In 2021, Ivan Gutman introduced the Sombor index, a new vertex-degree-based topological index with significant geometric meaning. This index has shown remarkable growth in research activity in recent years. Following this geometric approach, in this paper we propose several generalizations of the Sombor integral indices. In addition, we study their properties and applications in modeling the enthalpy of vaporization of octane isomers.
Citation: Jorge Batanero, Edil D. Molina, José M. Rodríguez. On $ h $-integral Sombor indices[J]. AIMS Mathematics, 2025, 10(5): 12421-12446. doi: 10.3934/math.2025561
In 2021, Ivan Gutman introduced the Sombor index, a new vertex-degree-based topological index with significant geometric meaning. This index has shown remarkable growth in research activity in recent years. Following this geometric approach, in this paper we propose several generalizations of the Sombor integral indices. In addition, we study their properties and applications in modeling the enthalpy of vaporization of octane isomers.
| [1] | J. Devillers, A. T. Balaban, Topological indices and related descriptors in QSAR and QSPR, Gordon and Breach: Amsterdam, The Netherlands, 1999. https://doi.org/10.1201/9781482296945 |
| [2] | M. Karelson, Molecular descriptors in QSAR/QSPR, New York, NY, USA: Wiley-Interscience, 2000. |
| [3] | R. Todeschini, V. Consonni, Handbook of molecular descriptors, Wiley-VCH: Weinheim, Germany, 2000. https://doi.org/10.1002/9783527613106 |
| [4] |
E. Estrada, Quantifying network heterogeneity, Phys. Rev. E, 82 (2010), 066102. https://doi.org/10.1103/PhysRevE.82.066102 doi: 10.1103/PhysRevE.82.066102
|
| [5] |
I. Gutman, B. Furtula, V. Katanić, Randić index and information, AKCE Int. J. Graphs Comb., 15 (2018), 307–312. https://doi.org/10.1016/j.akcej.2017.09.006 doi: 10.1016/j.akcej.2017.09.006
|
| [6] |
J. J. Pineda-Pineda, C. T. Martínez-Martínez, J. A. Méndez-Bermúdez, J. Muños-Rojas, J. M. Sigarreta, Application of bipartite networks to the study of water quality, Sustainability, 12 (2020), 5143. https://doi.org/10.3390/su12125143 doi: 10.3390/su12125143
|
| [7] | W. Carballosa, Inequalities involving the geometric-arithmetic index, Southeast Asian Bull. Math., 46 (2022), 437–452. |
| [8] |
W. Carballosa, D. Pestana, J. M. Sigarreta, E. Tourís, Relations between the general sum connectivity index and the line graph, J. Math. Chem., 58 (2020), 2273–2290. https://doi.org/10.1007/s10910-020-01180-9 doi: 10.1007/s10910-020-01180-9
|
| [9] |
W. Carballosa, A. Granados, J. A. Méndez Bermúdez, D. Pestana, A. Portilla, Computational properties of the arithmetic-geometric index, J. Math. Chem., 60 (2022), 1854–1871. https://doi.org/10.1007/s10910-022-01390-3 doi: 10.1007/s10910-022-01390-3
|
| [10] |
R. Cruz, T. Pérez, J. Rada, Extremal values of vertex-degree-based topological indices over graphs, J. Appl. Math. Comput., 48 (2015), 395–406. https://doi.org/10.1007/s12190-014-0809-y doi: 10.1007/s12190-014-0809-y
|
| [11] |
I. Gutman, Degree-based topological indices, Croat. Chem. Acta, 86 (2013), 351–361. https://doi.org/10.5562/cca2294 doi: 10.5562/cca2294
|
| [12] |
J. A. Méndez-Bermúdez, R. Reyes, J. M. Sigarreta, M. Villeta, On the variable inverse sum deg index: theory and applications, J. Math. Chem., 62 (2024), 250–268. https://doi.org/10.1007/s10910-023-01529-w doi: 10.1007/s10910-023-01529-w
|
| [13] |
J. M. Sigarreta, Extremal problems on exponential vertex-degree-based topological indices, Math. Biosci. Eng., 19 (2022), 6985–6995. https://doi.org/10.3934/mbe.2022329 doi: 10.3934/mbe.2022329
|
| [14] |
J. M. Sigarreta, Mathematical properties of variable topological indices, Symmetry, 13 (2020), 43. https://doi.org/10.3390/sym13010043 doi: 10.3390/sym13010043
