Time-fractional Dirac-type systems arise in quantum field theory, plasma physics, and condensed matter systems where fractional calculus captures nonlocal interactions. In this study, we employ classical and nonclassical Lie symmetry methods to analyze the underlying symmetry structure of the system. By deriving infinitesimal generators and performing similarity reductions, we transform the governing fractional partial differential equations (FPDEs) into fractional ordinary differential equations (FODEs). Exact solutions are constructed using the power series method. Furthermore, we establish conservation laws in the fractional setting, ensuring the physical consistency of the system. Our findings offer new insights into the interplay among symmetry, conservation principles, and exact solutions in fractional quantum field models, expanding the analytical toolkit for studying nonlinear relativistic wave equations.
Citation: Farzaneh Alizadeh, Samad Kheybari, Kamyar Hosseini. Exact solutions and conservation laws for the time-fractional nonlinear dirac system: A study of classical and nonclassical lie symmetries[J]. AIMS Mathematics, 2025, 10(5): 11757-11782. doi: 10.3934/math.2025532
[1] | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions. AIMS Mathematics, 2020, 5(5): 5106-5120. doi: 10.3934/math.2020328 |
[2] | M. Emin Özdemir, Saad I. Butt, Bahtiyar Bayraktar, Jamshed Nasir . Several integral inequalities for (α, s,m)-convex functions. AIMS Mathematics, 2020, 5(4): 3906-3921. doi: 10.3934/math.2020253 |
[3] | Muhammad Uzair Awan, Nousheen Akhtar, Artion Kashuri, Muhammad Aslam Noor, Yu-Ming Chu . 2D approximately reciprocal ρ-convex functions and associated integral inequalities. AIMS Mathematics, 2020, 5(5): 4662-4680. doi: 10.3934/math.2020299 |
[4] | Yue Wang, Ghulam Farid, Babar Khan Bangash, Weiwei Wang . Generalized inequalities for integral operators via several kinds of convex functions. AIMS Mathematics, 2020, 5(5): 4624-4643. doi: 10.3934/math.2020297 |
[5] | Hengxiao Qi, Muhammad Yussouf, Sajid Mehmood, Yu-Ming Chu, Ghulam Farid . Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity. AIMS Mathematics, 2020, 5(6): 6030-6042. doi: 10.3934/math.2020386 |
[6] | Ghulam Farid, Saira Bano Akbar, Shafiq Ur Rehman, Josip Pečarić . Boundedness of fractional integral operators containing Mittag-Leffler functions via (s,m)-convexity. AIMS Mathematics, 2020, 5(2): 966-978. doi: 10.3934/math.2020067 |
[7] | Gou Hu, Hui Lei, Tingsong Du . Some parameterized integral inequalities for p-convex mappings via the right Katugampola fractional integrals. AIMS Mathematics, 2020, 5(2): 1425-1445. doi: 10.3934/math.2020098 |
[8] | Hasan Kara, Hüseyin Budak, Mehmet Eyüp Kiriş . On Fejer type inequalities for co-ordinated hyperbolic ρ-convex functions. AIMS Mathematics, 2020, 5(5): 4681-4701. doi: 10.3934/math.2020300 |
[9] | Tekin Toplu, Mahir Kadakal, İmdat İşcan . On n-Polynomial convexity and some related inequalities. AIMS Mathematics, 2020, 5(2): 1304-1318. doi: 10.3934/math.2020089 |
[10] | Naila Mehreen, Matloob Anwar . Some inequalities via Ψ-Riemann-Liouville fractional integrals. AIMS Mathematics, 2019, 4(5): 1403-1415. doi: 10.3934/math.2019.5.1403 |
Time-fractional Dirac-type systems arise in quantum field theory, plasma physics, and condensed matter systems where fractional calculus captures nonlocal interactions. In this study, we employ classical and nonclassical Lie symmetry methods to analyze the underlying symmetry structure of the system. By deriving infinitesimal generators and performing similarity reductions, we transform the governing fractional partial differential equations (FPDEs) into fractional ordinary differential equations (FODEs). Exact solutions are constructed using the power series method. Furthermore, we establish conservation laws in the fractional setting, ensuring the physical consistency of the system. Our findings offer new insights into the interplay among symmetry, conservation principles, and exact solutions in fractional quantum field models, expanding the analytical toolkit for studying nonlinear relativistic wave equations.
Let I⊆R be an interval. Then a real-valued function h:I→R is said to be convex (concave) on the interval I if the inequality
h(tκ1+(1−t)κ2)≤(≥)th(κ1)+(1−t)h(κ2) |
holds for all κ1,κ2∈I and t∈[0,1].
It is well known that convexity (concavity) has wide applications in pure and applied mathematics [1,2,3,4,5,6,7,8,9,10,11,12]. The well known Hermite-Hadamard inequality [13,14,15,16,17,18,19,20] for the convex (concave) function h:I→R can be stated as follows:
h(κ1+κ22)≤(≥)1κ2−κ1∫κ2κ1h(x)dx≤(≥)h(κ1)+h(κ2)2 |
for all κ1,κ2∈I with κ1≠κ2.
Recently, many generalizations, invariants and extensions have been made for the convexity, for example, harmonic-convexity [21,22], exponential-convexity [23,24], s-convexity [25,26], Schur-convexity [27,28,29], strong convexity [30,31,32,33], Hp,q-convexity [34,35,36,37,38], generalized convexity [39], GG- and GA-convexities [40], preinvexity [41] and quasi-convexity [42]. In particular, many remarkable inequalities can be found in the literature [43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58] via the convexity theory.
Niculescu [59,60] defined the GG- and GA-convex functions as follows.
Definition 1.1. (See [59]) A real-valued function h:I→[0,∞) is said to be GG-convex on the interval I if the inequality
h(κt1κ1−t2)≤h(κ1)th(κ2)1−t |
holds for all κ1,κ2∈I and t∈[0,1].
Definition 1.2. (See [60]) A real-valued function h:I→[0,∞) is said to be GA-convex if the inequality
h(κt1κ1−t2)≤th(κ1)+(1−t)h(κ2) |
holds for all κ1,κ2∈I and t∈[0,1].
Ardıç et al. [61] established several novel inequalities (Theorem 1.1) involving the GG- and GA-convex functions via an identity (Lemma 1.1) for differentiable functions.
Lemma 1.1. (See [61]) Let κ1,κ2∈(0,∞) with κ1<κ2 and h:[κ1,κ2]→R be a differentiable function such that h′∈L([κ1,κ2]). Then the identity
κ22h(κ2)−κ21h(κ1)−2∫κ2κ1xh(x)dx | (1.1) |
=(logκ2−logη)∫10(κt2η1−t)3h′(κt2η1−t)dt+(logη−logκ1)∫10(ηtκ1−t1)3h′(ηtκ1−t1)dt |
holds for all η∈[κ1,κ2].
Theorem 1.1. (See [61]) Let κ1,κ2∈(0,∞) with κ1<κ2 and h:[κ1,κ2]→R be a differentiable function such that h′∈L([κ1,κ2]). Then the following statements are true:
(1) If |h′(x)| is GG-convex on [κ1,κ2], then the inequality
|κ22h(κ2)−κ21h(κ1)−2∫κ2κ1xh(x)dx| | (1.2) |
≤(logκ2−logη)L(κ32|h′(κ2)|,η3|h′(η)|)+(logη−logκ1)L(η3|h′(η)|,κ31|h′(κ1)|) |
holds for all η∈[κ1,κ2], where L(κ1,κ2)=(κ2−κ1)/(logκ2−logκ1) is the logarithmic mean of κ1 and κ2.
(2) If ϑ,γ>1 with 1/ϑ+1/γ=1 and |h′(x)|γ is GG-convex on [κ1,κ2], then the inequalities
|κ22h(κ2)−κ21h(κ1)−2∫κ2κ1xh(x)dx| | (1.3) |
≤(logκ2−logη)(L(κ3ϑ2,η3ϑ))1ϑ(L(|h′(κ2)|γ,|h′(η)|γ))1γ |
+(logη−logκ1)(L(η3ϑ,κ3ϑ1))1ϑ(L(|h′(η)|γ,κ31|h′(κ1)|γ))1γ, |
|κ22h(κ2)−κ21h(κ1)−2∫κ2κ1xh(x)dx| | (1.4) |
≤(logκ2−logη)(L(κ3γ2|h′(κ2)|γ,η3γ|h′(η)|γ))1γ |
+(logη−logκ1)(L(η3γ|h′(η)|γ,κ3γ1|h′(κ1)|γ))1γ |
and
|κ22h(κ2)−κ21h(κ1)−2∫κ2κ1xh(x)dx| | (1.5) |
≤(logκ2−logη)(L(κ32,η3))1−1γ(L(κ32|h′(κ2)|γ,η3|h′(η)|γ))1γ |
+(logη−logκ1)(L(η3,κ31))1−1γ(L(η3|h′(η)|γ,κ31|h′(κ1)|γ))1γ |
hold for all η∈[κ1,κ2].
