Fear effects, as spontaneous inherent phenomena among species, ubiquitously manifest in natural ecosystems. In this study, we investigate a Leslie-Gower type predator-prey system incorporating a Holling Type Ⅲ functional response and fear effects under no-flux boundary conditions. For temporal dynamical behaviors, we investigate the Hopf bifurcation for the ordinary differential equations (ODEs). It is found that the system will admit the stable or unstable periodic solution due to supercritical or subcritical Hopf bifurcation based on the first Lyapunov coefficient technique. When we add the diffusion into the system, we rigorously establish the stability conditions of the positive equilibrium. In this manner, the precise existence interval of the Turing instability is obtained so that the spatial profiles of the system can be analyzed. Furthermore, we systematically analyze the existence of Hopf bifurcation in the reaction-diffusion system and characterize the stability of bifurcating periodic solutions by employing normal form theory. The theoretical framework is supported by comprehensive numerical simulations. The research highlights of this paper include the following: (1) The existence of the supercritical and subcritical Hopf bifurcation for the temporal and spatiotemporal predator-prey systems are confirmed; (2) the Turing instability of the spatiotemporal system is found via strict theoretical derivations so that the pattern formation can be observed.
Citation: Xiaoyan Zhao, Liangru Yu, Xue-Zhi Li. Dynamics analysis of a predator-prey model incorporating fear effect in prey species[J]. AIMS Mathematics, 2025, 10(5): 12464-12492. doi: 10.3934/math.2025563
Fear effects, as spontaneous inherent phenomena among species, ubiquitously manifest in natural ecosystems. In this study, we investigate a Leslie-Gower type predator-prey system incorporating a Holling Type Ⅲ functional response and fear effects under no-flux boundary conditions. For temporal dynamical behaviors, we investigate the Hopf bifurcation for the ordinary differential equations (ODEs). It is found that the system will admit the stable or unstable periodic solution due to supercritical or subcritical Hopf bifurcation based on the first Lyapunov coefficient technique. When we add the diffusion into the system, we rigorously establish the stability conditions of the positive equilibrium. In this manner, the precise existence interval of the Turing instability is obtained so that the spatial profiles of the system can be analyzed. Furthermore, we systematically analyze the existence of Hopf bifurcation in the reaction-diffusion system and characterize the stability of bifurcating periodic solutions by employing normal form theory. The theoretical framework is supported by comprehensive numerical simulations. The research highlights of this paper include the following: (1) The existence of the supercritical and subcritical Hopf bifurcation for the temporal and spatiotemporal predator-prey systems are confirmed; (2) the Turing instability of the spatiotemporal system is found via strict theoretical derivations so that the pattern formation can be observed.
| [1] |
Q. Li, J. F. He, Pattern formation in a ratio-dependent predator-prey model with cross diffusion, Electron, Electron. Res. Arch., 31 (2023), 1106–1118. https://doi.org/10.3934/era.2023055 doi: 10.3934/era.2023055
|
| [2] |
J. D. Zhao, T. H. Zhang, Dynamics of two predator-prey models with power law relation, J. Appl. Anal. Comput., 13 (2023), 233–248. https://doi.org/10.11948/20220026 doi: 10.11948/20220026
|
| [3] |
N. C. Pati, B. Ghosh, Stability scenarios and period-doubling onset of chaos in a population model with delayed harvesting, Math. Methods Appl. Sci., 46 (2023), 12930–12945. https://doi.org/10.1002/mma.9223 doi: 10.1002/mma.9223
|
| [4] |
H. P. Jiang, Stable spatially inhomogeneous periodic solutions for a diffusive Leslie-Gower predator-prey model, J. Appl. Math. Comput., 70 (2024), 2541–2567. https://doi.org/10.1007/s12190-024-02018-2 doi: 10.1007/s12190-024-02018-2
|
| [5] |
W. J. Zuo, J. J. Wei, Stability and bifurcation in a ratio-dependent Holling-Ⅲ system with diffusion and delay, Nonlinear Anal.-Model., 19 (2014), 132–153. https://doi.org/10.15388/NA.2014.1.9 doi: 10.15388/NA.2014.1.9
|
| [6] |
X. X. Liu, L. H. Huang, Permanence and periodic solutions for a diffusive ratio-dependent predator-prey system, Appl. Math. Model., 33 (2009), 683–691. https://doi.org/10.1016/j.apm.2007.12.002 doi: 10.1016/j.apm.2007.12.002
|
| [7] |
V. A. Gaiko, C. Vuik, Global dynamics in the Leslie-Gower model with the Allee effect, Int. J. Bifurcat. Chaos, 28 (2018), 1850151. https://doi.org/10.1142/S0218127418501511 doi: 10.1142/S0218127418501511
|
| [8] |
