Research article Special Issues

Null controllability of Atangana-Baleanu fractional stochastic systems with Poisson jumps and fractional Brownian motion

  • Published: 28 May 2025
  • MSC : 93C10, 34K37, 60J65, 93B05

  • Null controllability is an essential concept in control theory, guaranteeing that the state of a system can be controlled to reach zero. We focused on investigating the sufficient conditions for the null controllability of Atangana-Baleanu (A-B) fractional stochastic differential equations (SDEs) involving Poisson jumps and fractional Brownian motion (fBm) within Hilbert space, a significant area of research in control theory and stochastic analysis. We employed a combination of tools including fractional analysis, compact semigroup theory, fixed point theorems, and stochastic analysis to derive the desired results. An example is included to illustrate the application of our findings.

    Citation: Yazid Alhojilan, Hamdy M. Ahmed. Null controllability of Atangana-Baleanu fractional stochastic systems with Poisson jumps and fractional Brownian motion[J]. AIMS Mathematics, 2025, 10(5): 12447-12463. doi: 10.3934/math.2025562

    Related Papers:

  • Null controllability is an essential concept in control theory, guaranteeing that the state of a system can be controlled to reach zero. We focused on investigating the sufficient conditions for the null controllability of Atangana-Baleanu (A-B) fractional stochastic differential equations (SDEs) involving Poisson jumps and fractional Brownian motion (fBm) within Hilbert space, a significant area of research in control theory and stochastic analysis. We employed a combination of tools including fractional analysis, compact semigroup theory, fixed point theorems, and stochastic analysis to derive the desired results. An example is included to illustrate the application of our findings.