(3) If |h′(x)| is GA-convex on [κ1,κ2], then we have
|κ22h(κ2)−κ21h(κ1)−2∫κ2κ1xh(x)dx| | (1.6) |
≤|h′(κ2)|3[κ32−L(η3,κ32)]+|h′(η)|3[L(η3,κ32)−L(κ31,η3)]+|h′(κ1)|3[L(κ31,η3)−η3] |
for all η∈[κ1,κ2].
(4) If ϑ,γ>1 with 1/ϑ+1/γ=1 and |h′(x)|γ is GA-convex on [κ1,κ2], then one has
|κ22h(κ2)−κ21h(κ1)−2∫κ2κ1xh(x)dx| | (1.7) |
≤(logκ2−logη)1−1γ(L(κ32,η3))1−1γ(|h′(κ2)|γ[κ32−L(η3,κ32)]+|h′(η)|γ[L(η3,κ32)−η3]3)1γ |
+(logη−logκ1)1−1γ(L(η3,κ31))1−1γ(|h′(η)|γ[η3−L(κ31,η3)]+|h′(κ1)|γ[L(κ31,η3)−κ31]3)1γ, |
|κ22h(κ2)−κ21h(κ1)−2∫κ2κ1xh(x)dx| | (1.8) |
≤(logκ2−logη)1−1γϑ1γ(L(κ3(γ−ϑ)γ−12,η3(γ−ϑ)γ−1))γ−1γ(Aγ(κ2,η))1γ |
+(logη−logκ1)1−1γϑ1γ(L(η3(γ−ϑ)γ−1,κ3(γ−ϑ)γ−11))γ−1γ(Aγ(η,κ1))1γ, |
|κ22h(κ2)−κ21h(κ1)−2∫κ2κ1xh(x)dx| | (1.9) |
≤(logκ2−logη)1−1γ(L(κ3γγ−12,η3γγ−1))1−1γ(|h′(κ2)|γ+|h′(η)|γ2)1γ |
+(logη−logκ1)1−1γ(L(η3γγ−1,κ3γγ−11))1−1γ(|h′(η)|γ+|h′(κ1)|γ2)1γ, |
|κ22h(κ2)−κ21h(κ1)−2∫κ2κ1xh(x)dx| | (1.10) |
≤(logκ2−logη)1−1γγ1γ(Aγ(κ2,η))1/γ+(logη−logκ1)1−1γγ1γ(Aγ(η,κ1))1/γ, |
where
Aγ(κ2,η)=|h′(κ2)|γ[κ3γ2−L(η3γ,κ3γ2)]+|h′(η)|γ[L(η3γ,κ3γ2)−η3γ]3 |
and
Aγ(η,κ1)=|h′(η)|γ[η3γ−L(κ3γ1,η3γ)]+|h′(κ1)|γ[L(κ3γ1,η3γ)−κ3γ1]3. |
The conformable fractional derivative Dα(h)(t) [62] of order 0<α≤1 at t>0 for a function h:[0,∞)→R is defined by
Dα(h)(t)=limϵ→0h(t+ϵt1−α)−h(t)ϵ, |
h is said to be α-fractional differentiable if the conformable fractional derivative Dα(h)(t) exists. The conformable fractional derivative at 0 is defined by hα(0)=limt→0+hα(t). If h1 and h2 are α-differentiable at t>0, and κ1,κ2,λ,c∈R are constants, then the conformable fractional derivative satisfies the following formulas
dαdαt(tλ)=λtλ−α,dαdαt(c)=0, |
dαdαt(κ1h1(t)+κ2h2(t))=κ1dαdαt(h1(t))+κ2dαdαt(h2(t)), |
dαdαt(h1(t)h2(t))=h1(t)dαdαt(h2(t))+h2(t)dαdαt(h1(t)), |
dαdαt(h1(t)h2(t))=h2(t)dαdαt(h1(t))−h1(t)dαdαt(h2(t))(h2(t))2 |
and
dαdαt(h1(h2(t)))=h′1(h2(t))dαdαt(h2(t)) |
if h1 differentiable at h2(t). Moreover,
dαdαt(h1(t))=t1−αddt(h1(t)) |
if h1 is differentiable.
Let α∈(0,1] and 0≤κ1<κ2. Then the function h:[κ1,κ2]→R is said to be α-fractional integrable on [κ1,κ2] if the integral
∫κ2κ1h(x)dαx=∫κ2κ1h(x)xα−1dx |
exists and is finite. All α-fractional integrable functions on [κ1,κ2] is denoted by Lα([κ1,κ2]). Note that
Iκ1α(h1)(s)=Iκ11(sα−1h1)=∫sκ1h1(x)x1−αdx |
for all α∈(0,1], where the integral is the usual Riemann improper integral.
Recently, the conformable integrals and derivatives have attracted the attention of many researchers. Anderson [63] established the conformable integral version of the Hermite-Hadamard inequality as follows:
ακα2−κα1∫κ2κ1h(x)dαx≤h(κ1)+h(κ2)2 |
if α∈(0,1] and h:[κ1,κ2]→R is an α-fractional differentiable function such that Dα(h) is increasing. Moreover, if function h is decreasing on [κ1,κ2], then
h(κ1+κ22)≤ακα2−κα1∫κ2κ1h(x)dαx. |
The main purpose of the article is to establish the conformable fractional integral versions of the Hermite-Hadamard type inequality for GG- and GA-convex functions.
In order to establish our main results, we need a lemma which we present in this section.
Lemma 2.1. Let κ1,κ2∈(0,∞) with κ1<κ2, α∈(0,1] and h:[κ1,κ2]→R be an α-fractional differentiable function on (κ1,κ2) such that Dα(h)∈Lα([κ1,κ2]). Then the identity
κ2α2h(κ2)−κ2α1h(κ1)−2α∫κ2κ1xαh(x)dαx | (2.1) |
=(logκ2−logη)∫10(κt2η1−t)3αDα(h)(κt2η1−t)t1−αdt |
+(logη−logκ1)∫10(ηtκ1−t1)3αDα(h)(ηtκ1−t1)t1−αdt |
holds for all η∈[κ1,κ2].
Proof. Integration by parts, we get
I1=∫10(κt2η1−t)3αDα(h)(κt2η1−t)t1−αdt |
=∫10(κt2η1−t)2α+1h′(κt2η1−t)dt. |
Let x=κt2η1−t. Then I1 can be rewritten as
I1=1logκ2−logη∫κ2ηx2αh′(x)dx |
=1logκ2−logη[κα2h(κ2)−ηαh(η)−2α∫κ2ηx2α−1h(x)dx] |
=1logκ2−logη[κα2h(κ2)−ηαh(η)−2α∫κ2ηxαh(x)dαx]. |
Similarly, we have
I2=∫10(ηtκ1−t1)3αDα(h)(ηtκ1−t1)t1−αdt |
=1logη−logκ1[ηαh(η)−κα1h(κ1)−2α∫ηκ1xαh(x)dαx]. |
Multiplying I1 by (logκ2−logη) and I2 by (logη−logκ1), then add them we get the desired identity.
Remark 2.1. Let α=1. Then identity (2.1) reduces to (1.1).
Theorem 2.1. Let κ1,κ2∈(0,∞) with κ1<κ2, α∈(0,1], h:[κ1,κ2]→R be an α-fractional differentiable function on (κ1,κ2) such that Dα(h)∈Lα([κ1,κ2]) and |h′(x)| be a GG-convex function on [κ1,κ2]. Then the inequality
|κ2α2h(κ2)−κ2α1h(κ1)−2α∫κ2κ1xαh(x)dαx| | (2.2) |
≤(logκ2−logη)L(κ2α+12|h′(κ2)|,η2α+1|h′(η)|) |
+(logη−logκ1)L(η2α+1|h′(η)|,κ2α+11|h′(κ1)|) |
holds for all η∈[κ1,κ2].
Proof. It follows from the GG-convexity of the function |h′(x)| on the interval [κ1,κ2] and Lemma 2.1 that
|κ2α2h(κ2)−κ2α1h(κ1)−2α∫κ2κ1xαh(x)dαx| |
≤(logκ2−logη)∫10(κt2η1−t)2α+1|h′(κt2η1−t)|dt |
+(logη−logκ1)∫10(ηtκ1−t1)2α+1|h′(ηtκ1−t1)|dt |
≤(logκ2−logη)∫10(κt2η1−t)2α+1|h′(κ2)|t|h′(η)|1−tdt |
+(logη−logκ1)∫10(ηtκ1−t1)2α+1|h′(η)|t|h′(κ1)|1−tdt |
=(logκ2−logη)L(κ2α+12|h′(κ2)|,η2α+1|h′(η)|) |
+(logη−logκ1)L(η2α+1|h′(η)|,κ2α+11|h′(κ1)|). |
Remark 2.2. Let α=1. Then inequality (2.2) reduces to (1.2).
