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1. Introduction

Fractional calculus constitutes a realm within mathematical analysis wherein the traditional
notions of differentiation and integration are expanded to encompass non-integer or fractional orders.
Fractional stochastic differential equations (SDEs) serve as invaluable tools for modeling intricate
systems amidst uncertainty, offering a more faithful depiction of the dynamic evolution of such systems
over time. Theoretical foundations of fractional SDEs have been extensively developed [1-3], while
their applications span a wide range of fields, including finance, engineering, and economics [4—6].

In recent years, a substantial body of research has focused on the existence, uniqueness, and stability
of solutions to fractional SDEs, which serves as the foundational requirement for their mathematical
and physical validity. Various analytical tools, including fixed-point theorems, stochastic semigroup
theory, and measure-theoretic techniques, have been employed to establish these properties under
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different fractional operators and noise sources [7-9]. Another key area of development is the averaging
principle, which is crucial for analyzing multi-scale stochastic systems. By separating fast and slow
dynamics, the averaging technique simplifies the system while preserving essential stochastic and
fractional features [10-12].

The concept of controllability lies at the heart of control theory, serving as a fundamental paradigm
for understanding the ability to steer the dynamics of a system from one state to another through
appropriate control inputs. While the controllability of deterministic systems has been extensively
studied and well-understood, the advent of stochasticity introduces additional complexities and
challenges, giving rise to a rich area of research focused on the controllability of SDEs. For example,
in [13], the author established the sufficient conditions for controllability of fractional stochastic
delay equations. The approximate controllability of impulsive neutral stochastic differential equations
with fractional Brownian motion in a Hilbert space was examined in [14]. Kavitha et al. [15]
studied the controllability of Hilfer fractional differential equations with infinite delay via measures
of noncompactness. Luo and Huang [16] investigated the relative controllability for conformable
impulsive delay differential equations. Haque, Ali, and Nieto [17] discussed the controllability
of psi-Hilfer fractional differential equations with infinite delay via measure of noncompactness.
Zhao et al. [18] explored the approximate controllability and optimal control for fractional systems
characterized by multiple delays.

Null controllability is a fundamental concept in control theory, particularly in the context of partial
differential equations (PDEs) and systems governed by dynamical laws. In other words, a system is
said to be null controllable if, starting from any initial condition, there exists a control input that can
drive the system to a state where all state variables are zero, or within an acceptable range of desired
values, in a finite time [19-21].

In recent years, the introduction of the Atangana-Baleanu fractional derivative has sparked
significant interest in the study of fractional DEs, offering a novel perspective on the dynamics of
complex systems with memory and long-range dependence [22]. Several authors have investigated the
fractional DEs containing A-B fractional derivatives, for example, Syam and Al-Refai [23] established
existence and uniqueness results to the linear and nonlinear fractional differential equations with
Atangana—Baleanu fractional derivative. Kaliraj et al. [24] studied the controllability for impulsive
integro-differential equation via Atangana-Baleanu fractional derivative. Devi and Kumar [25]
explored the existence and uniqueness results for integro fractional differential equations with
Atangana-Baleanu fractional derivative. Ahmed et al. [26] established the approximate controllability
of Sobolev-type Atangana-Baleanu fractional differential inclusions with noise effect and Poisson
jumps. Balasubramaniam [27] derived the necessary and sufficient conditions for the controllability
of Atangana-Baleanu-Caputo neutral fractional differential equations. However, there have been no
documented studies in the literature concerning the null controllability of Atangana—Baleanu fractional
SDEs incorporating fBm and Poisson jumps . Inspired by this gap in research, we aim to explore the
null controllability of such Atangana—Baleanu fractional SDEs with fBm and Poisson jumps in Hilbert
space, structured as follows:

ABC S %(b) = Ie(h) + By(h) + A (0, %(H)) + # (D, %(b))d%z(m
%(0) = 2o,
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The expression *#€ %, represents the A-B Caputo fractional derivative with order 1 < N < 1. The
function x(-) operates in a Hilbert space denoted as K, equipped with an inner product (-, -) and norm
|| - 1I. The term B* signifies a fBm on another separable and real Hilbert space %, characterized by a
Hurst parameter % < < 1.

