Extreme volatility, price spikes, and complex nonlinear dynamics are characteristics often shown in the electricity market, particularly the Australian national electricity market (NEM). These attributes are usually driven by supply-demand imbalances, renewable energy integration, and regulatory interventions, which make traditional pricing models, such as the Black-Scholes framework, inadequate for capturing key market behaviors like long-memory effects, heavy tails, and volatility clustering. This study developed and applied a fractional Black-Scholes model that integrated space-fractional derivatives to account for memory effects, anomalous diffusion, and extreme price movements. The proposed model was calibrated using historical NEM data, demonstrating significant improvements in the pricing of electricity options. The results suggested that it effectively captured key market behaviors. Overall, the findings offered valuable insights and provided a more accurate representation of the Australian electricity market's distinct dynamics.
Citation: Doungporn Wiwatanapataphee, Yong Hong Wu, Wannika Sawangtong, Panumart Sawangtong. Modeling anomalous diffusion and volatility in the Australian national electricity market using a space-fractional Black-Scholes framework[J]. AIMS Mathematics, 2025, 10(5): 12388-12420. doi: 10.3934/math.2025560
Extreme volatility, price spikes, and complex nonlinear dynamics are characteristics often shown in the electricity market, particularly the Australian national electricity market (NEM). These attributes are usually driven by supply-demand imbalances, renewable energy integration, and regulatory interventions, which make traditional pricing models, such as the Black-Scholes framework, inadequate for capturing key market behaviors like long-memory effects, heavy tails, and volatility clustering. This study developed and applied a fractional Black-Scholes model that integrated space-fractional derivatives to account for memory effects, anomalous diffusion, and extreme price movements. The proposed model was calibrated using historical NEM data, demonstrating significant improvements in the pricing of electricity options. The results suggested that it effectively captured key market behaviors. Overall, the findings offered valuable insights and provided a more accurate representation of the Australian electricity market's distinct dynamics.
| [1] |
C. Conticini, J. A. Filar, A. N. Ganjehlou, A note on price volatility in the Australian electricity market, ANZIAM J., 51 (2009), 730–746. https://doi.org/10.21914/anziamj.v51i0.2655 doi: 10.21914/anziamj.v51i0.2655
|
| [2] |
H. Higgs, A. C. Worthington, Systematic features of high-frequency volatility in Australian electricity markets: Intraday patterns, information arrival and calendar effects, Energy J., 26 (2005), 23–42. https://doi.org/10.1007/BF02687427 doi: 10.1007/BF02687427
|
| [3] |
A. C. Worthington, H. Higgs, The impact of generation mix on Australian wholesale electricity prices, Energ. Source. Part B, 12 (2017), 223–230. https://doi.org/10.1007/s11377-017-0166-0 doi: 10.1007/s11377-017-0166-0
|
| [4] |
Y. Alsaedi, G. A. Tularam, V. Wong, Assessing the effects of solar and wind prices on the Australia electricity spot and options markets using a vector autoregression analysis, Int. J. Energy Econ. Policy, 10 (2020), 120–133. https://doi.org/10.32479/ijeep.8567 doi: 10.32479/ijeep.8567
|
| [5] |
S. Goodarzi, H. N. Perera, D. W. Bunn, The impact of renewable energy forecast errors on imbalance volumes and electricity spot prices, Energy Policy, 134 (2019), 110827. https://doi.org/10.1016/j.enpol.2019.06.035 doi: 10.1016/j.enpol.2019.06.035
|
| [6] | B. Mountain, Market power and generation from renewables: The case of wind in the south Australian electricity market, Econ. Energy Env. Pol., 2 (2013), 55–72. |
| [7] |