Theorem 2.2. Let κ1,κ2∈(0,∞) with κ1<κ2, ϑ,γ>1 with 1/ϑ+1/γ=1, α∈(0,1], h:[κ1,κ2]→R be an α-fractional differentiable function on (κ1,κ2) such that Dα(h)∈Lα([κ1,κ2]) and |h′(x)|γ be a GG-convex function on [κ1,κ2]. Then the inequality
|κ2α2h(κ2)−κ2α1h(κ1)−2α∫κ2κ1xαh(x)dαx| | (2.3) |
≤(logκ2−logη)(L(κ(2α+1)ϑ2,η(2α+1)ϑ))1ϑ(L(|h′(κ2)|γ,|h′(η)|γ))1γ |
+(logη−logκ1)(L(η(2α+1)ϑ,κ(2α+1)ϑ1))1ϑ(L(|h′(η)|γ,|h′(κ1)|γ))1γ |
holds for all η∈[κ1,κ2].
Proof. From Lemma 2.1, the property of the modulus, GG-convexity of |h′|γ and Hölder inequality we clearly see that
|κ2α2h(κ2)−κ2α1h(κ1)−2α∫κ2κ1xαh(x)dαx| |
≤(logκ2−logη)∫10(κt2η1−t)2α+1|h′(κt2η1−t)|dt |
+(logη−logκ1)∫10(ηtκ1−t1)2α+1|h′(ηtκ1−t1)|dt |
≤(logκ2−logη)(∫10(κt2η1−t)(2α+1)ϑdt)1ϑ(∫10|h′(κt2η1−t)|γdt)1γ |
+(logη−logκ1)(∫10(ηtκ1−t1)(2α+1)ϑdt)1ϑ(∫10|h′(ηtκ1−t1)|γdt)1γ |
≤(logκ2−logη)(∫10(κt2η1−t)(2α+1)ϑdt)1ϑ(∫10|h′(κ2)|γt|h′(η)|(1−t)γdt)1γ |
+(logη−logκ1)(∫10(ηtκ1−t1)(2α+1)ϑdt)1ϑ(∫10|h′(η)|γt|h′(κ1)|(1−t)γdt)1γ |
=(logκ2−logη)(L(κ(2α+1)ϑ2,η(2α+1)ϑ))1ϑ(L(|h′(κ2)|γ,|h′(η)|γ))1γ |
+(logη−logκ1)(L(η(2α+1)ϑ,κ(2α+1)ϑ1))1ϑ(L(|h′(η)|γ,|h′(κ1)|γ))1γ. |
Remark 2.3. Let α=1. Then inequality (2.3) reduces to (1.3).
Theorem 2.3. Let κ1,κ2∈(0,∞) with κ1<κ2, γ>1, α∈(0,1], h:[κ1,κ2]→R be an α-fractional differentiable function on (κ1,κ2) such that Dα(h)∈Lα([κ1,κ2]) and |h′(x)|γ be a GG-convex function on [κ1,κ2]. Then the inequality
|κ2α2h(κ2)−κ2α1h(κ1)−2α∫κ2κ1xαh(x)dαx| | (2.4) |
≤(logκ2−logη)(L(κ(2α+1)γ2|h′(κ2)|γ,η(2α+1)γ|h′(η)|γ))1γ |
+(logη−logκ1)(L(η(2α+1)γ|h′(η)|γ,κ(2α+1)γ1|h′(κ1)|γ))1γ |
holds for all η∈[κ1,κ2].
Proof. It follows from Lemma 2.1 that
|κ2α2h(κ2)−κ2α1h(κ1)−2α∫κ2κ1xαh(x)dαx| |
≤(logκ2−logη)∫10(κt2η1−t)2α+1|h′(κt2η1−t)|dt |
+(logη−logκ1)∫10(ηtκ1−t1)2α+1|h′(ηtκ1−t1)|dt. |
Let ϑ>1 such that ϑ−1+γ−1=1. Then making use of the Hölder integral inequality and the GG-convexity of |h′|γ, we get
|κ2α2h(κ2)−κ2α1h(κ1)−2α∫κ2κ1xαh(x)dαx| |
≤(logκ2−logη)(∫10dt)1ϑ(∫10(κt2η1−t)(2α+1)γ|h′(κt2η1−t)|γdt)1γ |
+(logη−logκ1)(∫10dt)1ϑ(∫10(ηtκ1−t1)(2α+1)γ|h′(ηtκ1−t1)|γdt)1γ |
≤(logκ2−logη)(∫10dt)1ϑ(∫10(κt2η1−t)(2α+1)γ|h′(κ2)|γt|h′(η)|(1−t)γdt)1γ |
+(logη−logκ1)(∫10dt)1ϑ(∫10(ηtκ1−t1)(2α+1)γ|h′(η)|γt|h′(κ1)|(1−t)γdt)1γ |
=(logκ2−logη)(L(κ(2α+1)γ2|h′(κ2)|γ,η(2α+1)γ|h′(η)|γ))1γ |
+(logη−logκ1)(L(η(2α+1)γ|h′(η)|γ,κ(2α+1)γ1|h′(κ1)|γ))1γ. |
Remark 2.4. Let α=1. Then inequality (2.4) reduces to (1.4).
Theorem 2.4. Let κ1,κ2∈(0,∞) with κ1<κ2, γ>1, α∈(0,1], h:[κ1,κ2]→R be an α-fractional differentiable function on (κ1,κ2) such that Dα(h)∈Lα([κ1,κ2]) and |h′(x)|γ be a GG-convex function on [κ1,κ2]. Then the inequality
|κ2α2h(κ2)−κ2α1h(κ1)−2α∫κ2κ1xαh(x)dαx| | (2.5) |
≤(logκ2−logη)(L(κ(2α+1)2,η(2α+1)))1−1γ(L(κ(2α+1)2|h′(κ2)|γ,η(2α+1)|h′(η)|γ))1γ |
+(logη−logκ1)(L(η(2α+1),κ(2α+1)1))1−1γ(L(η(2α+1)|h′(η)|γ,κ(2α+1)1|h′(κ1)|γ))1γ |
holds whenever η∈[κ1,κ2].
Proof. From the GG-convexity of |h′|γ, power mean inequality, the property of the modulus and Lemma 2.1 we clearly see that
|κ2α2h(κ2)−κ2α1h(κ1)−2α∫κ2κ1xαh(x)dαx| |
≤(logκ2−logη)∫10(κt2η1−t)2α+1|h′(κt2η1−t)|dt |
+(logη−logκ1)∫10(ηtκ1−t1)2α+1|h′(ηtκ1−t1)|dt |
≤(logκ2−logη)(∫10(κt2η1−t)2α+1dt)1−1γ(∫10(κt2η1−t)2α+1|h′(κt2η1−t)|γdt)1γ |
+(logη−logκ1)(∫10(ηtκ1−t1)2α+1dt)1−1γ(∫10(ηtκ1−t1)2α+1|h′(ηtκ1−t1)|γdt)1γ |
≤(logκ2−logη)(∫10(κt2η1−t)2α+1dt)1−1γ(∫10(κt2η1−t)2α+1|h′(κ2)|γt|h′(η)|(1−t)γdt)1γ |
+(logη−logκ1)(∫10(ηtκ1−t1)2α+1dt)1−1γ(∫10(ηtκ1−t1)2α+1|h′(η)|γt|h′(κ1)|(1−t)γdt)1γ |
=(logκ2−logη)(L(κ(2α+1)2,η(2α+1)))1−1γ(L(κ(2α+1)2|h′(κ2)|γ,η(2α+1)|h′(η)|γ))1γ |
+(logη−logκ1)(L(η(2α+1),κ(2α+1)1))1−1γ(L(η(2α+1)|h′(η)|γ,κ(2α+1)1|h′(κ1)|γ))1γ. |
Remark 2.5. Let α=1. Then inequality (2.5) reduces to (1.5).
Theorem 2.5. Let κ1,κ2∈(0,∞) with κ1<κ2, α∈(0,1], h:[κ1,κ2]→R be an α-fractional differentiable function on (κ1,κ2) such that Dα(h)∈Lα([κ1,κ2]) and |h′(x)| be a GA-convex function on [κ1,κ2]. Then the inequality
|κ2α2h(κ2)−κ2α1h(κ1)−2α∫κ2κ1xαh(x)dαx| | (2.6) |
≤|h(κ2)|2α+1[κ2α+12−L(η2α+1,κ2α+12)]+|h′(η)|2α+1[L(η2α+1,κ2α+12)−L(κ2α+11,η2α+1)] |
+|h′(κ1)|2α+1[L(κ2α+11,η2α+1)−η2α+1] |
holds for each η∈[κ1,κ2].
Proof. It follows from the GA-convexity of |h′(x)| and Lemma 2.1 that
|κ2α2h(κ2)−κ2α1h(κ1)−2α∫κ2κ1xαh(x)dαx| |
≤(logκ2−logη)∫10(κt2η1−t)2α+1|h′(κt2η1−t)|dt |
+(logη−logκ1)∫10(ηtκ1−t1)2α+1|h′(ηtκ1−t1)|dt |
≤(logκ2−logη)∫10(κt2η1−t)2α+1[t|h′(κ2)|+(1−t)|h′(η)|]dt |
+(logη−logκ1)∫10(ηtκ1−t1)2α+1[t|h′(η)|+(1−t)|h′(κ1)|]dt |
=|h′(κ2)|2α+1[κ2α+12−L(η2α+1,κ2α+12)]+|h′(η)|2α+1[L(η2α+1,κ2α+12)−L(κ2α+11,η2α+1)] |
+|h′(κ1)|2α+1[L(κ2α+11,η2α+1)−η2α+1]. |
Remark 2.6. Let α=1. Then inequality (2.6) becomes (1.6).