The operator IT : D(II) ¢ K — K acts as the infinitesimal generator of a family of N-resolvent
denoted as (Sx(h))y>0 and (Qx(bh))y0, defined on a separable Hilbert space K. The control function
W(-) is specified within £,(.#, W), where U represents another separable Hilbert space of admissible
control functions. Here, % denotes a bounded linear operator mapping from U to K.

Additionally, there are nonlinear functions represented by A" : #Z XK — K,y : M XKXZ — K,
and W : M XK - LYY, K).

The remainder of the manuscript is structured as follows: Section 2 comprises a compilation
of notations, definitions, and lemmas. In Section 3, we delve into investigating the precise null
controllability of the system described by Eq (1.1). Section 4 depicts an example to exemplify the
theoretical results derived.

2. Preliminaries

Definition 2.1. (see [22]) Let g € H'(a,b), a < b and 0 < X < 1. The A-B fractional derivative of a
function g in Caputo sense is defined as:

a®) (O N
AR Ob) = —5 f o (E)Mx(-0(h — E)VdE, 6 = —, (2.1)
1-NJ, 1-N
where the function
[s] gn
Mx(9) = -
X&) Z:(; (N + 1)
denotes the Mittag-Lefller function.
Additionally, the normalization function, denoted by @w(N), is expressed as (1 — N) + r(x) It is
defined in such a way that @w(0) = @w(1) = 1.
The expression for the fractional integral of A-B is given as:
AB N N-1
Ia(h) = —g(b) — oot f h—=&)"a(&)déE. (2.2)
@(N) (N)F(N)

Fix a time interval [0,.7] and let (Q,¢&, %) be a complete probability space equipped with a
comprehensive collection of right-continuous increasing sub o-algebras {&, : b € [0,.7]} all nested
within £. Assume (Z,¥,0(d¥)) is a measurable space with o-finite. A stationary Poisson point
process (Py)y=0, defined on (R, £, &) with values in 2 and with characteristic measure b. We represent
as (b, d¥) the counting measure of p, where N, O) := EMN(®DH, O)) = ho(®) for ® € V. We define
N0, d9) := N, dZ) — ho(d¥), which represents the Poisson martingale measure generated by pj,.

Here, &(#%,K) represents the space of bounded linear operators from % to K. We assume Q €
LY, %) be an operator defined by Qr, = b,7, where the trace of Q, denoted #rQ, is finite (1rQ =
Yoy b, < 00). Here, b, > 0 (n = 1,2, ...) are non-negative real numbers and {7,,} (n = 1,2, ...) forms a
complete orthonormal basis in #. || - || constitutes the norm in L(#/, K), % and K.
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We establish the fBm in % as follows:
B () = BL V) = ) \bur.8 ®).
n=1

The variables 37 represent real, independent fBms.

We introduce the space £, denoted as €5(%, K), encompassing all Q-Hilbert Schmidt operators
n: % — K. Recall that an € &(#,K) is termed a Q-Hilbert-Schmidt operator if the expression
”77““2 := Yooy 1 VO, |17 is finite. Additionally, the space £9, endowed with (1, )¢, = X0 (7, 7T4),
forms a separable Hilbert space.

Lemma 2.2. (see [28]) If functionn : [0, ] — QO(@ K) meets the condition fo In(& )IIQO < oo, then

we can conclude that

2 b
< 2527 f ()R
0 2

Definition 2.3. (see [29]) The set of resolvents, denoted p(I1), consists of complex numbers { for which
the operator ({ — ) : D) — K is a bijective mapping. According to the closed graph theorem, the
operator R(,,11) = (¢ — ID)7! is bounded for { € p(Il) on K, serving as the resolvent of 11 at (.
Consequently, for all { € p(I1), the equation ITR({, 1) = CR(L, 11) — I holds true.

Definition 2.4. (see [29]) If 11 is a linear and closed sectorial operator, then Ah > 0, I real, and A
within the interval [5, rt], such that (s.t.)

(i) Xag ={{eC: {#3, |arg( - ) < A}  p(ID),

(i) IR TN < 7550 ¢ € Zass

are verified.