F. Black, M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ., 81 (1973), 637–654. https://doi.org/10.1086/260062 doi: 10.1086/260062
|
| [8] |
J. Doran, E. I. Ronn, The bias in Black-Scholes/Black implied volatility: An analysis of equity and energy markets, Rev. Deriv. Res., 8 (2006), 177–198. https://doi.org/10.1007/s11147-006-9002-2 doi: 10.1007/s11147-006-9002-2
|
| [9] |
J. Elder, A. Serletis, Long memory in energy futures prices, Rev. Financ. Econ., 17 (2007), 146–155. https://doi.org/10.1016/j.rfe.2006.10.002 doi: 10.1016/j.rfe.2006.10.002
|
| [10] | O. Jude, Recent examination of energy markets volatility, Stud. Bus. Econ., 18 (2023), 118–128. |
| [11] |
F. Paraschiv, R. Hadzi-Mishev, D. Keles, Extreme value theory for heavy tails in electricity prices, J. Energy Markets, 9 (2016), 21–50. https://doi.org/10.21314/JEM.2016.141 doi: 10.21314/JEM.2016.141
|
| [12] | AER, Reports on Q2 2024 high electricity price events, 2024, Accessed: 2024-11-30. |
| [13] |
S. Kumar, D. Kumar, J. Singh, Numerical computation of fractional Black-Scholes equation arising in financial market, Egypt. J. Basic Appl. Sci., 1 (2014), 177–183. https://doi.org/10.1016/j.ejbas.2014.10.003 doi: 10.1016/j.ejbas.2014.10.003
|
| [14] |
A. Golbabai, O. Nikan, T. Nikazad, Numerical analysis of time fractional Black-Scholes European option pricing model arising in financial market, Comput. Appl. Math., 38 (2019). https://doi.org/10.1007/s40314-019-0957-7 doi: 10.1007/s40314-019-0957-7
|
| [15] |
X. Wang, Scaling and long-range dependence in option pricing Ⅰ: pricing European option with transaction costs under the fractional Black-Scholes model, Physica A, 389 (2020), 438–444. https://doi.org/10.1016/j.physa.2009.09.041 doi: 10.1016/j.physa.2009.09.041
|
| [16] | W. Zhao, Research on fractional option pricing model under real Brownian motion environment, In: 2009 First International Conference on Information Science and Engineering, IEEE, 2009, 5047–5050. https://doi.org/10.1109/ICISE.2009.954 |
| [17] |
M. Qayyum, E. Ahmad, New solutions of time- and space-fractional Black-Scholes European option pricing model via fractional extension of He-Aboodh algorithm, J. Math., 2024 (2024), 1–19. https://doi.org/10.1155/2024/6623636 doi: 10.1155/2024/6623636
|
| [18] |
T. Sottinen, E. Valkeila, On arbitrage and replication in the fractional Black-Scholes pricing model, Stat. Decis., 21 (2003), 93–108. https://doi.org/10.1524/stnd.21.2.93.19003 doi: 10.1524/stnd.21.2.93.19003
|
| [19] |
C. Czichowsky, R. Peyre, W. Schachermayer, J. Yang, Shadow prices, fractional Brownian motion, and portfolio optimisation under transaction costs, Financ. Stoch., 22 (2017), 161–180. https://doi.org/10.1007/s00780-017-0351-5 doi: 10.1007/s00780-017-0351-5
|
| [20] |
P. Sawangtong, K. Trachoo, W. Sawangtong, B. Wiwattanapataphee, The analytical solution for the Black-Scholes equation with two assets in the Liouville-Caputo fractional derivative sense, Mathematics, 6 (2018), 129. https://doi.org/10.3390/math6080129 doi: 10.3390/math6080129
|
| [21] |
R. Jena, S. Chakraverty, A new iterative method based solution for fractional Black-Scholes option pricing equations (BSOPE), SN Appl. Sci., 1 (2018), 95. https://doi.org/10.1007/s42452-018-0106-8 doi: 10.1007/s42452-018-0106-8
|
| [22] |
L. Song, W. Wang, Solution of the fractional Black-Scholes option pricing model by finite difference method, Abstr. Appl. Anal., 2013 (2013), 1–10. https://doi.org/10.1155/2013/596218 doi: 10.1155/2013/596218
|
| [23] |
A. Sugandha, E. Rusyaman, S. Sukono, E. Carnia, Using a mix of finite difference methods and fractional differential transformations to solve modified Black-Scholes fractional equations, Mathematics, 12 (2024), 1077. https://doi.org/10.3390/math12071077 doi: 10.3390/math12071077
|
| [24] |
Y. Sun, W. Gong, H. Dai, L. Yuan, Numerical method for american option pricing under the time-fractional Black-Scholes model, Math. Probl. Eng., 2023 (2023). https://doi.org/10.1155/2023/4669161 doi: 10.1155/2023/4669161