Theorem 2.6. Let κ1,κ2∈(0,∞) with κ1<κ2, α∈(0,1], γ>1, h:[κ1,κ2]→R be an α-fractional differentiable function on (κ1,κ2) such that Dα(h)∈Lα([κ1,κ2]) and |h′(x)|γ be a GA-convex function on [κ1,κ2]. Then the inequality
|κ2α2h(κ2)−κ2α1h(κ1)−2α∫κ2κ1xαh(x)dαx| | (2.7) |
≤(logκ2−logη)1−1γ(L(κ(2α+1)2,η(2α+1)))1−1γ |
×(|h′(κ2)|γ[κ2α+12−L(η2α+1,κ2α+12)]+|h′(η)|γ[L(η2α+1,κ2α+12)−η2α+1]2α+1)1γ |
+(logη−logκ1)1−1γ(L(η(2α+1),κ(2α+1)1))1−1γ |
×(|h′(η)|γ[η2α+1−L(κ2α+11),η2α+1]+|h′(κ1)|γ[L(κ2α+11,η2α+1)−κ2α+11]2α+1)1γ |
holds for any η∈[κ1,κ2].
Proof. From the GA-convexity of |h′|γ, power mean inequality, the property of the modulus and Lemma 2.1, one has
|κ2α2h(κ2)−κ2α1h(κ1)−2α∫κ2κ1xαh(x)dαx| |
≤(logκ2−logη)∫10(κt2η1−t)2α+1|h′(κt2η1−t)|dt |
+(logη−logκ1)∫10(ηtκ1−t1)2α+1|h′(ηtκ1−t1)|dt |
≤(logκ2−logη)(∫10(κt2η1−t)2α+1dt)1−1γ(∫10(κt2η1−t)2α+1|h′(κt2η1−t)|γdt)1γ |
+(logη−logκ1)(∫10(ηtκ1−t1)2α+1dt)1−1γ(∫10(ηtκ1−t1)2α+1|h′(ηtκ1−t1)|γdt)1γ |
≤(logκ2−logη)(∫10(κt2η1−t)2α+1dt)1−1γ(∫10(κt2η1−t)2α+1[t|h′(κ2)|γ+(1−t)|h′(η)|γ]dt)1γ |
+(logη−logκ1)(∫10(ηtκ1−t1)2α+1dt)1−1γ(∫10(ηtκ1−t1)2α+1[t|h′(η)|γ+(1−t)|h′(κ1)|γ]dt)1γ |
=(logκ2−logη)1−1γ(L(κ(2α+1)2,η(2α+1)))1−1γ |
×(|h′(κ2)|γ[κ2α+12−L(η2α+1,κ2α+12)]+|h′(η)|γ[L(η2α+1,κ2α+12)−η2α+1]2α+1)1γ |
+(logη−logκ1)1−1γ(L(η(2α+1),κ(2α+1)1))1−1γ |
×(|h′(η)|γ[η2α+1−L(κ2α+11),η2α+1]+|h′(κ1)|γ[L(κ2α+11,η2α+1)−κ2α+11]2α+1)1γ. |
Remark 2.7. Let α=1. Then inequality (2.7) reduces to (1.7).
Theorem 2.7. Let κ1,κ2∈(0,∞) with κ1<κ2, ϑ,γ>1 with 1/ϑ+1/γ=1, α∈(0,1], h:[κ1,κ2]→R be an α-fractional differentiable function on (κ1,κ2) such that Dα(h)∈Lα([κ1,κ2]) and |h′(x)|γ be a GA-convex function on [κ1,κ2]. Then the inequality
|κ2α2h(κ2)−κ2α1h(κ1)−2α∫κ2κ1xαh(x)dαx| | (2.8) |
≤(logκ2−logη)1−1γϑ1γ(L(κ(γ−ϑ)(2α+1)γ−12,η(γ−ϑ)(2α+1)γ−1))γ−1γ(Aγ(κ2,η))1γ |
+(logη−logκ1)1−1γϑ1γ(L(η(γ−ϑ)(2α+1)γ−1,κ(γ−ϑ)(2α+1)γ−11))γ−1γ(Aγ(η,κ1))1γ |
holds for any η∈[κ1,κ2], where
Aγ(κ2,η)=|h′(κ2)|γ[κγ(2α+1)2−L(ηγ(2α+1),κγ(2α+1)2)]+|h′(η)|γ[L(ηγ(2α+1),κγ(2α+1)2)−ηγ(2α+1)]2α+1, |
Aγ(η,κ1)=|h′(η)|γ[ηγ(2α+1)−L(κγ(2α+1)1,ηγ(2α+1))]+|h′(κ1)|γ[L(κγ(2α+1)1,ηγ(2α+1))−κγ(2α+1)1]2α+1. |
Proof. It follows from Lemma 2.1, the GA-convexity of |h′|γ, power mean inequality, Hölder integral inequality and the property of the modulus that
|κ2α2h(κ2)−κ2α1h(κ1)−2α∫κ2κ1xαh(x)dαx| |
≤(logκ2−logη)∫10(κt2η1−t)2α+1|h′(κt2η1−t)|dt |
+(logη−logκ1)∫10(ηtκ1−t1)2α+1|h′(ηtκ1−t1)|dt |
\begin{equation*} \leq(\log \kappa_{2}-\log\eta) \left(\int_{0}^{1}(\kappa_{2}^{(2\alpha+1)t} \eta^{(2\alpha+1)(1-t)})^{\frac{\gamma-\vartheta}{\gamma-1}}dt\right)^{\frac{\gamma-1}{\gamma}} \end{equation*} |
\begin{equation*} \times\left(\int_{0}^{1}\left(\kappa_{2}^{(2\alpha+1)t}\eta^{(2\alpha+1)(1-t)}\right)^{\vartheta} |h^{\prime}(\kappa_{2}^{t}\eta^{1-t})|^{\gamma}dt\right)^{\frac{1}{\gamma}} \end{equation*} |
\begin{equation*} +(\log\eta-\log\kappa_{1})\left(\int_{0}^{1}(\eta^{(2\alpha+1)t} \kappa_{1}^{(2\alpha+1)(1-t)})^{\frac{\gamma-\vartheta} {\gamma-1}}dt\right)^{\frac{\gamma-1}{\gamma}} \end{equation*} |
\begin{equation*} \times\left(\int_{0}^{1}\left(\eta^{(2\alpha+1)t}\kappa_{1}^{(2\alpha+1)(1-t)}\right)^{\vartheta} |h^{\prime}(\eta^{t}\kappa_{1}^{1-t})|^{\gamma}dt\right)^{\frac{1}{\gamma}} \end{equation*} |
\begin{equation*} \leq(\log\kappa_{2}-\log\eta)\left(\int_{0}^{1}(\kappa_{2}^{(2\alpha+1)t} \eta^{(2\alpha+1)(1-t)})^{\frac{\gamma-\vartheta}{\gamma-1}}dt\right)^{\frac{\gamma-1}{\gamma}} \end{equation*} |
\begin{equation*} \times\left(\int_{0}^{1}\left(\kappa_{2}^{(2\alpha+1)t} \eta^{(2\alpha+1)(1-t)}\right)^{\vartheta}\left[t|h^{\prime}(\kappa_{2})|^{\gamma} +(1-t)|h^{\prime}(\eta)|^{\gamma}\right]dt\right)^{\frac{1}{\gamma}} \end{equation*} |
\begin{equation*} +(\log\eta-\log\kappa_{1})\left(\int_{0}^{1}(\eta^{(2\alpha+1)t} \kappa_{1}^{(2\alpha+1)(1-t)})^{\frac{\gamma-\vartheta}{\gamma-1}}dt\right)^{\frac{\gamma-1}{\gamma}} \end{equation*} |
\begin{equation*} \times\left(\int_{0}^{1}\left(\eta^{(2\alpha+1)t} \kappa_{1}^{(2\alpha+1)(1-t)}\right)^{\vartheta}\left[t|h^{\prime}(\eta)|^{\gamma} +(1-t)|h^{\prime}(\kappa_{1})|^{\gamma}\right]dt\right)^{\frac{1}{\gamma}} \end{equation*} |
\begin{equation*} = \frac{(\log\kappa_{2}-\log\eta)^{1-\frac{1}{\gamma}}}{\vartheta^{\frac{1}{\gamma}}} \left(L\left(\kappa_{2}^{\frac{(\gamma-\vartheta)(2\alpha+1)}{\gamma-1}}, \eta^{\frac{(\gamma-\vartheta) (2\alpha+1)}{\gamma-1}}\right)\right)^{\frac{\gamma-1}{\gamma}}(A_{\gamma}(\kappa_{2}, \eta))^{\frac{1}{\gamma}} \end{equation*} |
\begin{equation*} +\frac{(\log\eta-\log\kappa_{1})^{1-\frac{1}{\gamma}}}{\vartheta^{\frac{1}{\gamma}}} \left(L\left(\eta^{\frac{(\gamma-\vartheta)(2\alpha+1)}{\gamma-1}}, \kappa_{1}^{\frac{(\gamma-\vartheta) (2\alpha+1)}{\gamma-1}}\right)\right)^{\frac{\gamma-1}{\gamma}}(A_{\gamma}(\eta, \kappa_{1}))^{\frac{1}{\gamma}}. \end{equation*} |
Remark 2.8. Let \alpha = 1 . Then inequality (2.8) becomes (1.8).