Consider €(Z, L,(Q,K)), the Banach space comprising all continuous mappings from .# to
2,(Q, K), where each function satisfies the condition Supye 4 E I (H)||> < o0.
Let € denote the set {x : x(-) € C(, L»(Q, K))}, with its norm || - || defined as

Il = (sup Elx(®)IP)>.

he

Definition 2.5. We define » € € as a mild solution to (1.1) if it meets the condition:

A = Femo+ Som D | - O N E5(8)) + PUENAE
% f O = W (E, u(E)ABT (&)
+%{(:)) (b—g’)*‘—1 f ﬂ(g,%(g’),%)it(d&dg)
V(N) f Qu(h-&)I V(N) bwb EYW(E,1(E)dB” (&)

V(N)f Qx(b - é")fﬂ(éa K&, 9)NAE, d9),
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where F = 9*(9*I —II)™! and p = —5*TI(H*1 — IT)"!, with 9* = YE—N) & =5,

Sx(h) = My(-¢b") = Zi f eI ENN(EN - p)ldE,
L Jy
1 .
Q) = 0 Mo = 5 [ - 0) s,
L Jy

and the path Y is lying on }’, 5.
3. Null controllability investigation

Here, we examine the null controllability for (1.1).
If IT € TI%(0y, J) where T1%(gy, J) denotes operators that generate fractional resolvent families,
then for C; > 0 and C, > 0, the following holds:

ISx(®)Il < C1e” and [|Qu(H)|| < C2e™(1 + 5% 1), forevery h > 0, I > J,,.
Let C5 = supy, IGx(®)Il, Cs = supy. Co¢7(1 + H¥). So we get
ISkl < C5,  1QsD)Il < C4 H¥ [30].

To examine the null controllability of Eq (1.1), we analyze the fractional stochastic linear system

+

{ ABC R () = TLA(Y) + A (h) + By() + # )LD, he.s = (0.7, 3.1)
A0) = Ao,

associated with the system (1.1).

Consider
o _KJFU—N)fyy_gN-l% prae+ (7 g S = EYBYE)E : &M ) - K
V= Verm) J, ¢ TSN v S ’

where Q'Oy W possesses a bounded inverse operator denoted as (Ly)~!, operating within the space
(A, M) [ker(Ly), and

PF(1 = N)
V(NC(N)

7
NS (A, N, W) FGx(.)A + f (7 - ENIN(E)AE
0

N pF(1 —N)
VLX)
x,:2 54
VIN) Jo
NFZ 54
VIN) Jo

57
f (. = EV W (E)dBH(E)
0

+

QxS = EYN(E)dE

+ QS = EYW(EYAB7 (&) : K % Lo, K) = K.

Definition 3.1. (see [31]) The system described by Eq (3.1) is termed exact null controllable over .#
iflmﬁgﬂ - Im‘ﬁoy ordak>0s.t. ||(2§”)*/l||2 > /<||(‘ﬁgﬁ)*/l||2 Y i1eXK.
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Lemma 3.2. (see [32]) Assume that (3.1) exhibits exact null controllability over the interval .
Consequently, the operator (80)‘1%5 X (M, K) = (M, W) is bounded, and the control

N pF(l—N)f” o
u(O) = —(2) [chmm e I NG
pF(1 - N) 7 R-1 N
+—V(N)F(N)£ (L =EVH(E)IB” (&)
+NF2ny f—g’ﬂgd£’+NF2fyD y_gWg’d%ng
VO ) DT =N @8+ e | T =W B (6)])

drives the system described by Eq (3.1) from an initial state Ay to the zero state.
Here, L represents the restriction of ﬂgﬁ to [ker ng 1+, while AN belongs to L(M,K) and W
belongs to ﬁg(///, 2(2,K)).

Definition 3.3. The system defined by Eq (1.1) is deemed exact null controllable over . if 1 a
stochastic control y € L,( M, N) s.t. the solution x(b) of (1.1) meets the condition x(.) = O.

Let us impose the following assumptions:

(Ho) (Sx)(®)ys0 and (Qy)(H)ss0 are compact.

(H,) The fractional linear system described by Eq (3.1) is exactly null controllable over .Z .
(Hy) N M x K — K meets the following:

(i) ./ be continuous. Suppose .4 € € ¥ K € €, which guarantees **“ 7 K € € exists.

(i) VY q €N, q> 0, apositive function A(-) : 4 — FZ~ s.t.

sup E|lA (b, %) < (D),

llI2<q

s = (O —EN1A(E) € LI([0,p],R7),and Ta 6 > 0 s.t.

I P o
1 1

q—00 q

=0<o0, he A.

