Recently, probabilistic versions of certain special polynomials have been introduced, leading to the discovery of many interesting properties of these polynomials by many researchers. In this paper, we define the probabilistic degenerate Daehee polynomials, denoted by $ D_{n, \lambda} ^Y (x) $, and explore their properties along with several notable identities. We demonstrate that $ D_{n, \lambda} ^Y (x) $ and related special numbers can be expressed in terms of (degenerate) Stirling numbers of the first and second kinds, as well as falling factorial sequences.
Citation: Sang Jo Yun, Jin-Woo Park. On a generation of degenerate Daehee polynomials[J]. AIMS Mathematics, 2025, 10(5): 12286-12298. doi: 10.3934/math.2025556
Recently, probabilistic versions of certain special polynomials have been introduced, leading to the discovery of many interesting properties of these polynomials by many researchers. In this paper, we define the probabilistic degenerate Daehee polynomials, denoted by $ D_{n, \lambda} ^Y (x) $, and explore their properties along with several notable identities. We demonstrate that $ D_{n, \lambda} ^Y (x) $ and related special numbers can be expressed in terms of (degenerate) Stirling numbers of the first and second kinds, as well as falling factorial sequences.
| [1] | G. E. Andrews, R. Askey, R. Roy, Special functions, Encyclopedia of Mathematics and its Applications 71, Cambridge University Press, 1999. |
| [2] | L. Comtet, Advanced combinatorics, The art of finite and infinite expansions, Springer Dordrecht, 1974. https://doi.org/10.1007/978-94-010-2196-8 |
| [3] | S. M. Roman, G. C. Rota, The umbral calculus, Adv. Math., 27 (1978), 95–188. https://doi.org/10.1016/0001-8708(78)90087-7 |
| [4] |
D. S. Kim, T. Kim, Daehee numbers and polynomials, Appl. Math. Sci., 7 (2013), 5969–5976. https://doi.org/10.12988/ams.2013.39535 doi: 10.12988/ams.2013.39535
|
| [5] |
T. Kim, D. S. Kim, H. Y. Kim, J. Kwon, Some results on degenerate Daehee and Bernoulli numbers and polynomials, Adv. Differ. Equ., 2020 (2020), 311. https://doi.org/10.1186/s13662-020-02778-8 doi: 10.1186/s13662-020-02778-8
|
| [6] | D. S. Kim, T. Kim, J. J. Seo, Higher-order Daehee polynomials of the first kind with umbral calculus, Adv. Stud. Contemp. Math., 24 (2014), 5–18. |
| [7] |
J. W. Park, On the twisted Daehee polynomials with $q$-parameter, Adv. Differ. Equ., 2014 (2014), 304. https://doi.org/10.1186/1687-1847-2014-304 doi: 10.1186/1687-1847-2014-304
|
| [8] | Y. K. Cho, T. Kim, T. Mansour, S. H. Rim, Higher-order $q$-Daehee polynomials, J. Comput. Anal. Appl., 19 (2015), 167–173. |
| [9] | Y. Simsek, Identities on the Changhee numbers and Apostol-type Daehee polynomials, Adv. Stud. Contemp. Math., 27 (2017), 199–212. |
| [10] | Y. Simsek, Explicit formulas for $p$-adic integrals: approach to $p$-adic distributions and some families of special numbers and polynomials, Montes Taurus J. Pure Appl. Math., 1 (2019), 1–76. |
| [11] |
Y. Do, D. Lim, On $(h, q)$-Daehee numbers and polynomials, Adv. Differ. Equ., 2015 (2015), 107. https://doi.org/10.1186/s13662-015-0445-3 doi: 10.1186/s13662-015-0445-3
|
| [12] |
Y. Simsek, A. Yardimci, Applications on the Apostol-Daehee numbers and polynomials associated with special numbers, polynomials, and $p$-adic integrals, Adv. Differ. Equ., 2016 (2016), 308. https://doi.org/10.1186/s13662-016-1041-x doi: 10.1186/s13662-016-1041-x
|
| [13] |
D. Lim, Differential equations for Daehee polynomials and their applications, J. Nonlinear Sci. Appl., 10 (2017), 1303–1315. https://doi.org/10.22436/jnsa.010.04.02 doi: 10.22436/jnsa.010.04.02
|
| [14] |
S. J. Yun, J. W. Park, On degenerate poly-Daehee polynomials arising from Lambda-umbral calculus, J. Math., 2023 (2023), 2263880. https://doi.org/10.1155/2023/2263880 doi: 10.1155/2023/2263880
|
| [15] |
H. K. Kim, D. V. Dolgy, Degenerate Catalan-Daehee numbers and polynomials of order $r$ arising from degenerate umbral calculus, AIMS Math., 7 (2022), 3845–3865. https://doi.org/10.3934/math.2022213 doi: 10.3934/math.2022213
|
| [16] | L. Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers, Util. Math., 15 (1979), 51–88. |
| [17] | T. Kim, A note on degenerate Stirling polynomials of the second kind, Proc. Jangjeon Math. Soc., 20 (2017), 319–331. |
| [18] | T. Kim, A note on degenerate Stirling numbers of the first kind, Proc. Jangjeon Math. Soc., 21 (2018), 393–404. |
| [19] |
D. Lim, Degenerate, partially degenerate and totally degenerate Daehee numbers and polynomials, Adv. Differ. Equ., 2015 (2015), 287. https://doi.org/10.1186/s13662-015-0624-2 doi: 10.1186/s13662-015-0624-2
|
| [20] |
J. A. Adell, B. Bényi, Probabilistic stirling numbers and applications, Aequat. Math., 98 (2024), 1627–1646. https://doi.org/10.1007/s00010-024-01073-1 doi: 10.1007/s00010-024-01073-1
|
| [21] |
J. A. Adell, Probabilistic Stirling numbers of the second kind and applications, J. Theor. Probab., 35 (2022), 636–652. https://doi.org/10.1007/s10959-020-01050-9 doi: 10.1007/s10959-020-01050-9
|
| [22] |
T. Kim, D. S. Kim, Probabilistic degenerate Bell polynomials associated with random variable, Russ. J. Math. Phys., 30 (2023), 528–542. https://doi.org/10.1134/S106192082304009X doi: 10.1134/S106192082304009X
|
| [23] |
T. Kim, D. S. Kim, Probabilistic Bernoulli and Euler polynomials, Russ. J. Math. Phys., 31 (2024), 94–105. https://doi.org/10.1134/S106192084010072 doi: 10.1134/S106192084010072
|
| [24] |
L. Luo, T. Kim, D. S. Kim, Y. Ma, Probabilistic degenerate Bernoulli and degenerate Euler polynomials, Math. Comput. Model. Dyn. Syst., 30 (2024), 342–363. https://doi.org/10.1080/13873954.2024.2348151 doi: 10.1080/13873954.2024.2348151
|
| [25] |
A. Karagenc, M. Acikgoz, S. Araci, Exploring probabilistic Bernstein polynomials: identities and applications, Appl. Math. Sci. Eng., 32 (2024), 2398591. https://doi.org/10.1080/27690911.2024.2398591 doi: 10.1080/27690911.2024.2398591
|
| [26] |
T. Kim, D. S. Kim, J. Kwon, Probabilistic degenerate Stirling polynomials of the second kind and their applications, Math. Comput. Model. Dyn. Syst., 30 (2024), 16–30. https://doi.org/10.1080/13873954.2023.2297571 doi: 10.1080/13873954.2023.2297571
|
| [27] | S. M. Ross, Introduction to probability models, 12 Eds., Academic Press, 2019. https://doi.org/10.1016/C2017-0-01324-1 |