Theorem 2.8. Let \kappa_{1}, \kappa_{2}\in(0, \infty) with \kappa_{1} < \kappa_{2} , \gamma > 1 , \alpha \in (0, 1] , h: [\kappa_{1}, \kappa_{2}]\rightarrow\mathbb{R} be an \alpha -fractional differentiable function on (\kappa_{1}, \kappa_{2}) such that D _{\alpha}(h)\in L_{\alpha}([\kappa_{1}, \kappa_{2}]) and |h^{\prime}(x)|^{\gamma} be a GA -convex function on [\kappa_{1}, \kappa_{2}] . Then the inequality
\begin{equation} \left|\kappa_{2}^{2\alpha}h(\kappa_{2})-\kappa_{1}^{2\alpha}h(\kappa_{1}) -2\alpha\int^{\kappa_{2}}_{\kappa_{1}}x^{\alpha}h(x)d_{\alpha}x\right| \end{equation} | (2.9) |
\begin{equation*} \leq(\log\kappa_{2}-\log\eta)^{1-\frac{1}{\gamma}}\left(L\left(\kappa_{2}^{\frac{\gamma(2\alpha+1)}{\gamma-1}}, \eta^{\frac{\gamma(2\alpha+1)} {\gamma-1}}\right)\right)^{1-\frac{1}{\gamma}}\left(A(|h^{\prime}(\kappa_{2})|^{\gamma}, |h^{\prime}(\eta)|^{\gamma})\right)^{\frac{1}{\gamma}} \end{equation*} |
\begin{equation*} +(\log\eta-\log\kappa_{1})^{1-\frac{1}{\gamma}}\left(L\left(\eta^{\frac{\gamma(2\alpha+1)} {\gamma-1}}, \kappa_{1}^{\frac{\gamma(2\alpha+1)}{\gamma-1}}\right)\right)^{1-\frac{1}{\gamma}} \left(A\left(|h^{\prime}(\eta)|^{\gamma}, |h^{\prime}(\kappa_{1})|^{\gamma}\right)\right)^{\frac{1}{\gamma}} \end{equation*} |
holds for any \eta\in [\kappa_{1}, \kappa_{2}] .
Proof. From Lemma 2.1, the GG -convexity of |h^{\prime}|^{\gamma} , Hölder inequality and the property of the modulus, we have
\begin{equation*} \left|\kappa_{2}^{2\alpha}h(\kappa_{2})-\kappa_{1}^{2\alpha}h(\kappa_{1}) -2\alpha\int^{\kappa_{2}}_{\kappa_{1}}x^{\alpha}h(x)d_{\alpha}x\right| \end{equation*} |
\begin{equation*} \leq(\log\kappa_{2}-\log\eta)\int_{0}^{1}(\kappa_{2}^{t}\eta^{1-t})^{2\alpha+1}|h^{\prime}(\kappa_{2}^{t}\eta^{1-t})|dt \end{equation*} |
\begin{equation*} +(\log\eta-\log\kappa_{1})\int_{0}^{1}(\eta^{t}\kappa_{1}^{1-t})^{2\alpha+1}|h^{\prime}(\eta^{t}\kappa_{1}^{1-t})|dt \end{equation*} |
\begin{equation*} \leq(\log\kappa_{2}-\log\eta)\left(\int_{0}^{1}(\kappa_{2}^{t}\eta^{1-t})^{2\alpha+1}dt\right)^{1-\frac{1} {\gamma}}\left(\int_{0}^{1}|h^{\prime}(\kappa_{2}^{t}\eta^{1-t})|^{\gamma}dt\right)^{\frac{1}{\gamma}} \end{equation*} |
\begin{equation*} +(\log\eta-\log\kappa_{1})\left(\int_{0}^{1}(\eta^{t}\kappa_{1}^{1-t})^{2\alpha+1}dt\right)^{1-\frac{1} {\gamma}}\left(\int_{0}^{1}|h^{\prime}(\eta^{t}\kappa_{1}^{1-t})|^{\gamma}dt\right)^{\frac{1}{\gamma}} \end{equation*} |
\begin{equation*} \leq(\log\kappa_{2}-\log\eta)\left(\int_{0}^{1}(\kappa_{2}^{t}\eta^{1-t})^{2\alpha+1}dt\right)^{1-\frac{1}{\gamma}} \left(\int_{0}^{1}\left[t|h^{\prime}(\kappa_{2})|^{\gamma }+(1-t)|h^{\prime}(\eta)|^{\gamma}\right]dt\right)^{\frac{1}{\gamma}} \end{equation*} |
\begin{equation*} +(\log\eta-\log\kappa_{1})\left(\int_{0}^{1}(\eta^{t}\kappa_{1}^{1-t})^{2\alpha+1}dt\right)^{1-\frac{1}{\gamma}} \left(\int_{0}^{1}\left[t|h^{\prime}(\eta)|^{\gamma }+(1-t)|h^{\prime}(\kappa_{1})|^{\gamma}\right]dt\right)^{\frac{1}{\gamma}} \end{equation*} |
\begin{equation*} = (\log\kappa_{2}-\log\eta)^{1-\frac{1}{\gamma}}\left(L\left(\kappa_{2}^{\frac{\gamma(2\alpha+1)}{\gamma-1}}, \eta^{\frac{\gamma(2\alpha+1)} {\gamma-1}}\right)\right)^{1-\frac{1}{\gamma}}\left(A(|h^{\prime}(\kappa_{2})|^{\gamma}, |h^{\prime}(\eta)|^{\gamma})\right)^{\frac{1}{\gamma}} \end{equation*} |
\begin{equation*} +(\log\eta-\log\kappa_{1})^{1-\frac{1}{\gamma}}\left(L\left(\eta^{\frac{\gamma(2\alpha+1)} {\gamma-1}}, \kappa_{1}^{\frac{\gamma(2\alpha+1)}{\gamma-1}}\right)\right)^{1-\frac{1}{\gamma}} \left(A\left(|h^{\prime}(\eta)|^{\gamma}, |h^{\prime}(\kappa_{1})|^{\gamma}\right)\right)^{\frac{1}{\gamma}}. \end{equation*} |
Remark 2.9. Let \alpha = 1 . Then inequality (2.9) leads to (1.9).