H) W MXxK —> BS(R,W) fulfills the following:
OV IJxK—> BS(R,W) is continuous function.
(@) VY q > 0; g € N, J a positive function g,(-) : A#Z — R* s.t.

sup EI[ (0, 0l < g4(0),

lxl?<q

s = (h— &g (&) € LY([0,],RF),and Ta s > Os. t.

b _
h— &N g (&)dE
liminfo( ) 5(8) =§<oo, heA.

q—00 q

(Hy) u: M XK xZ — K verifies the following:
@ u: M XKxZ — K is continuous function.
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(@) Y q > 0; g € N, 3 a positive function y,(-) : 4 — R* s.t.

sup LE”ﬂ(ba%(b),g)sz(dg)SXq(b),

lxlP<q /2

s = ()= Ny, (&) € £1([0,p],R*),and Ja s > O s.t.

L - O (s

q—00 q

=§<oo, heA.

Theorem 3.4. Let (Hy) — (Hy) hold, then (1.1) is exactly null controllable over # s.t.

106.9N + 56,5727 +8-1 [Ilg)||2I|F||2(1 —N)? . NZIIFII“CE]
N V2(R)T2(R) V2(N)
51 BIPIIL, 2. 2N (IIgJIIZIIFllz(l -N)?2  NFPrCE )]

X1+ o1 ) V2(R)

Proof. For any function x(-), the operator ® on € is defined in the following manner

F(1-N)
@) = F@(b)xw% fo (b= OV LN (E, (&) + BUENAE

PFA=8) (P s .
VL(R) fo &= N (E,u(E)dB (&)
LPFA-N)
VIR Jo

b
+V(N)f0 Q) = ONAN(E, %(E))

)
(H—&N! f W&, x(&), )NAE,dD)
:2/)

]

_ H
V) J. Qs = EYV(E,%(E))dB™ (&)

2 )
N f - &) f W&, 1 E), DNAE,dD), b e M,
V(R) Jo s

where

4
pF(l - %) f (F = EVIN(E M ENAE

yh) = —(20)_1[F6N(,5”)%0 + W ;

(3.2)

(3.3)

F(L-8) [ )

%m)f (S = EFTH(E,m( )BT (&)

FL-8) [ )

% f (7 =& f W(E,x(E), G NUAE,dF)

NP )
V(N) " ST — EWE (8B (8)

NP

V) f (7 =€) f (&, (8), 9N(AE, d%)]
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We will demonstrate that ®, mapping from C to itself possesses a fixed point. For integer q > 0, put
B, = {teC, ||L||é < q}. We assume that, there exists q > 0 s.t. ®(B,) C B,. If it is not true, then, for

q > 0, there exists a function x%,(-) € B,, s.t. ®(x,) ¢ B,. Specifically, there exists h = h(q) € .4,
where h(q) depends on g, s.t. ||(I)(%q))(b)||(2_E > q.

From (H>) in conjunction with the Holder inequality, we derive

OF(1 - f f
E” VRI(X) o=

{[llgollllFll(l—N)] N N||F||2C4
VRIC(N) V(N)

IplIFICL = X) | [SIFIEC O g 2
{[ V(S)L(N) ] S ]} O(b‘g) dgfo(b—g) E|lN (&, u(E))FdE

ﬂ"{[llgollllFll(l -N)7? . [NIIF||2C4 2
N VIR)T(N) V(R)

[ f I(H - A (S, %(éa))lldé"]

]
}ij—fﬁ*ﬂafmg. (3.4)
0

Also, from Burkholder-Gungy’s inequality and Lemma 2.2 along with (H3), yields

pFd
e
< 20727 ”py(il)(rl(;f)] +[Nllf(”;)c4 [ f - & (&, x(é”‘))lliodé”r
< 2%{72%’—1{ ||56)‘|E|(/;|I)(Il(;)x)]2 [NIQZ)C“ fo(b—éa)ﬁ—ldé"j;(b—5)“‘1E||7/(g,%(g))”320d5
L wfy;ﬂm—l { ||plﬂl(l;ll)(rl(;)x)r+[Nlai)Qr} fob(b—é”)“—'gq(éa)dg, s

From Holder inequality and (H4), we obtain

PF(1 - N) 81 f - NF2 f
- & s , s Q - &
H VRN e V) Jo SO ) H
IplIFIC —x> NIFIRC Py L ([ - - ’
{[ VO ] | S ]}E[ -6 L u(&%(g),%)m(d&d%||}