|
| [25] |
J. Aguilar, J. Korbel, Simple formulas for pricing and hedging european options in the finite moment log-stable model, Risks, 7 (2019), 36. https://doi.org/10.3390/risks7020036 doi: 10.3390/risks7020036
|
| [26] |
D. Prathumwan, K. Trachoo, On the solution of two-dimensional fractional Black-Scholes equation for European put option, Adv. Differ. Equ., 2020 (2020), 146. https://doi.org/10.1186/s13662-020-02554-8 doi: 10.1186/s13662-020-02554-8
|
| [27] |
H. Kleinert, J. Korbel, Option pricing beyond Black-Scholes based on double-fractional diffusion, Physica A, 449 (2016), 200–214. https://doi.org/10.1016/j.physa.2015.12.125 doi: 10.1016/j.physa.2015.12.125
|
| [28] |
L. Song, A semianalytical solution of the fractional derivative model and its application in financial market, Complexity, 2018. https://doi.org/10.1155/2018/1872409 doi: 10.1155/2018/1872409
|
| [29] |
F. Azevedo, Z. Vale, A. Vale, Hedging using futures and options contracts in the electricity market, Renew. Energ. Power Qual. J., 1 (2003). https://doi.org/10.24084/repqj01.407 doi: 10.24084/repqj01.407
|
| [30] |
T. Bjork, H. Hult, A note on wick products and the fractional Black-Scholes model, Financ. Stoch., 9 (2005), 197–209. https://doi.org/10.1007/s00780-004-0144-5 doi: 10.1007/s00780-004-0144-5
|
| [31] |
S. Liu, Z. Xu, The inverse problem of time-fractional order and volatility for European option under time-fractional Black-Scholes model, J. Phys. Conf. Ser., 2905 (2024). https://doi.org/10.1088/1742-6596/2905/1/012010 doi: 10.1088/1742-6596/2905/1/012010
|
| [32] |
H. Zhang, M. Zhang, F. Liu, M. Shen, Review of the fractional Black-Scholes equations and their solution techniques, Fractal Fract., 8 (2024), 101. https://doi.org/10.3390/fractalfract8020101 doi: 10.3390/fractalfract8020101
|
| [33] | Australian Energy Market Operator (AEMO), Aggregated price and demand data, 2024. |
| [34] | ASX Energy, Au electricity options, 2024, Accessed: 2024: 11-28. |
| [35] | Open Electricity, Price and market data, 2024, Accessed: 2024: 11-28. |
| [36] |
Á. Cartea, D. del Castillo-Negrete, Fractional diffusion models of option prices in markets with jumps, Physica A, 374 (2007), 749–763. https://doi.org/10.1016/j.physa.2006.08.071 doi: 10.1016/j.physa.2006.08.071
|
| [37] | A. Wyłomańska, J. Gajda, T. J. Kozubowski, Fractional dynamics in financial modeling: Theoretical development and applications, Acta Phys. Pol. B, 42 (2011), 1041–1052. |
| [38] |
W. Sawangtong, P. Sawangtong, An analytical solution for the Caputo type generalized fractional evolution equation, Alex. Eng. J., 61 (2022), 5475–5483. https://doi.org/10.1016/j.aej.2021.10.055 doi: 10.1016/j.aej.2021.10.055
|
| [39] |
M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85. http://dx.doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
|
| [40] |
J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 87–92. http://dx.doi.org/10.12785/pfda/010202 doi: 10.12785/pfda/010202
|
| [41] | D. Applebaum, Lévy processes and stochastic calculus, Cambridge University Press, 2 Eds., 2009. https://doi.org/10.1017/CBO9780511809781 |
| [42] | R. Cont, P. Tankov, Financial modelling with jump processes, Chapman and Hall/CRC, 2004. https://doi.org/10.1201/9780203485217 |
| [43] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, 204 (2006), Elsevier. |
| [44] |
R. Zacher, A de Giorgi-Nash type theorem for time fractional diffusion equations, Math. Ann., 356 (2013), 99–146. https://doi.org/10.1007/s00208-012-0834-9 doi: 10.1007/s00208-012-0834-9
|
| [45] |
Y. Luchko, Maximum principle for the generalized time-fractional diffusion equation, J. Math. Anal. Appl., 351 (2009), 218–223. https://doi.org/10.1016/j.jmaa.2008.10.018 doi: 10.1016/j.jmaa.2008.10.018
|
| [46] |
R. Khalil, M. Al Horani, A. R. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
|