M. X. He, Z. Li, Dynamics of a Lesile-Gower predator-prey model with square root response function and generalist predator, Appl. Math. Lett., 157 (2024), 109193. https://doi.org/10.1016/j.aml.2024.109193 doi: 10.1016/j.aml.2024.109193
|
| [9] |
Z. L. Li, Y. Zhang, Dynamic analysis of a fast slow modified Leslie-Gower predator-prey model with constant harvest and stochastic factor, Math. Comput. Simulat., 226 (2024), 474–499. https://doi.org/10.1016/j.matcom.2024.07.027 doi: 10.1016/j.matcom.2024.07.027
|
| [10] |
H. B. Shi, Y. Li, Global asymptotic stability of a diffusive predator-prey model with ratio-dependent functional response, Appl. Math. Comput., 250 (2015), 71–77. https://doi.org/10.1016/j.amc.2014.10.116 doi: 10.1016/j.amc.2014.10.116
|
| [11] |
H. B. Shi, S. G. Ruan, Y. Su, J. F. Zhang, Spatiotemporal dynamics of a diffusive Leslie-Gower predator-prey model with ratio-dependent functional response, Internat, Int. J. Bifurcat. Chaos, 25 (2015), 1530014. https://doi.org/10.1142/S0218127415300141 doi: 10.1142/S0218127415300141
|
| [12] |
D. Tripathi, J. P. Tripathi, S. K. Tiwari, D. Jana, L. F. Hou, Y. Shi, et al., Modified Holling Tanner diffusive and non-diffusive predator-prey models: The impact of prey refuge and fear effect, Results Phys., 65 (2024), 107995. https://doi.org/10.1016/j.rinp.2024.107995 doi: 10.1016/j.rinp.2024.107995
|
| [13] |
S. A. A. Hamdallah, A. A. Arafa, Stability analysis of Filippov prey-predator model with fear effect and prey refuge, J. Appl. Math. Comput., 70 (2024), 73–102. https://doi.org/10.1007/s12190-023-01934-z doi: 10.1007/s12190-023-01934-z
|
| [14] |
A. Kumar, K. P. Reshma, P. S. Harine, Global dynamics of an ecological model in presences of fear and group defense in prey and Allee effect in predator, Nonlinear Dynam., 113 (2025), 7483–7518. https://doi.org/10.1007/s11071-024-10706-8 doi: 10.1007/s11071-024-10706-8
|
| [15] |
J. Z. Cao, F. Li, P. M. Hao, Bifurcation analysis of a diffusive predator-prey model with fear effect, Math. Method. Appl. Sci., 47 (2024), 13404–13423. https://doi.org/10.1002/mma.10198 doi: 10.1002/mma.10198
|
| [16] |
S. Mishra, R. Upadhyay, Spatial pattern formation and delay induced destabilization in predator-prey model with fear effect, Math. Method. Appl. Sci., 45 (2022), 6801–6823. https://doi.org/10.1002/mma.8207 doi: 10.1002/mma.8207
|
| [17] |
J. Liu, Y. Kang, Spatiotemporal dynamics of a diffusive predator-prey model with fear effect, Nonlinear Anal.-Model., 27 (2022), 841–862. https://doi.org/10.15388/namc.2022.27.27535 doi: 10.15388/namc.2022.27.27535
|
| [18] |
H. K. Qi, X. Z. Meng, T. Hayat, A. Hobiny, Influence of fear effect on bifurcation dynamics of predator-prey system in a predator-poisoned environment, Qual. Theor. Dyn. Syst., 21 (2022), 27. https://doi.org/10.1007/s12346-021-00555-w doi: 10.1007/s12346-021-00555-w
|
| [19] |
A. Mondal, A. K. Pal, Age-selective harvesting in a delayed predator-prey model with fear effect, Z. NATURFORSCH. A., 77 (2022), 229–248. https://doi.org/10.1515/zna-2021-0217 doi: 10.1515/zna-2021-0217
|
| [20] |
H. T. Wang, Y. Zhang, L. Ma, Bifurcation and stability of a diffusive predator-prey model with the fear effect and time delay, Chaos, 33 (2023), 073137. https://doi.org/10.1063/5.0157410 doi: 10.1063/5.0157410
|
| [21] |
X. W. Ju, Y. Yang, Turing instability of the periodic solution for a generalized diffusive Maginu model, Comput. Appl. Math., 41 (2022), 290. https://doi.org/10.1007/s40314-022-01992-2 doi: 10.1007/s40314-022-01992-2
|
| [22] |
X. Y. Meng, N. N. Qin, H. F. Huo, Dynamics analysis of a predator-prey system with harvesting prey and disease in prey species, J. Biol. Dynam., 12 (2018), 342–374. https://doi.org/10.1080/17513758.2018.1454515 doi: 10.1080/17513758.2018.1454515
|
| [23] |
D. Jin, R. Z. Yang, Hopf bifurcation of a predator-prey model with memory effect and intra-species compitition in predator, J. Appl. Anal. Comput., 13 (2023), 1321–1335. https://doi.org/10.11948/20220127 doi: 10.11948/20220127
|
| [24] | B. D. Hassard, N. D. Kazarinoff, Y. H. Wan, Theory and applications of Hopf bifurcation, New York: Cambridge University Press, 1981. https://doi.org/10.1137/1024123 |
| [25] |
Y. T. Cai, C. C. Wang, D. J. Fan, Bifurcation analysis of a predator-prey model with age structure, Int. J. Bifurcat. Chaos, 30 (2020), 2050114. https://doi.org/10.1142/S021812742050114X doi: 10.1142/S021812742050114X
|
| [26] |
Q. An, X. Y. Gu, X. B. Zhang, Normal form and Hopf bifurcation for the memory-based reaction-diffusion equation with nonlocal effect, Math. Method. Appl. Sci., 47 (2024), 12883–12904. https://doi.org/10.1002/mma.10185 doi: 10.1002/mma.10185
|
| [27] |
Y. H. Qian, M. R. Ren, H. L. Wang, Dynamic behavior of a class of predator-prey model with two time delays, Acta Mech., 235 (2024), 7453–7473. https://doi.org/10.1007/s00707-024-04111-w doi: 10.1007/s00707-024-04111-w
|