_ 2 r 2 2 f )
{[”KJ””F I “)] . N'lf(”x)c“]} - & as f - o f Elu(E. (&), D\PodD)dE
L 0 0 z

V(N(N)
IpllIFIICE =N [NIFIPC P (0 N-1
= ?{[ VEIN) | +[ V(R) ]} fo (h =& xo(&)dE. (3.6)

However, from (3.4)—(3.6), we get

pﬂl—mvf .
Mﬂqhmﬁm)o@ £ wm

II%’IIZII%IIIZfZN_I([II&OIIIIFII(l - N)r [NIIF||2C4
X -1 VR)L(N) VR)

575 MelFIL =872 [NIFIPCa 1 7 .
N ([ VRL(N) ] [ V(N) ]) fo (7 = EVA(E)E

]Nwmﬂ%mwm?
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10H.72HN gl = R) P [NIFIPCay 7 .
TR ([ VRIL®N) ] +[ VR) ])fo (7 = &g (£)dE

LI ECR) e, o

o
IA

Do) D)IZ = sup E[IDG¢,)(D)I
be A

PF(1 = N)
V(R)C(N)
2

IA

5 sup E|IF Sx(B)xoll* + 5 sup EH
e be

NF2
V()

i)
f O = PN E U ENdE
0

+

b
f Qx(h — )N (E,#(E))dE
0
)
VRI(R)

H OF(1 = R)
VL)

NF2 2

V(N)

+5sup E
be

1 b
[ - & BUENE + [ ss0-ormuens
0 0

b
+5sup E f () — ENW(E, x(E))dB (&) (3.8)
0

be A
NF>
V(R)

2
+

]
f Qulh - EY (&, 1(E)AB™ ()
0

pFd -X)
VRI(R)

)
f Qb — &) f (&, #(E), DRAE, dY)
0 %

575 MelIFICL = R) PP [NIFIPCs Py -
N ([ V(RC(N) ] [ VR) ]) fo (H =& AN(EAE

10272751 1lplllIFIICL = 8) 1 [RIFIPCL 7y -
' N ([ VE)I(R) ] *[ V(N) ]) fo (b= &) g,(&)dE

5% FICL =8> [NIFIPCs
i (o) [0 waons
51I1P11¢, |72 ([IlgallllFll(l -NP, [NIIF||2C4
2N -1 VIRC(N) V(N)
Sf“([llmllllFll(l - N)r N [N||F||2C4'
N VR)I(N) VIR) |

LR lipllIFIA =8P [RIFPC Py (7 -
’ N ([ VR)IC(R) ] [ V(N) ])](; (= &) gy(E)dE

A7 WA SN NERCT) [ enas) (3.9

+5sup E
be

NF2
V(N)

b
[[o-er [ e mer9mas.as)
0 z

2

+

< SIFIPC3ElxolP +

2
] ){5||F||ZC§E||%0||2

2 57
) f (- EVN(E)E
0

By dividing both sides of (3.8) by q and letting g — 400, we obtain
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106.98 + 56 2H+R-1 [II@IIZIIFllz(l ~N)? . N2||F||4Ci]
N VZ(RI2(N) V2(NX)
i+ SIBIPIL I (ngonannZ(l -N7 N2IIFII“CZ)] g
28 -1 VZ(R)I2(NR) VZ(R) -
This contradicts (3.2). Therefore, ®(B,) € B,, for q > 0.
Indeed, ® maps B, into a compact subset of B,. In reality, ® maps B, into a compact subset of
itself. To establish this, we begin by demonstrating that B,(h) = {(Px)(h) : » € B,} is precompact

in K, Vb e . This is trivial for ) = 0, because B,(0) = {x}. Now, consider a fixed b, where
0<bh<.¥ For0<e<h,take

e pF(1 = N)
(@9)(H) = FGx(h)xo + W .
il U N)

VINC(N)

pF(1 = N)

VIRC(N)

NF2 (€
V)