Theorem 2.9. Let \kappa_{1}, \kappa_{2}\in(0, \infty) with \kappa_{1} < \kappa_{2} , \gamma > 1 , \alpha\in (0, 1] , h:[\kappa_{1}, \kappa_{2}]\rightarrow\mathbb{R} be an \alpha -fractional differentiable function on (\kappa_{1}, \kappa_{2}) such that D _{\alpha}(h)\in L_{\alpha}([\kappa_{1}, \kappa_{2}]) and |h^{\prime}(x)|^{\gamma} be a GA -convex function on [\kappa_{1}, \kappa_{2}] . Then the inequality
\begin{equation} \left|\kappa_{2}^{2\alpha}h(\kappa_{2})-\kappa_{1}^{2\alpha}h(\kappa_{1}) -2\alpha\int^{\kappa_{2}}_{\kappa_{1}}x^{\alpha}h(x)d_{\alpha}x\right| \end{equation} | (2.10) |
\begin{equation*} \leq\frac{(\log\kappa_{2}-\log\eta)^{1-\frac{1}{\gamma}}}{\gamma^{\frac{1}{\gamma}}}B_{\gamma}(\kappa_{2}, \eta) +\frac{(\log\eta-\log\kappa_{1})^{1-\frac{1}{\gamma}}}{\gamma^{\frac{1}{\gamma}}}B_{\gamma}(\eta, \kappa_{1}) \end{equation*} |
holds for any \eta\in [\kappa_{1}, \kappa_{2}] , where
\begin{equation*} B_{\gamma}(\kappa_{2}, \eta) = \left(\frac{|h^{\prime}(\kappa_{2})|^\gamma\left[\kappa_{2}^{\gamma(2\alpha+1)} -L\left(\eta^{\gamma(2\alpha+1)}, \kappa_{2}^{\gamma(2\alpha+1)}\right)\right]+|h^{\prime}(\eta)|^\gamma \left[L(\eta^{\gamma(2\alpha+1)}, \kappa_{2}^{\gamma(2\alpha+1)})-\eta^{\gamma(\alpha+1)}\right]}{2\alpha+1}\right)^{\frac{1}{\gamma}}, \end{equation*} |
\begin{equation*} B_{\gamma}(\eta, \kappa_{1}) = \left(\frac{|h^{\prime}(\eta)|^\gamma\left[\eta^{\gamma(2\alpha+1)} -L\left(\kappa_{1}^{\gamma(2\alpha+1)}, \eta^{\gamma(2\alpha+1)}\right)\right]+|h^{\prime}(\kappa_{1})|^\gamma \left[L(\kappa_{1}^{\gamma(2\alpha+1)}, \eta^{\gamma(2\alpha+1)})-\kappa_{1}^{\gamma(\alpha+1)}\right]} {2\alpha+1}\right)^{\frac{1}{\gamma}}. \end{equation*} |
Proof. It follows from Lemma 2.1, the GA -convexity of |h^{\prime}|^\gamma , power mean inequality and property of the modulus that
\begin{equation*} \left|\kappa_{2}^{2\alpha}h(\kappa_{2})-\kappa_{1}^{2\alpha}h(\kappa_{1}) -2\alpha\int^{\kappa_{2}}_{\kappa_{1}}x^{\alpha}h(x)d_{\alpha}x\right| \end{equation*} |
\begin{equation*} \leq(\log\kappa_{2}-\log\eta)\int_{0}^{1}(\kappa_{2}^{t}\eta^{1-t})^{2\alpha+1}|h^{\prime}(\kappa_{2}^{t}\eta^{1-t})|dt \end{equation*} |
\begin{equation*} +(\log\eta-\log\kappa_{1})\int_{0}^{1}(\eta^{t}\kappa_{1}^{1-t})^{2\alpha+1}|h^{\prime}(\eta^{t}\kappa_{1}^{1-t})|dt \end{equation*} |
\begin{equation*} \leq(\log\kappa_{2}-\log\eta)\left(\int_{0}^{1}dt\right)^{1-\frac{1}{\gamma}}\left(\int_{0}^{1}(\kappa_{2}^{t}\eta^{1-t})^{2\alpha+1} |h^{\prime}(\kappa_{2}^{t}\eta^{1-t})|^{\gamma}dt\right)^{\frac{1}{\gamma}} \end{equation*} |
\begin{equation*} +(\log\eta-\log\kappa_{1})\left(\int_{0}^{1}dt\right)^{1-\frac{1}{\gamma}}\left(\int_{0}^{1} (\eta^{t}\kappa_{1}^{1-t})^{2\alpha+1}|h^{\prime}(\eta^{t}\kappa_{1}^{1-t})|^{\gamma}dt\right)^{\frac{1}{\gamma}} \end{equation*} |
\begin{equation*} \leq(\log\kappa_{2}-\log\eta)\left(\int_{0}^{1}dt\right)^{1-\frac{1}{\gamma}} \left(\int_{0}^{1}(\kappa_{2}^{t}\eta^{1-t})^{2\alpha+1}\left[t|h^{\prime}(\kappa_{2})|^{\gamma} +(1-t)|h^{\prime}(\eta)|^{\gamma}\right]dt\right)^{\frac{1}{\gamma}} \end{equation*} |
\begin{equation*} +(\log\eta-\log\kappa_{1})\left(\int_{0}^{1}dt\right)^{1-\frac{1}{\gamma}}\left(\int_{0}^{1}(\eta^{t}\kappa_{1}^{1-t})^{2\alpha+1} \left[t|h^{\prime}(\eta)|^{\gamma }+(1-t)|h^{\prime}(\kappa_{1})|^{\gamma}\right]dt\right)^{\frac{1}{\gamma}} \end{equation*} |
\begin{equation*} = \frac{(\log\kappa_{2}-\log\eta)^{1-\frac{1}{\gamma}}}{\gamma^{\frac{1}{\gamma}}}B_{\gamma}(\kappa_{2}, \eta) +\frac{(\log\eta-\log\kappa_{1})^{1-\frac{1}{\gamma}}}{\gamma^{\frac{1}{\gamma}}}B_{\gamma}(\eta, \kappa_{1}). \end{equation*} |
Remark 2.10. Let \alpha = 1 . Then inequality (2.10) reduces to (1.10).
We have generalized the Hermite-Hadamard type inequalities for GG - and GA -convex functions established by Ardıç, Akdemir and Yıdız in [61] to the conformable fractional integrals. Our ideas and approach may lead to a lot of follow-up research.
The authors would like to thank the anonymous referees for their valuable comments and suggestions, which led to considerable improvement of the article.
The work was supported by the Natural Science Foundation of China (Grant Nos. 61673169, 11971142, 11701176, 11626101, 11601485).
The authors declare no conflict of interest.
[1] |
S. D. Lin, C. H. Lu, Laplace transform for solving some families of fractional differential equations and its applications, Adv. Differ. Equ. , 2013 (2013), 137. http://doi.org/10.1186/1687-1847-2013-137 doi: 10.1186/1687-1847-2013-137
![]() |
[2] | A. S. Vatsala, B. Sambandham, Laplace transform method for sequential Caputo fractional differential equations, Math. Eng. Sci. Aerospace, 2016. |
[3] |
H. M. Fahad, M. Ur Rehman, A. Fernandez, On Laplace transforms with respect to functions and their applications to fractional differential equations, Math. Method. Appl. Sci. , 46 (2023), 8304–8323. https://doi.org/10.1002/mma.7772 doi: 10.1002/mma.7772
![]() |
[4] |
J. Cang, Y. Tan, H. Xu, S. Liao, Series solutions of non-linear Riccati differential equations with fractional order, Chaos Soliton. Fract. , 40 (2009), 1–9. https://doi.org/10.1016/j.chaos.2007.04.018 doi: 10.1016/j.chaos.2007.04.018
![]() |
[5] |
C. N. Angstmann, B. I. Henry, Generalized fractional power series solutions for fractional differential equations, Appl. Math. Lett. , 102 (2020), 106107. https://doi.org/10.1016/j.aml.2019.106107 doi: 10.1016/j.aml.2019.106107
![]() |
[6] |
A. I. Ali, M. Kalim, A. Khan, Solution of fractional partial differential equations using fractional power series method, Int. J. Differ. Equ. , 2021 (2021), 6385799. https://doi.org/10.1155/2021/6385799 doi: 10.1155/2021/6385799
![]() |
[7] |
M. A. Tashtoush, I. A. Ibrahim, W. M. Taha, M. H. Dawi, A. F. Jameel, E. A. Az-Zo'bi, Various closed-form solitonic wave solutions of conformable higher-dimensional Fokas model in fluids and plasma physics, Iraqi J. Comput. Sci. Math. , 5 (2024), 18. https://doi.org/10.52866/ijcsm.2024.05.03.027 doi: 10.52866/ijcsm.2024.05.03.027
![]() |
[8] |
R. Ur Rahman, Z. Hammouch, A. S. A. Alsubaie, K. H. Mahmoud, A. Alshehri, E. A. Az-Zo'bi, et al., Dynamical behavior of fractional nonlinear dispersive equation in Murnaghan's rod materials, Results Phys. , 56 (2024), 107207. https://doi.org/10.1016/j.rinp.2023.107207 doi: 10.1016/j.rinp.2023.107207
![]() |
[9] |
S. Kheybari, M. T. Darvishi, M. S. Hashemi, A semi-analytical approach to Caputo type time-fractional modified anomalous sub-diffusion equations, Appl. Numer. Math. , 158 (2020), 103–122. https://doi.org/10.1016/j.apnum.2020.07.023 doi: 10.1016/j.apnum.2020.07.023
![]() |
[10] |
S. Kheybari, Numerical algorithm to Caputo type time-space fractional partial differential equations with variable coefficients, Math. Comput. Simulat. , 182 (2021), 66–85. https://doi.org/10.1016/j.matcom.2020.10.018 doi: 10.1016/j.matcom.2020.10.018
![]() |
[11] |
M. S. Hashemi, M. Mirzazadeh, D. Baleanu, Innovative method for computing approximate solutions of non-homogeneous wave equations with generalized fractional derivatives, Contemp. Math. , 4 (2023), 1026–1047. https://doi.org/10.37256/cm.4420233593 doi: 10.37256/cm.4420233593
![]() |
[12] |
S. Javeed, D. Baleanu, A. Waheed, M. S. Khan, H. Affan, Analysis of homotopy perturbation method for solving fractional order differential equations, Mathematics, 7 (2019), 40. https://doi.org/10.3390/math7010040 doi: 10.3390/math7010040
![]() |
[13] |
J. Li, Explicit and structure-preserving exponential wave integrator fourier pseudo-spectral methods for the Dirac equation in the simultaneously massless and nonrelativistic regime, Calcolo, 61 (2024), 3. https://doi.org/10.1007/s10092-023-00554-0 doi: 10.1007/s10092-023-00554-0
![]() |
[14] |
J. Li, L. Zhu, A uniformly accurate exponential wave integrator fourier pseudo-spectral method with structure-preservation for long-time dynamics of the Dirac equation with small potentials, Numer. Algor. , 92 (2023), 1367–1401. https://doi.org/10.1007/s11075-022-01345-4 doi: 10.1007/s11075-022-01345-4
![]() |
[15] |
J. Li, T. Wang, Optimal point-wise error estimate of two conservative fourth-order compact finite difference schemes for the nonlinear Dirac equation, Appl. Numer. Math. , 162 (2021), 150–170. https://doi.org/10.1016/j.apnum.2020.12.010 doi: 10.1016/j.apnum.2020.12.010
![]() |
[16] |
W. Alhejaili, E. A. Az-Zo'bi, R. Shah, S. A. El-Tantawy, On the analytical soliton approximations to fractional forced korteweg–de vries equation arising in fluids and plasmas using two novel techniques, Commun. Theor. Phys. , 76 (2024), 085001. https://doi.org/10.1088/1572-9494/ad53bc doi: 10.1088/1572-9494/ad53bc
![]() |
[17] |
J. Yu, Y. Feng, On the generalized time fractional reaction-diffusion equation: Lie symmetries, exact solutions and conservation laws, Chaos Soliton. Fract. , 182 (2024), 114855. https://doi.org/10.1016/j.chaos.2024.114855 doi: 10.1016/j.chaos.2024.114855
![]() |
[18] |
J. Yu, Y. Feng, Lie symmetry analysis, power series solutions and conservation laws of (2+1)-dimensional time fractional modified Bogoyavlenskii–Schiff equations, J. Nonlinear Math. Phys. , 31 (2024), 27. https://doi.org/10.1007/s44198-024-00195-z doi: 10.1007/s44198-024-00195-z
![]() |
[19] |
J. Yu, Y. Feng, Group classification of time fractional Black–Scholes equation with time-dependent coefficients, Fract. Calc. Appl. Anal. , 27 (2024), 2335–2358. https://doi.org/10.1007/s13540-024-00339-4 doi: 10.1007/s13540-024-00339-4
![]() |
[20] | P. J. Olver, Applications of Lie groups to differential equations, New York: Springer, 1993. https://doi.org/10.1007/978-1-4612-4350-2 |
[21] | G. W. Bluman, S. C. Anco, Symmetry and integration methods for differential equations, New York: Springer, 2002. https://doi.org/10.1007/b97380 |
[22] | N. H. Ibragimov, CRC handbook of lie group analysis of differential equations, New York: CRC press, 1993. https://doi.org/10.1201/9781003419808 |
[23] | W. Ma, Binary nonlinearization for the Dirac systems, 1995. arXiv: solv-int/9512002v1. https://doi.org/10.48550/arXiv.solv-int/9512002 |
[24] |
W. Ma, K. Li, Virasoro symmetry algebra of Dirac soliton hierarchy, Inverse Probl. , 12 (1996), L25. https://doi.org/10.1088/0266-5611/12/6/001 doi: 10.1088/0266-5611/12/6/001
![]() |
[25] |
E. G. Fan, N-fold Darboux transformation and soliton solutions for a nonlinear Dirac system, J. Phys. A: Math. Gen. , 38 (2005), 1063. https://doi.org/10.1088/0305-4470/38/5/008 doi: 10.1088/0305-4470/38/5/008
![]() |
[26] | I. S. Frolov, Inverse scattering problem for a Dirac system on the whole axis, Dokl. Akad. Nauk, 207 (1972), 44–47. |
[27] |
K. Schratz, Y. Wang, X. Zhao, Low-regularity integrators for nonlinear Dirac equations, Math. Comp, 90 (2021), 189–214. https://doi.org/10.1090/mcom/3557 doi: 10.1090/mcom/3557
![]() |
[28] |
F. Zhang, X. Xin, Y. Zhang, Nonlocal symmetries, exact solutions, and conservation laws for the nonlinear Dirac system, Comput. Appl. Math. , 44 (2025), 99. https://doi.org/10.1007/s40314-024-03067-w doi: 10.1007/s40314-024-03067-w
![]() |
[29] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006. |
[30] | K. Diethelm, The analysis of fractional differential equations, New York: Springer, 2010. |
[31] | S. G. Samko, Fractional integrals and derivatives, Yverdon: Gordon and Breach, 1993. |
[32] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley-Interscience, 1993. |
[33] | S. Kazem, Exact solution of some linear fractional differential equations by Laplace transform, Int. J. Nonlinear Sci. , 16 (2013), 3–11. |
[34] |
G. D. Medina, N. R. Ojeda, J. H. Pereira, L.G. Romero, Fractional Laplace transform and fractional calculus, Int. Math. Forum, 12 (2017), 991–1000. https://doi.org/10.12988/imf.2017.71194 doi: 10.12988/imf.2017.71194
![]() |
[35] | C. A. Monje, Y. Chen, B. M. Vinagre, D. Xue, V. Feliu, Fractional-order systems and controls: Fundamentals and applications, New York: Springer, 2010. |
[36] | G. W. Bluman, J. D. Cole, The general similarity solution of the heat equation, J. Math. Mech. , 18 (1969), 1025–1042. |
[37] |
N. H. Ibragimov, A new conservation theorem, J. Math. Anal. Appl. , 333 (2007), 311–328. https://doi.org/10.1016/j.jmaa.2006.10.078 doi: 10.1016/j.jmaa.2006.10.078
![]() |
[38] |
R. K. Gazizov, N. H. Ibragimov, S. Y. Lukashchuk, Nonlinear self-adjointness, conservation laws and exact solutions of time-fractional Kompaneets equations, Commun. Nonlinear Sci. , 23 (2015), 153–163. https://doi.org/10.1016/j.cnsns.2014.11.010 doi: 10.1016/j.cnsns.2014.11.010
![]() |
[39] |
N. H. Ibragimov, Conservation laws and non-invariant solutions of anisotropic wave equations with a source, Nonlinear Anal.-Real, 40 (2018), 82–94. https://doi.org/10.1016/j.nonrwa.2017.08.005 doi: 10.1016/j.nonrwa.2017.08.005
![]() |
[40] |
M. S. Hashemi, A. Haji-Badali, F. Alizadeh, M. Inc, Classical and non-classical lie symmetry analysis, conservation laws and exact solutions of the time-fractional Chen–Lee–Liu equation, Comput. Appl. Math. , 42 (2023), 73. https://doi.org/10.1007/s40314-023-02217-w doi: 10.1007/s40314-023-02217-w
![]() |
[41] |
M. S. Hashemi, A. Haji-Badali, F. Alizadeh, X. J. Yang, Non-classical lie symmetries for nonlinear time-fractional Heisenberg equations, Math. Method. Appl. Sci. , 45 (2022), 10010–10026. https://doi.org/10.1002/mma.8353 doi: 10.1002/mma.8353
![]() |
[42] |
F. Alizadeh, M. S. Hashemi, A. H. Badali, Lie symmetries, exact solutions, and conservation laws of the nonlinear time-fractional Benjamin–Ono equation, Comput. Method. Differ. Equ. , 10 (2022), 608–616. https://doi.org/10.22034/cmde.2021.45436.1911 doi: 10.22034/cmde.2021.45436.1911
![]() |
[43] |
F. Alizadeh, E. Hincal, K. Hosseini, M. S. Hashemi, A. Das, The (2+1)-dimensional generalized time-fractional Zakharov Kuznetsov Benjamin Bona Mahony equation: its classical and nonclassical symmetries, exact solutions, and conservation laws, Opt. Quant. Electron. , 55 (2023), 1061. https://doi.org/10.1007/s11082-023-05387-3 doi: 10.1007/s11082-023-05387-3
![]() |
1. | Yu-Ming Chu, Muhammad Uzair Awan, Muhammad Zakria Javad, Awais Gul Khan, Bounds for the Remainder in Simpson’s Inequality via n-Polynomial Convex Functions of Higher Order Using Katugampola Fractional Integrals, 2020, 2020, 2314-4629, 1, 10.1155/2020/4189036 | |
2. | Shu-Bo Chen, Saima Rashid, Muhammad Aslam Noor, Rehana Ashraf, Yu-Ming Chu, A new approach on fractional calculus and probability density function, 2020, 5, 2473-6988, 7041, 10.3934/math.2020451 | |
3. | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu, Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions, 2020, 5, 2473-6988, 5106, 10.3934/math.2020328 | |