    加载中


    [1] H. M. Ahmed, Sobolev-type fractional stochastic integrodifferential equations with nonlocal conditions in Hilbert space, J. Theor. Probab., 30 (2017), 771–783. https://doi.org/10.1007/s10959-016-0665-9 doi: 10.1007/s10959-016-0665-9
    [2] W. Wang, S. Cheng, Z. Guo, X. Yan, A note on the continuity for Caputo fractional stochastic differential equations, Chaos, 30 (2020), 073106. https://doi.org/10.1063/1.5141485 doi: 10.1063/1.5141485
    [3] A. Ahmadova, N. I. Mahmudov, Existence and uniqueness results for a class of fractional stochastic neutral differential equations, Chaos, Soliton. Fract., 139 (2020), 110253. https://doi.org/10.1016/j.chaos.2020.110253 doi: 10.1016/j.chaos.2020.110253
    [4] I. Ali, S. U. Khan, A dynamic competition analysis of stochastic fractional differential equation arising in finance via pseudospectral method, Mathematics, 11 (2023), 1328. https://doi.org/10.3390/math11061328 doi: 10.3390/math11061328
    [5] O. A. M. Omar, R. A. Elbarkouky, H. M. Ahmed, Fractional stochastic modelling of COVID-19 under wide spread of vaccinations: Egyptian case study, Alex. Eng. J., 61 (2022), 8595–8609. https://doi.org/10.1016/j.aej.2022.02.002 doi: 10.1016/j.aej.2022.02.002
    [6] B. P. Moghaddam, A. Babaei, A. Dabiri, A. Galhano, Fractional stochastic partial differential equations: numerical advances and practical applications—A state of the art review, Symmetry, 16 (2024), 563. https://doi.org/10.3390/sym16050563 doi: 10.3390/sym16050563
    [7] D. Chalishajar, D. Kasinathan, R. Kasinathan, R. Kasinathan, Viscoelastic Kelvin–Voigt model on Ulam–Hyer's stability and T-controllability for a coupled integro fractional stochastic systems with integral boundary conditions via integral contractors, Chaos, Soliton. Fract., 191 (2025), 115785. https://doi.org/10.1016/j.chaos.2024.115785 doi: 10.1016/j.chaos.2024.115785
    [8] D. Chalishajar, D. Kasinathan, R. Kasinathan, R. Kasinathan, Ulam–Hyers–Rassias stability of Hilfer fractional stochastic impulsive differential equations with non-local condition via time-changed Brownian motion followed by the currency options pricing model, Chaos, Soliton. Fract., 197 (2025), 116468. https://doi.org/10.1016/j.chaos.2025.116468 doi: 10.1016/j.chaos.2025.116468
    [9] M. Yang, Q. Wang, Existence of mild solutions for a class of Hilfer fractional evolution equations with nonlocal conditions, FCAA, 20 (2017), 679–705. https://doi.org/10.1515/fca-2017-0036 doi: 10.1515/fca-2017-0036
    [10] M. Yang, Q. Huan, H. Cui, Q. Wang, Hilfer fractional stochastic evolution equations on the positive semi-axis, Alex. Eng. J., 104 (2024), 386–395. https://doi.org/10.1016/j.aej.2024.07.111 doi: 10.1016/j.aej.2024.07.111
    [11] J. Huo, M. Yang, Averaging principle for Hilfer–Katugampola fractional stochastic differential equations, Math. Methods Appl. Sci., 47 (2024), 14037–14053. https://doi.org/10.1002/mma.10254 doi: 10.1002/mma.10254
    [12] M. Yang, T. Lv, Q. Wang, The averaging principle for Hilfer fractional stochastic evolution equations with Lévy noise, Fractal Fract., 10 (2023), 701. https://doi.org/10.3390/fractalfract7100701 doi: 10.3390/fractalfract7100701
    [13] H. M. Ahmed, Controllability of fractional stochastic delay equations, Lobachevskii J. Math., 30 (2009), 195–202. https://doi.org/10.1134/S1995080209030019 doi: 10.1134/S1995080209030019
    [14] H. M. Ahmed, Approximate controllability of impulsive neutral stochastic differential equations with fractional Brownian motion in a Hilbert space, Adv. Differ. Equ., 2014 (2014), 1–11. https://doi.org/10.1186/1687-1847-2014-113 doi: 10.1186/1687-1847-2014-113
    [15] K. Kavitha, V. Vijayakumar, R. Udhayakumar, C. Ravichandran, Results on controllability of Hilfer fractional differential equations with infinite delay via measures of noncompactness, Asian J. Control, 24 (2022), 1406–1415. https://doi.org/10.1002/asjc.2549 doi: 10.1002/asjc.2549
    [16] D. Luo, J. Huang, Relative controllability for conformable impulsive delay differential equations, IMA J. Math. Control Inf., 41 (2024), 378–400. https://doi.org/10.1093/imamci/dnae013 doi: 10.1093/imamci/dnae013
    [17] I. Haque, J. Ali, J. J. Nieto, Controllability of psi-Hilfer fractional differential equations with infinite delay via measure of noncompactness, Nonlinear Anal.: Model. Control, 29 (2024), 379–399. https://doi.org/10.15388/namc.2024.29.34706 doi: 10.15388/namc.2024.29.34706
    [18] H. Zhao, J. Zhang, J. Lu, J. Hu, Approximate controllability and optimal control in fractional differential equations with multiple delay controls, fractional Brownian motion with Hurst parameter in $0 < H < \frac{1}{2}$, and Poisson jumps, Commun. Nonlinear Sci. Numer. Simul., 128 (2024), 107636. https://doi.org/10.1016/j.cnsns.2023.107636 doi: 10.1016/j.cnsns.2023.107636
    [19] T. Sathiyaraj, M. Fečkan, J. Wang, Null controllability results for stochastic delay systems with delayed perturbation of matrices, Chaos, Soliton. Fract., 138 (2020), 109927. https://doi.org/10.1016/j.chaos.2020.109927 doi: 10.1016/j.chaos.2020.109927
    [20] J. P. Dauer, N. I. Mahmudov, Exact null controllability of semilinear integrodifferential systems in Hilbert spaces, J. Math. Anal. Appl., 299 (2004), 322–332. https://doi.org/10.1016/j.jmaa.2004.01.050 doi: 10.1016/j.jmaa.2004.01.050
    [21] J. Wang, H. M. Ahmed, Null controllability of nonlocal Hilfer fractional stochastic differential equations, Miskolc Math. Notes, 18 (2017), 1073–1083. https://doi.org/10.18514/MMN.2017.2396 doi: 10.18514/MMN.2017.2396
    [22] A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016) 763–769. https://doi.org/10.2298/TSCI160111018A
    [23] M. I. Syam, M. Al-Refai, Fractional differential equations with Atangana–Baleanu fractional derivative: analysis and applications, Chaos, Soliton. Fract.: X, 2 (2019), 100013. https://doi.org/10.1016/j.csfx.2019.100013 doi: 10.1016/j.csfx.2019.100013
    [24] K. Kaliraj, E. Thilakraj, C. Ravichandran, K. S. Nisar, Controllability analysis for impulsive integro‐differential equation via Atangana–Baleanu fractional derivative, Math. Methods Appl. Sci., 2021. https://doi.org/10.1002/mma.7693
    [25] A. Devi, A. Kumar, Existence and uniqueness results for integro fractional differential equations with Atangana-Baleanu fractional derivative, J. Math. Ext., 15 (2022), 1–24. https://doi.org/10.30495/JME.SI.2021.2128 doi: 10.30495/JME.SI.2021.2128
    [26] A. M. Sayed Ahmed, H. M. Ahmed, N. S. E. Abdalla, A. Abd-Elmonem, E. M. Mohamed, Approximate controllability of Sobolev-type Atangana-Baleanu fractional differential inclusions with noise effect and Poisson jumps, AIMS Math., 8 (2023), 25288–25310. https://doi.org/10.3934/math.20231290 doi: 10.3934/math.20231290
    [27] P. Balasubramaniam, Controllability of semilinear noninstantaneous impulsive ABC neutral fractional differential equations, Chaos, Soliton. Fract., 152 (2021), 111276. https://doi.org/10.1016/j.chaos.2021.111276 doi: 10.1016/j.chaos.2021.111276
    [28] B. Boufoussi, S. Hajji, Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space, Stat. Probabil. Lett., 82 (2012), 1549–1558. https://doi.org/10.1016/j.spl.2012.04.013 doi: 10.1016/j.spl.2012.04.013
    [29] A. Pazy, Semigroups of linear operators and applications to partial differential equations, New York: Springer, 1983. https://doi.org/10.1007/978-1-4612-5561-1
    [30] X. B. Shu, Y. Lai, Y. Chen, The existence of mild solutions for impulsive fractional partial differential equations, Nonlinear Anal.: Theory, Method. Appl., 74 (2011), 2003–2011. https://doi.org/10.1016/j.na.2010.11.007 doi: 10.1016/j.na.2010.11.007
    [31] X. Fu, Y. Zhang, Exact null controllability of non-autonomous functional evolution systems with nonlocal conditions, Acta Math. Sci., 33 (2013), 747–757. https://doi.org/10.1016/S0252-9602(13)60035-1 doi: 10.1016/S0252-9602(13)60035-1
    [32] J. Y. Park, P. Balasubramaniam, Exact null controllability of abstract semilinear functional integrodifferential stochastic evolution equations in Hilbert spaces, Taiwanese J. Math., 13 (2009), 2093–2103. https://doi.org/10.11650/twjm/1500405659 doi: 10.11650/twjm/1500405659
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(677) PDF downloads(41) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog