In this work, numerous features of the nonlinear Van der Waals gas system in the sense of viscosity capillarity are analytically and theoretically investigated. A novel trustworthy integrating approach, namely the Riccati modified extended simple equation method (RMESEM), is utilized to determine the physical nature of the system. This technique successfully generates a novel range of kink, anti-kink, cuspon kink, and bell-shaped bright and dark hump solitary wave solutions in the form of exponential, periodic, hyperbolic, rational, and rational-hyperbolic functions. Using suitable parameter values that satisfy constraint criteria, we generate a set of 2D graphs to improve comprehension and graphically depict these solitary wave solutions. The efficiency and adaptability of our method in solving a range of nonlinear problems in mathematical science and engineering are validated by our computational research.
Citation: Rashid Ali, Rabia Imtiaz, Moin-ud-Din Junjua, Fuad A. Awwad, Emad A. A. Ismail, Ahmed S. Hendy. Multiplicity of kink and hump structures in Van der Waals gas system[J]. AIMS Mathematics, 2025, 10(5): 12493-12518. doi: 10.3934/math.2025564
In this work, numerous features of the nonlinear Van der Waals gas system in the sense of viscosity capillarity are analytically and theoretically investigated. A novel trustworthy integrating approach, namely the Riccati modified extended simple equation method (RMESEM), is utilized to determine the physical nature of the system. This technique successfully generates a novel range of kink, anti-kink, cuspon kink, and bell-shaped bright and dark hump solitary wave solutions in the form of exponential, periodic, hyperbolic, rational, and rational-hyperbolic functions. Using suitable parameter values that satisfy constraint criteria, we generate a set of 2D graphs to improve comprehension and graphically depict these solitary wave solutions. The efficiency and adaptability of our method in solving a range of nonlinear problems in mathematical science and engineering are validated by our computational research.
| [1] |
H. K. Ahmed, H. F. Ismael, Optical soliton solutions for the nonlinear Schrödinger equation with higher-order dispersion arise in nonlinear optics, Phys. Scr., 99 (2024), 105276. https://doi.org/10.1088/1402-4896/ad78c3 doi: 10.1088/1402-4896/ad78c3
|
| [2] |
M. A. E. Abdelrahman, H. A. Refaey, M. A. Alharthi, Investigation of new waves in chemical engineering, Phys. Scr., 96 (2021), 075218. https://doi.org/10.1088/1402-4896/abfb24 doi: 10.1088/1402-4896/abfb24
|
| [3] |
A. Rayal, System of fractal-fractional differential equations and Bernstein wavelets: A comprehensive study of environmental, epidemiological, and financial applications, Phys. Scr., 99 (2025), 025236. https://doi.org/10.1088/1402-4896/ada592 doi: 10.1088/1402-4896/ada592
|
| [4] |
P. G. LeFloch, J.-M. Mercier, A class of mesh-free algorithms for some problems arising in finance and machine learning, J. Sci. Comput., 95 (2023), 75. https://doi.org/10.1007/s10915-023-02179-5 doi: 10.1007/s10915-023-02179-5
|
| [5] |
R. Ali, M. M. Alam, S. Barak, Exploring chaotic behavior of optical solitons in complex structured conformable perturbed Radhakrishnan-Kundu-Lakshmanan model, Phys. Scr., 99 (2024), 095209. https://doi.org/10.1088/1402-4896/ad67b1 doi: 10.1088/1402-4896/ad67b1
|
| [6] |
E. M. E. Zayed, M. E. M. Alngar, A. Biswas, M. Asma, M. Ekici, A. K. Alzahrani, et al., Pure-cubic optical soliton perturbation with full nonlinearity by unified Riccati equation expansion, Optik, 223 (2020), 165445. https://doi.org/10.1016/j.ijleo.2020.165445 doi: 10.1016/j.ijleo.2020.165445
|
| [7] |
A. Farooq, T. Shafique, M. Abbas, A. Birhanu, Y. S. Hamed, Explicit travelling wave solutions to the time fractional Phi-four equation and their applications in mathematical physics, Sci. Rep., 15 (2025), 1683. https://doi.org/10.1038/s41598-025-86177-7 doi: 10.1038/s41598-025-86177-7
|
| [8] |
M. Iqbal, W. A. Faridi, R. Ali, A. R. Seadawy, A. A. Rajhi, A. E. Anqi, et al., Dynamical study of optical soliton structure to the nonlinear Landau–Ginzburg–Higgs equation through computational simulation, Opt. Quant. Electron., 56 (2024), 1192. https://doi.org/10.1007/s11082-024-06401-y doi: 10.1007/s11082-024-06401-y
|
| [9] |
H. Yasmin, N. H. Aljahdaly, A. M. Saeed, R. Shah, Probing families of optical soliton solutions in fractional perturbed Radhakrishnan-Kundu-Lakshmanan model with improved versions of extended direct algebraic method, Fractals Fract., 7 (2023), 512. https://doi.org/10.3390/fractalfract7070512 doi: 10.3390/fractalfract7070512
|
| [10] |
R. Conte, A. P. Fordy, A. Pickering, A perturbative Painlevé approach to nonlinear differential equations, Physica D, 69 (1993), 33–58. https://doi.org/10.1016/0167-2789(93)90179-5 doi: 10.1016/0167-2789(93)90179-5
|
| [11] |
Y. L. Xiao, S. Barak, M. Hleili, K. Shah, Exploring the dynamical behaviour of optical solitons in integrable kairat-Ⅱ and kairat-X equations, Phys. Scr., 99 (2024), 095261. https://doi.org/10.1088/1402-4896/ad6e34 doi: 10.1088/1402-4896/ad6e34
|
| [12] |
H. Khan, Shoaib, D. Baleanu, P. Kumam, J. F. Al-Zaidy, Families of travelling wave solutions for fractional-order extended shallow water wave equations, using an innovative analytical method, IEEE Access, 7 (2019), 107523–107532. https://doi.org/10.1109/ACCESS.2019.2933188 doi: 10.1109/ACCESS.2019.2933188
|
| [13] |
R. Ali, E. Tag-eldin, A comparative analysis of generalized and extended $\left(\dfrac{G'}{G} \right)$-Expansion methods for travelling wave solutions of fractional Maccari's system with complex structure, Alex. Eng. J., 79 (2023), 508–530. https://doi.org/10.1016/j.aej.2023.08.007 doi: 10.1016/j.aej.2023.08.007
|
| [14] |
H. Khan, R. Shah, J. F. Gómez-Aguilar, Shoaib, D. Baleanu, P. Kumam, Travelling waves solution for fractional-order biological population model, Math. Model. Nat. Phenom., 16 (2021), 32. https://doi.org/10.1051/mmnp/2021016 doi: 10.1051/mmnp/2021016
|
| [15] |
C. M. Khalique, A. Biswas, A Lie symmetry approach to nonlinear Schrödinger's equation with non-Kerr law nonlinearity, Commun. Nonlinear Sci., 14 (2009), 4033–4040. https://doi.org/10.1016/j.cnsns.2009.02.024 doi: 10.1016/j.cnsns.2009.02.024
|
| [16] |
N. Li, S. Y. Xu, Y. Z. Sun, Q. Chen, Bright and dark solitons under spatiotemporal modulation in (2+1)-dimensional spin-1 Bose-Einstein condensates, Nonlinear Dyn., 113 (2025), 767–782. https://doi.org/10.1007/s11071-024-10243-4 doi: 10.1007/s11071-024-10243-4
|
| [17] |
Y. Z. Sun, Z. H. Hu, H. Triki, M. Mirzazadeh, W. J. Liu, A. Biswas, et al., Analytical study of three-soliton interactions with different phases in nonlinear optics, Nonlinear Dyn., 111 (2023), 18391–18400. https://doi.org/10.1007/s11071-023-08786-z doi: 10.1007/s11071-023-08786-z
|
| [18] |
Q. Zhou, Y. Z. Sun, H. Triki, Y. Zhong, Z. L. Zeng, M. Mirzazadeh, Study on propagation properties of one-soliton in a multimode fiber with higher-order effects, Results Phys., 41 (2022), 105898. https://doi.org/10.1016/j.rinp.2022.105898 doi: 10.1016/j.rinp.2022.105898
|
| [19] |
L. W. Zeng, J. S. He, B. A. Malomed, J. B. Chen, X. Zhu, Spontaneous symmetry and antisymmetry breaking of two-component solitons in a combination of linear and nonlinear double-well potentials, Phys. Rev. E, 110 (2024), 064216. https://doi.org/10.1103/PhysRevE.110.064216 doi: 10.1103/PhysRevE.110.064216
|
| [20] |
L. W. Zeng, M. R. Belić, D. Mihalache, J. C. Shi, J. W. Li, S. Q. Li, et al., Families of gap solitons and their complexes in media with saturable nonlinearity and fractional diffraction, Nonlinear Dyn., 108 (2022), 1671–1680. https://doi.org/10.1007/s11071-022-07291-z doi: 10.1007/s11071-022-07291-z
|
| [21] |
J. B. Chen, D. Mihalache, M. R. Belić, J. C. Shi, D. F. Zhu, D. N. Deng, et al., Dark gap solitons in bichromatic optical superlattices under cubic-quintic nonlinearities, Chaos, 34 (2024), 113131. https://doi.org/10.1063/5.0232509 doi: 10.1063/5.0232509
|
| [22] |
M. A. S. Murad, H. F. Ismael, T. A. Sulaiman, Various exact solutions to the time-fractional nonlinear Schrödinger equation via the new modified Sardar sub-equation method, Phys. Scr., 99 (2024), 085252. https://doi.org/10.1088/1402-4896/ad62a6 doi: 10.1088/1402-4896/ad62a6
|
| [23] |
Q. Q. Li, J. J. Nie, W. Zhang, Multiple normalized solutions for fractional Schrödinger equations with lack of compactness, J. Geom. Anal., 35 (2025), 59. https://doi.org/10.1007/s12220-024-01897-y doi: 10.1007/s12220-024-01897-y
|
| [24] |
Q. Q. Li, J. J. Nie, W. Wang, J. W. Zhou, Normalized solutions for Sobolev critical fractional Schrödinger equation, Adv. Nonlinear Anal., 13 (2024), 20240027. https://doi.org/10.1515/anona-2024-0027 doi: 10.1515/anona-2024-0027
|
| [25] |
D. Gao, X. Lü, M.-S. Peng, Study on the (2+1)-dimensional extension of Hietarinta equation: soliton solutions and Bäcklund transformation, Phys. Scr., 98 (2023), 095225. https://doi.org/10.1088/1402-4896/ace8d0 doi: 10.1088/1402-4896/ace8d0
|
| [26] |
H. Yasmin, A. S. Alshehry, A. H. Ganie, A. M. Mahnashi, R. Shah, Perturbed Gerdjikov-Ivanov equation: Soliton solutions via Backlund transformation, Optik, 298 (2024), 171576. https://doi.org/10.1016/j.ijleo.2023.171576 doi: 10.1016/j.ijleo.2023.171576
|
| [27] |
M. M. A. Khater, Analytical simulations of the Fokas system, extension (2+1)-dimensional nonlinear Schrödinger equation, Int. J. Mod. Phys. B, 35 (2021), 2150286. https://doi.org/10.1142/S0217979221502866 doi: 10.1142/S0217979221502866
|
| [28] |
J. Manafian, On the complex structures of the Biswas-Milovic equation for power, parabolic and dual parabolic law nonlinearities, Eur. Phys. J. Plus, 130 (2015), 255. https://doi.org/10.1140/epjp/i2015-15255-5 doi: 10.1140/epjp/i2015-15255-5
|
| [29] |
A. H. Arnous, M. Mirzazadeh, M. S. Hashemi, N. A. Shah, J. D. Chung, Three different integration schemes for finding soliton solutions in the (1+1)-dimensional Van der Waals gas system, Results Phys., 55 (2023), 107178. https://doi.org/10.1016/j.rinp.2023.107178 doi: 10.1016/j.rinp.2023.107178
|
| [30] |
M. Malaver, H. D. Kasmaei, Analytical models for quark stars with van der Waals modified equation of state, Astrophys. Space Sci., 7 (2019), 49–58. https://doi.org/10.11648/j.ijass.20190705.11 doi: 10.11648/j.ijass.20190705.11
|
| [31] |
L. Kipgen, R. Singh, $\delta$-Shocks and vacuum states in the Riemann problem for isothermal van der Waals dusty gas under the flux approximation, Phys. Fluids, 35 (2023), 016116. https://doi.org/10.1063/5.0135491 doi: 10.1063/5.0135491
|
| [32] | E. A. Az-Zo'bi, Solitary and periodic exact solutions of the viscosity-capillarity van der Waals gas equations, Appl. Appl. Math., 14 (2019), 349–358. |
| [33] |
A. H. Arnous, M. Mirzazadeh, M. S. Hashemi, N. A. Shah, J. D. Chung, Three different integration schemes for finding soliton solutions in the (1+1)-dimensional Van der Waals gas system, Results Phys., 55 (2023), 107178. https://doi.org/10.1016/j.rinp.2023.107178 doi: 10.1016/j.rinp.2023.107178
|
| [34] |
S. Bibi, N. Ahmed, U. Khan, S. T. Mohyud-Din, Some new exact solitary wave solutions of the van der Waals model arising in nature, Results Phys., 9 (2018), 648–655. https://doi.org/10.1016/j.rinp.2018.03.026 doi: 10.1016/j.rinp.2018.03.026
|
| [35] | A. Zafar, B. Khalid, A. Fahand, H. Rezazadeh, A. Bekir, Analytical behaviour of travelling wave solutions to the Van der Waals model, $\mathrm{\overset\frown{In}t}$. J. Appl. Comput. Math., 6 (2020), 131. https://doi.org/10.1007/s40819-020-00884-5 |
| [36] |
J.-L. Zhang, M.-L. Wang, Y.-M. Wang, Z.-D. Fang, The improved F-expansion method and its applications, Phys. Lett. A, 350 (2006), 103–109. https://doi.org/10.1016/j.physleta.2005.10.099 doi: 10.1016/j.physleta.2005.10.099
|
| [37] |
E. G. Fan, Extended tanh-function method and its applications to nonlinear equations, Phys. Lett. A, 277 (2000), 212–218. https://doi.org/10.1016/S0375-9601(00)00725-8 doi: 10.1016/S0375-9601(00)00725-8
|