (2025), 54–68. https://doi.org/10.62476/jcam.151.5 doi: 10.62476/jcam.151.5
|
| [10] |
S. Izumiya, N. Takeuchi, Generic properties of helices and Bertrand curves, J. Geom., 74 (2002), 97–109. https://doi.org/10.1007/PL00012543 doi: 10.1007/PL00012543
|
| [11] | H. Matsuda, S. Yorozu, Notes on Bertrand curves, Yokohama Math. J., 50 (2003), 41–58. |
| [12] |
Ç. Camcı, A. Uçum, K. İlarslan, Space curves related by a transformation of Combescure, J. Dyn. Syst. Geom. Theor., 19 (2022), 271–287. https://doi.org/10.1080/1726037X.2021.2011113 doi: 10.1080/1726037X.2021.2011113
|
| [13] |
S. I. Abdelsalam, M. A. Dagher, Y. Abd Elmaboud, A. I. Abdellateef, Towards understanding thermal management in unsteady boundary layer flow with AC/DC electric fields, Propul. Power Res., 14 (2025), 64–75. https://doi.org/10.1016/j.jppr.2025.02.003 doi: 10.1016/j.jppr.2025.02.003
|
| [14] |
A. S. Baazeem, M. S. Arif, K. Abodayeh, An efficient and accurate approach to electrical boundary layer nanofluid flow simulation: A use of artificial intelligence, Processes, 11 (2023), 2736–2758. https://doi.org/10.3390/pr11092736 doi: 10.3390/pr11092736
|
| [15] |
Ç. G. Şener, F. Güler, Flux ruled surfaces and the magnetic curves obtained from the curvature theory, Int. J. Geom. Meth. Modern Phys., 21 (2024), 2450172. https://doi.org/10.1142/S021988782450172X doi: 10.1142/S021988782450172X
|
| [16] |
B. Bataray, Ç. Camcı, Applications of equivalent curves to ruled surfaces, Int. Elect. J. Geom., 18 (2025), 135–142. https://doi.org/10.36890/iejg.1528951 doi: 10.36890/iejg.1528951
|
| [17] |
Ç. Camcı, K. İlarslan, L. Kula, H. H. Hacısalihoğlu, Harmonic curvatures and generalized helices in $E^{n}$, Chaos Solitons Fract., 40 (2009), 2590–2596. https://doi.org/10.1016/j.chaos.2007.11.001 doi: 10.1016/j.chaos.2007.11.001
|
| [18] | E. Özdamar, H. H. Hacısalihoglu, A characterization of inclined curves in Euclidean n-space, Comm. Fac. Sci. Univ. Ankara, 24 (1975), 15–23. |