T
V)
. NF2

V(N)

b= NN EHE) + BUENAE
h—e
O =N (E, u(&))dB” (&)
0

hH—e
(5 - &) f (& H(E), DTS, dF)
0 o

Qx(h = ENAN(E, %(8)) + BY(E)]dE

Qb — EYW(E,1(E))dB” (&)

h—e
f ) Q(h = &) f W&, %(&), HNAE,dD).
0 z

From H, the set BE(h) = {(Dx)(h) : x € B,} is a precompact set in K ¥V € where 0 < € < §.
Furthermore, for any » € B,, we have

[I(@2)(h) — (D) DH)IIE = sup E||(@x)(h) — (@ )(H)II*

= e H% v
o |'$F<§<l>r_<:>)f (= &) BY(E)E + é‘g) |
+5 sup EH f/ig)r_(::)) =W S HENB (&)
+$(F;) b Qb — EYW(E,#(E))dB”"
+5§§2E|'$l—; ;1);(:)) (b—é")“‘] L W&, (&), DRAE, dF)
)
7 .. o [
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IA

3l = NIFPC

2
_ N-1
VRI(N) V(R) ]) . E<b EVIAN(E)AE

1022”1 r]lllIFIICL = 8) 2 | [NIFIPCy f -
" N ([ V(RC(R) ] [ V(N) ] ) b_e(b—@“’ )7 8e(E)dE

5€" llgllIFI = N) NIIFI*Cy -

?([ V(RI(N) ] +[ V(N) ]) b_f(b—@@) Xo(E)AE

B |P 2R FIIl(1 — 8)12 FIRC, 12
+|| I711€5" 11 ([II@OIIII II( N)] +[3'<|| I C4] ){5||F||2C§E||%0||2

N1 VR)C(N) V(N)
SN SIEC) [ o
ISR ) e
(ST [SIEC) [ o)

We observe that V x € B, [|[(Dx)(h) — (CDEx)(b)llzC_ — 0 as € approaches 0*. Thus, 3 precompact sets
arbitrarily close to the set B,(h), indicating that B ,(b) itself is precompact in K.

Next, we demonstrate that {®x : x € B,} is an equicontinuous family of functions. Let x € B, and
b1,0, € . such that O < b < by, then

[[(Dx)(D2) — (Dx)(H)IIZ
< S5[FGx(h2)xo —Fex(bl)xoﬂzc-

+5] %1);(:)) Obl [ — % = () — N LA (8, 2(E)) + BUENAEIL
45 g;ig)r_(:)) :z [ = EN LN (E,1(E) + BUENEN

45 %1);(:)) "2 = 7 = 61 - O EHENIB (S
L f (s — VW (8, 1 ENABT (N

+5”$iz(<l)r_<:>) Obl [ — % = (@ — N fg W(E,#(E), DRAE, dD
+5||%;(;? :(bz — & fg (& HE), DRAE, d L)

SIS Obl (202 — &) — Dby = ONLN(E, 1(E)) + BUENEL
+5||$F(S)F_(:)) bbl Qs = )N (8, 1(E)) + BUENAENR

+5||@Vi§:);(§)) " [Qu(h = €)= Tu1 - OV S ENIB (@)
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pFA-=N) H (o2
+5||W . Qx(hy = EYWV(E,#(E)AB” (&)I;
pF(1=8) (™ 7 2
+5”W . [Qx(h2 = &) — Qu(by — &)] Lﬂ(éa,%(g),g)m(dg,dg)”@
pF(1=R) ™ = >
+5||W . Qb = &) Lﬂ(@@, %(&), 9)NAE,d9)||;.

Based on the earlier observation, we note that ||(Dx)(h,) — ((I)%)(lf)l)nzé — 0 independently of » € B,
as b, tends to f;. The compactness of Syx(h) and Qx(h) for h > 0 ensures continuity in the uniform
operator topology. Therefore, ®(B,) exhibits both equicontinuity and boundedness. According to
Arzela-Ascoli theorem, O(B,) is precompact in K. Therefore, ® is a completely continuous operator
on K. By the Schauder fixed point theorem, @ possesses a fixed point in B,. Any fixed point of ®
serves as a mild solution to (1.1) over .# . Consequently, (1.1) has exact null controllability on .. O

4. Illustration

To validate the obtained results, we examine the A-B fractional stochastic PDE with fBm and
Poisson jumps as follows:

ABC i x(0.1) = Zon(b, ) + W, T) + A (O, 200, D) + 7 (h, 20, ) 2

+ [, u(d,2(0, D), 9)N(dH,dY), he ., 0<F<]1, @1
#(,0) =x(b,1)=0, he .7,

#(0,7) =29, 0 <<,

where ABC.@i is the A-B derivative, of order 2 and 87 is a fBm.
Let %(h)(F) = »x(, 1), A (B, 2(H))(F) = A (b, 2(h, ), # (b, x(H)(F) = # (b, (b, T)) and

u(, %), 9)(F) = u®, 2(H,1),9).