4. | Humaira Kalsoom, Muhammad Idrees, Artion Kashuri, Muhammad Uzair Awan, Yu-Ming Chu, Some New (p_1p_2,q_1q_2)-Estimates of Ostrowski-type integral inequalities via n-polynomials s-type convexity, 2020, 5, 2473-6988, 7122, 10.3934/math.2020456 | |
5. | Ming-Bao Sun, Yu-Ming Chu, Inequalities for the generalized weighted mean values of g-convex functions with applications, 2020, 114, 1578-7303, 10.1007/s13398-020-00908-1 | |
6. | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu, New Hermite-Hadamard type inequalities for exponentially convex functions and applications, 2020, 5, 2473-6988, 6874, 10.3934/math.2020441 | |
7. | Ming-Bao Sun, Xin-Ping Li, Sheng-Fang Tang, Zai-Yun Zhang, Schur Convexity and Inequalities for a Multivariate Symmetric Function, 2020, 2020, 2314-8896, 1, 10.1155/2020/9676231 | |
8. | Muhammad Uzair Awan, Sadia Talib, Artion Kashuri, Muhammad Aslam Noor, Yu-Ming Chu, Estimates of quantum bounds pertaining to new q-integral identity with applications, 2020, 2020, 1687-1847, 10.1186/s13662-020-02878-5 | |
9. | Xi-Fan Huang, Miao-Kun Wang, Hao Shao, Yi-Fan Zhao, Yu-Ming Chu, Monotonicity properties and bounds for the complete p-elliptic integrals, 2020, 5, 2473-6988, 7071, 10.3934/math.2020453 | |
10. | Saima Rashid, Aasma Khalid, Gauhar Rahman, Kottakkaran Sooppy Nisar, Yu-Ming Chu, On New Modifications Governed by Quantum Hahn’s Integral Operator Pertaining to Fractional Calculus, 2020, 2020, 2314-8896, 1, 10.1155/2020/8262860 | |
11. | Muhammad Uzair Awan, Sadia Talib, Artion Kashuri, Muhammad Aslam Noor, Khalida Inayat Noor, Yu-Ming Chu, A new q-integral identity and estimation of its bounds involving generalized exponentially μ-preinvex functions, 2020, 2020, 1687-1847, 10.1186/s13662-020-03036-7 | |
12. | Sabir Hussain, Javairiya Khalid, Yu Ming Chu, Some generalized fractional integral Simpson’s type inequalities with applications, 2020, 5, 2473-6988, 5859, 10.3934/math.2020375 | |
13. | Eze R. Nwaeze, Muhammad Adil Khan, Yu-Ming Chu, Fractional inclusions of the Hermite–Hadamard type for m-polynomial convex interval-valued functions, 2020, 2020, 1687-1847, 10.1186/s13662-020-02977-3 | |
14. | Muhammad Uzair Awan, Sadia Talib, Muhammad Aslam Noor, Yu-Ming Chu, Khalida Inayat Noor, Some Trapezium-Like Inequalities Involving Functions Having Strongly n-Polynomial Preinvexity Property of Higher Order, 2020, 2020, 2314-8896, 1, 10.1155/2020/9154139 | |
15. | Ling Zhu, New Cusa-Huygens type inequalities, 2020, 5, 2473-6988, 5320, 10.3934/math.2020341 | |
16. | Jian-Mei Shen, Saima Rashid, Muhammad Aslam Noor, Rehana Ashraf, Yu-Ming Chu, Certain novel estimates within fractional calculus theory on time scales, 2020, 5, 2473-6988, 6073, 10.3934/math.2020390 | |
17. | Hu Ge-JiLe, Saima Rashid, Muhammad Aslam Noor, Arshiya Suhail, Yu-Ming Chu, Some unified bounds for exponentially tgs-convex functions governed by conformable fractional operators, 2020, 5, 2473-6988, 6108, 10.3934/math.2020392 | |
18. | Tie-Hong Zhao, Zai-Yin He, Yu-Ming Chu, On some refinements for inequalities involving zero-balanced hypergeometric function, 2020, 5, 2473-6988, 6479, 10.3934/math.2020418 | |
19. | Sadia Khalid, Josip Pečarić, Refinements of some Hardy–Littlewood–Pólya type inequalities via Green’s functions and Fink’s identity and related results, 2020, 2020, 1029-242X, 10.1186/s13660-020-02498-3 | |
20. | Li Xu, Yu-Ming Chu, Saima Rashid, A. A. El-Deeb, Kottakkaran Sooppy Nisar, On New Unified Bounds for a Family of Functions via Fractionalq-Calculus Theory, 2020, 2020, 2314-8896, 1, 10.1155/2020/4984612 | |
21. | Arshad Iqbal, Muhammad Adil Khan, Noor Mohammad, Eze R. Nwaeze, Yu-Ming Chu, Revisiting the Hermite-Hadamard fractional integral inequality via a Green function, 2020, 5, 2473-6988, 6087, 10.3934/math.2020391 | |
22. | Thabet Abdeljawad, Saima Rashid, Zakia Hammouch, İmdat İşcan, Yu-Ming Chu, Some new Simpson-type inequalities for generalized p-convex function on fractal sets with applications, 2020, 2020, 1687-1847, 10.1186/s13662-020-02955-9 | |
23. | Shu-Bo Chen, Saima Rashid, Muhammad Aslam Noor, Zakia Hammouch, Yu-Ming Chu, New fractional approaches for n-polynomial P-convexity with applications in special function theory, 2020, 2020, 1687-1847, 10.1186/s13662-020-03000-5 | |
24. | Humaira Kalsoom, Muhammad Idrees, Dumitru Baleanu, Yu-Ming Chu, New Estimates of q1q2-Ostrowski-Type Inequalities within a Class of n-Polynomial Prevexity of Functions, 2020, 2020, 2314-8896, 1, 10.1155/2020/3720798 | |
25. | Saad Ihsan Butt, Muhammad Umar, Saima Rashid, Ahmet Ocak Akdemir, Yu-Ming Chu, New Hermite–Jensen–Mercer-type inequalities via k-fractional integrals, 2020, 2020, 1687-1847, 10.1186/s13662-020-03093-y | |
26. | Yu-Ming Chu, Muhammad Uzair Awan, Sadia Talib, Muhammad Aslam Noor, Khalida Inayat Noor, New post quantum analogues of Ostrowski-type inequalities using new definitions of left–right (p,q)-derivatives and definite integrals, 2020, 2020, 1687-1847, 10.1186/s13662-020-03094-x | |
27. | Imran Abbas Baloch, Aqeel Ahmad Mughal, Yu-Ming Chu, Absar Ul Haq, Manuel De La Sen, A variant of Jensen-type inequality and related results for harmonic convex functions, 2020, 5, 2473-6988, 6404, 10.3934/math.2020412 | |
28. | Thabet Abdeljawad, Saima Rashid, A. A. El-Deeb, Zakia Hammouch, Yu-Ming Chu, Certain new weighted estimates proposing generalized proportional fractional operator in another sense, 2020, 2020, 1687-1847, 10.1186/s13662-020-02935-z | |
29. | Hu Ge-JiLe, Saima Rashid, Fozia Bashir Farooq, Sobia Sultana, Shanhe Wu, Some Inequalities for a New Class of Convex Functions with Applications via Local Fractional Integral, 2021, 2021, 2314-8888, 1, 10.1155/2021/6663971 | |
30. | Yu‐ming Chu, Saima Rashid, Jagdev Singh, A novel comprehensive analysis on generalized harmonically ψ ‐convex with respect to Raina's function on fractal set with applications , 2021, 0170-4214, 10.1002/mma.7346 | |
31. | Xue Wang, Absar ul Haq, Muhammad Shoaib Saleem, Sami Ullah Zakir, Mohsan Raza, The Strong Convex Functions and Related Inequalities, 2022, 2022, 2314-8888, 1, 10.1155/2022/4056201 | |
32. | SAIMA RASHID, AASMA KHALID, YELIZ KARACA, YU-MING CHU, REVISITING FEJÉR–HERMITE–HADAMARD TYPE INEQUALITIES IN FRACTAL DOMAIN AND APPLICATIONS, 2022, 30, 0218-348X, 10.1142/S0218348X22401338 | |
33. | Waewta Luangboon, Kamsing Nonlaopon, Jessada Tariboon, Sotiris K. Ntouyas, Simpson- and Newton-Type Inequalities for Convex Functions via (p,q)-Calculus, 2021, 9, 2227-7390, 1338, 10.3390/math9121338 | |
34. | Waewta Luangboon, Kamsing Nonlaopon, Jessada Tariboon, Sotiris K. Ntouyas, Hüseyin Budak, On generalizations of some integral inequalities for preinvex functions via (p,q)-calculus, 2022, 2022, 1029-242X, 10.1186/s13660-022-02896-9 | |
35. | Khuram Ali Khan, Saeeda Fatima, Ammara Nosheen, Rostin Matendo Mabela, Kenan Yildirim, New Developments of Hermite–Hadamard Type Inequalities via s-Convexity and Fractional Integrals, 2024, 2024, 2314-4785, 1, 10.1155/2024/1997549 | |
36. | Ghada AlNemer, Samir H. Saker, Gehad M. Ashry, Mohammed Zakarya, Haytham M. Rezk, Mohammed R. Kenawy, Some Hardy's inequalities on conformable fractional calculus, 2024, 57, 2391-4661, 10.1515/dema-2024-0027 | |
37. | Tahir Ullah Khan, Muhammad Adil Khan, Hermite-Hadamard inequality for new generalized conformable fractional operators, 2021, 6, 2473-6988, 23, 10.3934/math.2021002 |