Research article Special Issues

On a generation of degenerate Daehee polynomials

  • Published: 27 May 2025
  • MSC : 05A10, 05A15, 11B73, 11B83, 60C05

  • Recently, probabilistic versions of certain special polynomials have been introduced, leading to the discovery of many interesting properties of these polynomials by many researchers. In this paper, we define the probabilistic degenerate Daehee polynomials, denoted by $ D_{n, \lambda} ^Y (x) $, and explore their properties along with several notable identities. We demonstrate that $ D_{n, \lambda} ^Y (x) $ and related special numbers can be expressed in terms of (degenerate) Stirling numbers of the first and second kinds, as well as falling factorial sequences.

    Citation: Sang Jo Yun, Jin-Woo Park. On a generation of degenerate Daehee polynomials[J]. AIMS Mathematics, 2025, 10(5): 12286-12298. doi: 10.3934/math.2025556

    Related Papers:

  • Recently, probabilistic versions of certain special polynomials have been introduced, leading to the discovery of many interesting properties of these polynomials by many researchers. In this paper, we define the probabilistic degenerate Daehee polynomials, denoted by $ D_{n, \lambda} ^Y (x) $, and explore their properties along with several notable identities. We demonstrate that $ D_{n, \lambda} ^Y (x) $ and related special numbers can be expressed in terms of (degenerate) Stirling numbers of the first and second kinds, as well as falling factorial sequences.