We define ¢ = ¢(D,7), 0<F<1, yell

Here, consider K = % = U = £%([0,1]) and the operator IT : DII) ¢ K — K is defined by
II = g—;, where D(1) = {% € K; «, %—’f‘ are absolutely continuous, ?;T;‘ e K, »(0) = »x(1) = 0}.

Therefore,

(o8]

x = Z 72, n,) %, % € D).

n=1

Here, #,(f) = V2 sin(nnf), n € N represents the orthogonal set of eigenvectors of IT. Operator IT is
the generator of an analytical semigroup S(b),h > 0, acting on K, and is defined as

(o)

SM)x = ) e (e tn, x €%, ISHI < 1.

n=1

Hence, S(b), b > 0, forms a uniformly bounded compact semigroup, implying that R(Z, IT) = (I -
IT1)~! is a compact operator V b € p(I1).
Ifye&H(#Z,0),thenB =1, B =1
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Let the fractional linear system

ABC@“ LA, ) = A0, 1) + w0, ) + A (0, F) + # (0. dwd).h e A, 0<F<1,
A(H,0) = A(h, 1) = 0,h € .4, 4.2)
A0,f) =2, 0<F<1,

is exact null controllability if 3 a x > 0, s.t.

F(1
24 =%, f I = N BYPAE + |

* 2
VR)IC(N) || f 19 = EWIPdE

V(N)

> k[IFSL()AIP +”V(N)F(N)”f I = & 1/1||2déa+IIV(N)||f QL = EWIPdEN.

Or equivalently

phd - N-1 112 f 5
| V(N)F(N)” f (7 = &) AdE + ”V(N)” 1Qx(-7 = EAPdE
24 pFd -%) N1 12 5

If 4 =0and # = 0in (4.2), then the fractional linear system achieves exact null controllability
provided that

oF(1 - f N=1 112 f 2
Prii—N) S — EVNPAE 19x( — OVAURE > BIFSK(F)A
HV(N)F(N)” II( ) | +”V(N)” [1Qx( Al IF Sx(#)AI.
Therefore,
PF(1 = R) , N-1 NF? 2 [ 2
1 ! f I = NP déa+||v(8)|| f ISk(S = E)APAE
> 2 _reweoar 12N f 17— e aRdE + 1 e f IS(F = OAPAE]
“1y N VRL(R) V(R) N '

Therefore, (4.2) achieves exact null controllability over .# . Thus, hypothesis (H1) is fulfilled.

Set N = %, HC =075, lpll =1, IFll =1, |4l =1, ||851|| =1,Cs=1, . =001, V(N) = 1.
From the above choice, system (4.1) can be written in the abstract form of (1.1) and all conditions of
Theorem 3.4 are satisfied, and

10.95 4 5.0.527+8-1 [||50||2||F||2(1 —N)? NleFII“Ci]
N V2(R)T2(N) V2(N)
% 2 8_1 25ﬂ2N—1 2 2 _ 2 Nz F 4C2
x[1+ 1EZ || Bl (IIgOII IFII2(1 = 8) N [IFI] 4)] <l
IN—1 V2(R)T2(N) V2(N)

therefore, (4.1) achieves exact null controllability over ./Z .
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5. Conclusions

In this work, we established sufficient conditions for the null controllability of Atangana-Baleanu
fractional stochastic differential equations in Hilbert space, which involves Poisson jumps and
fractional Brownian motion. The use of a combination of mathematical tools, including fractional
analysis, compact semigroup theory, fixed point theorems, and stochastic analysis, proved effective
in deriving these conditions. This integrated approach demonstrated its potential applicability to a
broader range of stochastic control problems involving fractional dynamics. Finally, an example was
included to illustrate the applicability of the major results.

For future work, we can investigate the approximate controllability for Atangana-Baleanu fractional
stochastic differential inclusions involving the Clarke subdifferential and the control function on the
boundary.
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