|
| [15] |
C. T. Martínez-Martínez, J. A. Méndez-Bermúdez, J. M. Sigarreta, Topological and spectral properties of random digraphs, Phys. Rev. E, 109 (2024), 064306. https://doi.org/10.1103/PhysRevE.109.064306 doi: 10.1103/PhysRevE.109.064306
|
| [16] | I. Gutman, J. Tošović, Testing the quality of molecular structure descriptors. Vertex-degree-based topological indices, J. Serb. Chem. Soc., 78 (2013), 805–810. |
| [17] | I. Gutman, Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem., 86 (2021), 11–16. |
| [18] |
R. Abreu-Blaya, J. Batanero, J. M. Rodríguez, J. M. Sigarreta, On irregularity integral Sombor indices: theory and Chemical applications, J. Math. Chem., 63 (2025), 731–748. https://doi.org/10.1007/s10910-024-01697-3 doi: 10.1007/s10910-024-01697-3
|
| [19] | J. Rada, J. M. Rodríguez, J. M. Sigarreta, On integral Sombor indices, Appl. Math. Comput., 452 (2023), 128036. https://doi.org/10.1016/j.amc.2023.128036 |
| [20] |
R. Cruz, I. Gutman, J. Rada, Sombor index of chemical graphs, Appl. Math. Comput., 399 (2021), 126018. https://doi.org/10.1016/j.amc.2021.126018 doi: 10.1016/j.amc.2021.126018
|
| [21] | K. C. Das, A. S. Çevik, I. N. Cangul, Y. Shang, On Sombor index, Symmetry, 13 (2021), 140. https://doi.org/10.3390/sym13010140 |
| [22] |
J. Rada, J. M. Rodríguez, J. M. Sigarreta, General properties on Sombor indices, Discrete Appl. Math., 299 (2021), 87–97. https://doi.org/10.1016/j.dam.2021.04.014 doi: 10.1016/j.dam.2021.04.014
|
| [23] |
R. Cruz, J. Rada, Extremal values of the Sombor index in unicyclic and bicyclic graphs, J. Math. Chem., 59 (2021), 1098–1116. https://doi.org/10.1007/s10910-021-01232-8 doi: 10.1007/s10910-021-01232-8
|
| [24] |
J. C. Hernández, J. M. Rodríguez, O. Rosario, J. M. Sigarreta, Extremal problems on the general Sombor index of a graph, AIMS Math., 7 (2022), 8330–8343. https://doi.org/10.3934/math.2022464 doi: 10.3934/math.2022464
|
| [25] |
J. Rada, J. M. Rodríguez, J. M. Sigarreta, Sombor index and elliptic Sombor index of benzenoid systems, Appl. Math. Comput., 475 (2024), 128756. https://doi.org/10.1016/j.amc.2024.128756 doi: 10.1016/j.amc.2024.128756
|
| [26] |
J. B. Liu, Y. Q. Zheng, X. B. Peng, The statistical analysis for Sombor indices in a random polygonal chain networks, Discr. Appl. Math., 338 (2023), 218–233. https://doi.org/10.1016/j.dam.2023.06.006 doi: 10.1016/j.dam.2023.06.006
|
| [27] | J. Rada, J. M. Rodríguez, J. M. Sigarreta, Optimization problems for general elliptic Sombor index, MATCH Commun. Math. Comput. Chem., 93 (2025), 819–838. |
| [28] |
B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207–226. https://doi.org/10.1090/S0002-9947-1972-0293384-6 doi: 10.1090/S0002-9947-1972-0293384-6
|
| [29] | P. S. Bullen, Error estimates for some elementary quadrature rules, Publ. Elektrotehn. fak. Ser. Mat. Fiz., 602/633 (1978), 97–103. |
| [30] | P. Bosch, J. A. Paz Moyado, J. M. Rodríguez, J. M. Sigarreta, Bullen-type inequalities, Unpublished Work. |
| [31] |
M. S. Sardar, J. B. Liu, I. Siddique, M. M. M. Jaradat, A novel and efficient method for computing the resistance distance, IEEE Access, 9 (2021), 107104–107110. https://doi.org/10.1109/ACCESS.2021.3099570 doi: 10.1109/ACCESS.2021.3099570
|
| [32] |
M. S. Sardar, X. F. Pan, S. J. Xu, Computation of the resistance distance and the Kirchhoff index for the two types of claw-free cubic graphs, Appl. Math. Comput., 473 (2024), 128670. https://doi.org/10.1016/j.amc.2024.128670 doi: 10.1016/j.amc.2024.128670
|
| [33] |
M. S. Sardar, S. J. Xu, Resistance distance and Kirchhoff index in windmill graphs, Curr. Org. Synth., 22 (2025), 159–168. https://doi.org/10.2174/0115701794299562240606054510 doi: 10.2174/0115701794299562240606054510
|