    加载中


    [1] G. E. Andrews, R. Askey, R. Roy, Special functions, Encyclopedia of Mathematics and its Applications 71, Cambridge University Press, 1999.
    [2] L. Comtet, Advanced combinatorics, The art of finite and infinite expansions, Springer Dordrecht, 1974. https://doi.org/10.1007/978-94-010-2196-8
    [3] S. M. Roman, G. C. Rota, The umbral calculus, Adv. Math., 27 (1978), 95–188. https://doi.org/10.1016/0001-8708(78)90087-7
    [4] D. S. Kim, T. Kim, Daehee numbers and polynomials, Appl. Math. Sci., 7 (2013), 5969–5976. https://doi.org/10.12988/ams.2013.39535 doi: 10.12988/ams.2013.39535
    [5] T. Kim, D. S. Kim, H. Y. Kim, J. Kwon, Some results on degenerate Daehee and Bernoulli numbers and polynomials, Adv. Differ. Equ., 2020 (2020), 311. https://doi.org/10.1186/s13662-020-02778-8 doi: 10.1186/s13662-020-02778-8
    [6] D. S. Kim, T. Kim, J. J. Seo, Higher-order Daehee polynomials of the first kind with umbral calculus, Adv. Stud. Contemp. Math., 24 (2014), 5–18.
    [7] J. W. Park, On the twisted Daehee polynomials with $q$-parameter, Adv. Differ. Equ., 2014 (2014), 304. https://doi.org/10.1186/1687-1847-2014-304 doi: 10.1186/1687-1847-2014-304
    [8] Y. K. Cho, T. Kim, T. Mansour, S. H. Rim, Higher-order $q$-Daehee polynomials, J. Comput. Anal. Appl., 19 (2015), 167–173.
    [9] Y. Simsek, Identities on the Changhee numbers and Apostol-type Daehee polynomials, Adv. Stud. Contemp. Math., 27 (2017), 199–212.
    [10] Y. Simsek, Explicit formulas for $p$-adic integrals: approach to $p$-adic distributions and some families of special numbers and polynomials, Montes Taurus J. Pure Appl. Math., 1 (2019), 1–76.
    [11] Y. Do, D. Lim, On $(h, q)$-Daehee numbers and polynomials, Adv. Differ. Equ., 2015 (2015), 107. https://doi.org/10.1186/s13662-015-0445-3 doi: 10.1186/s13662-015-0445-3
    [12] Y. Simsek, A. Yardimci, Applications on the Apostol-Daehee numbers and polynomials associated with special numbers, polynomials, and $p$-adic integrals, Adv. Differ. Equ., 2016 (2016), 308. https://doi.org/10.1186/s13662-016-1041-x doi: 10.1186/s13662-016-1041-x
    [13] D. Lim, Differential equations for Daehee polynomials and their applications, J. Nonlinear Sci. Appl., 10 (2017), 1303–1315. https://doi.org/10.22436/jnsa.010.04.02 doi: 10.22436/jnsa.010.04.02
    [14] S. J. Yun, J. W. Park, On degenerate poly-Daehee polynomials arising from Lambda-umbral calculus, J. Math., 2023 (2023), 2263880. https://doi.org/10.1155/2023/2263880 doi: 10.1155/2023/2263880
    [15] H. K. Kim, D. V. Dolgy, Degenerate Catalan-Daehee numbers and polynomials of order $r$ arising from degenerate umbral calculus, AIMS Math., 7 (2022), 3845–3865. https://doi.org/10.3934/math.2022213 doi: 10.3934/math.2022213
    [16] L. Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers, Util. Math., 15 (1979), 51–88.
    [17] T. Kim, A note on degenerate Stirling polynomials of the second kind, Proc. Jangjeon Math. Soc., 20 (2017), 319–331.
    [18] T. Kim, A note on degenerate Stirling numbers of the first kind, Proc. Jangjeon Math. Soc., 21 (2018), 393–404.
    [19] D. Lim, Degenerate, partially degenerate and totally degenerate Daehee numbers and polynomials, Adv. Differ. Equ., 2015 (2015), 287. https://doi.org/10.1186/s13662-015-0624-2 doi: 10.1186/s13662-015-0624-2
    [20] J. A. Adell, B. Bényi, Probabilistic stirling numbers and applications, Aequat. Math., 98 (2024), 1627–1646. https://doi.org/10.1007/s00010-024-01073-1 doi: 10.1007/s00010-024-01073-1
    [21] J. A. Adell, Probabilistic Stirling numbers of the second kind and applications, J. Theor. Probab., 35 (2022), 636–652. https://doi.org/10.1007/s10959-020-01050-9 doi: 10.1007/s10959-020-01050-9
    [22] T. Kim, D. S. Kim, Probabilistic degenerate Bell polynomials associated with random variable, Russ. J. Math. Phys., 30 (2023), 528–542. https://doi.org/10.1134/S106192082304009X doi: 10.1134/S106192082304009X
    [23] T. Kim, D. S. Kim, Probabilistic Bernoulli and Euler polynomials, Russ. J. Math. Phys., 31 (2024), 94–105. https://doi.org/10.1134/S106192084010072 doi: 10.1134/S106192084010072
    [24] L. Luo, T. Kim, D. S. Kim, Y. Ma, Probabilistic degenerate Bernoulli and degenerate Euler polynomials, Math. Comput. Model. Dyn. Syst., 30 (2024), 342–363. https://doi.org/10.1080/13873954.2024.2348151 doi: 10.1080/13873954.2024.2348151
    [25] A. Karagenc, M. Acikgoz, S. Araci, Exploring probabilistic Bernstein polynomials: identities and applications, Appl. Math. Sci. Eng., 32 (2024), 2398591. https://doi.org/10.1080/27690911.2024.2398591 doi: 10.1080/27690911.2024.2398591
    [26] T. Kim, D. S. Kim, J. Kwon, Probabilistic degenerate Stirling polynomials of the second kind and their applications, Math. Comput. Model. Dyn. Syst., 30 (2024), 16–30. https://doi.org/10.1080/13873954.2023.2297571 doi: 10.1080/13873954.2023.2297571
    [27] S. M. Ross, Introduction to probability models, 12 Eds., Academic Press, 2019. https://doi.org/10.1016/C2017-0-01324-1
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(615) PDF downloads(35) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog