This paper aimed to explore fixed point theorems for CMJ generalized mappings in $ CAT_{p}(0) $ metric spaces. To strengthen the established results, we presented a positive example. In applications, we found the existence of the solution to nonlinear matrix equations, and unique solutions of two scale fractal hybrid fractional differential equations in $ CAT_{p}(0) $.
Citation: Mohammad Sajid, Lucas Wangwe, Hemanta Kalita, Santosh Kumar. Fixed point theorem on $ CAT_{p}(0) $ metric spaces with applications in solving matrix equations and fractional differential equations[J]. AIMS Mathematics, 2025, 10(5): 11131-11158. doi: 10.3934/math.2025505
This paper aimed to explore fixed point theorems for CMJ generalized mappings in $ CAT_{p}(0) $ metric spaces. To strengthen the established results, we presented a positive example. In applications, we found the existence of the solution to nonlinear matrix equations, and unique solutions of two scale fractal hybrid fractional differential equations in $ CAT_{p}(0) $.
| [1] |
A. Meir, E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl., 28 (1969), 326–329. https://doi.org/10.1016/0022-247X(69)90031-6 doi: 10.1016/0022-247X(69)90031-6
|
| [2] | L. B. Ćirić, A new fixed-point theorem for contractive mapping, Publ. I. Math., 30 (1981), 25–27. |
| [3] | J. Matkowski, Fixed point theorems for contractive mappings in metric spaces, $\check{C}$asopis Pro P$\check{e}$stování Matematiky, 105 (1980), 341–344. https://doi.org/10.21136/CPM.1980.108246 |
| [4] | D. W. Boyd, J. S. W. Wong, On nonlinear contraction, Proc. Amer. Math. Soc., 20 (1969), 458–464. https://doi.org/10.2307/2035677 |
| [5] | S. Reich, Fixed points of contractive functions, Boll. UMI, 5 (1972), 26–42. |
| [6] |
C. S. Wong, Generalized contraction and fixed point theorems, Proc. Amer. Math. Soc., 42 (1974), 409–417. https://doi.org/10.1090/S0002-9939-1974-0331358-4 doi: 10.1090/S0002-9939-1974-0331358-4
|
| [7] |
j. Jachymski, Equivalent conditions and the Meir-Keeler type theorems, J. Math. Anal. Appl., 194 (1995), 293–303. https://doi.org/10.1006/jmaa.1995.1299 doi: 10.1006/jmaa.1995.1299
|
| [8] | M. Gromov, Metric structure for Riemannian and Non-Riemannian spaces, Boston: Birkhauser, 1984. https://doi.org/10.1007/978-0-8176-4583-0 |
| [9] |
W. A. Kirk, Fixed point theorems in CAT(0) spaces and R-trees, Fixed Point Theory Appl., 2004 (2004), 738084. https://doi.org/10.1155/S1687182004406081 doi: 10.1155/S1687182004406081
|
| [10] | K. Goebel, S. Reich, Uniform convexity, hyperbolic geometry, and non-expansive mappings, 1984. |
| [11] |
S. Reich, I. Shafrir, Non-expansive iterations in hyperbolic spaces, Nonlinear Anal. Theor., 15 (1990), 537–558. https://doi.org/10.1016/0362-546X(90)90058-O doi: 10.1016/0362-546X(90)90058-O
|
| [12] |
S. Dhompongsa, B. Panyanak, On $\bigtriangleup$-convergence theorems in CAT (0) spaces, Comput. Math. Appl., 56 (2008), 2572–2579. https://doi.org/10.1016/j.camwa.2008.05.036 doi: 10.1016/j.camwa.2008.05.036
|
| [13] | M. A. Khamsi, S. Shukri, Generalized CAT(0) spaces, Bull. Belg. Math. Soc. Simon Stevin, 24 (2017), 417–426. https://doi.org/10.36045/bbms/1506477690 |
| [14] | S. Shukri, On monotone nonexpansive mappings in $C AT_{p}(0)$ spaces, Fixed Point Theory Appl., 8 (2020). https://doi.org/10.1186/s13663-020-00675-z |
| [15] |
A. A. Darweesh, S. Shukri, Fixed points of Suzuki-generalized nonexpansive mappings in $ CAT_p (0) $ metric spaces, Arab. J. Math., 13 (2024), 227–236. https://doi.org/10.1007/s40065-024-00455-2 doi: 10.1007/s40065-024-00455-2
|
| [16] |
Y. Sun, R. P. Agarwal, Existence of fixed point for nonlinear operator in partially ordered metric space, Adv. Differ. Equ. Contr., 30 (2023), 97–116. https://doi.org/10.17654/0974324323007 doi: 10.17654/0974324323007
|
| [17] |
L. Xie, J. Zhou, H. Deng, Y. He, Existence and stability of solution for multi-order nonlinear fractional differential equations, AIMS Math., 7 (2022), 16440–16448. https://doi.org/10.3934/math.2022899 doi: 10.3934/math.2022899
|
| [18] |
J. L. Zhou, Y. B. He, S. Q. Zhang, H. Y. Deng, X. Y. Lin, Existence and stability results for nonlinear fractional integrodifferential coupled systems, Bound. Value Probl., 2023 (2023), 10. https://doi.org/10.1186/s13661-023-01698-2 doi: 10.1186/s13661-023-01698-2
|
| [19] |
M. A. Imran, Application of fractal fractional derivative of power law kernel $ ^{FFP}_{0}D^{\alpha, \beta}_{x}$ to MHD viscous fluid flow between two plates, Chaos Soliton. Fract., 134 (2020), 10969. https://doi.org/10.1016/j.chaos.2020.109691 doi: 10.1016/j.chaos.2020.109691
|
| [20] |
C. H. He, H. W. Liu, C. Liu, A fractal-based approach to the mechanical properties of recycled aggregate concretes, Fact. Univ. Ser. Mech., 22 (2024), 329–342. https://doi.org/10.22190/FUME240605035H doi: 10.22190/FUME240605035H
|
| [21] |
D. Bini, B. Meini, On the solution of a nonlinear matrix equation arising in queueing problems, SIAM J. Matrix Anal. A., 17 (1996), 906–926. https://doi.org/10.1137/S0895479895284804 doi: 10.1137/S0895479895284804
|
| [22] |
Y. Lim, Solving the nonlinear matrix equation $X = Q+\sum_{i = 1}^{m} M_{i}X^{\delta_{i}}M_{i}^{*}$ via a contraction principle, Linear Algebra Appl., 430 (2009), 1380–1383. https://doi.org/10.1016/j.laa.2008.10.034 doi: 10.1016/j.laa.2008.10.034
|
| [23] |
W. A. Kirk, A fixed point theorem for mappings which do not increases distances, Amer. Math. Mon., 72 (1965), 1004–1006. https://doi.org/10.2307/2313345 doi: 10.2307/2313345
|
| [24] |
B. Nanjaras, B. Panyanaka, W. Phuengrattanab, Fixed point theorems and convergence theorems for Suzuki-generalized non-expansive mappings in C AT (0) spaces, Nonlinear Anal. Hybri., 4 (2010), 25–31. https://doi.org/10.1016/j.nahs.2009.07.003 doi: 10.1016/j.nahs.2009.07.003
|
| [25] | M. R. Bridson, A. Haefliger, Metric spaces of non-positive curvature, Berlin: Springer, 1999. https://doi.org/10.1007/978-3-662-12494-9 |
| [26] | F. Bruhat, J. Tits, Groupes réductifs sur un corps local: I. Données radicielles valuées, In: Publications Mathématiques de l'IHÉS, 41 (1972), 5–251. |
| [27] | R. P. Agarwal, J. Mohamed, B. Samet, Fixed point theory in metric spaces, Singapore: Springer, 2018. https://doi.org/10.1007/978-981-13-2913-5 |
| [28] | K. Goebel, W. A. Kirk, Iteration processes for non-expansive mappings, Contemp. Math., 21 (1983), 115–123. |
| [29] | A. Papadopoulos, Metric spaces, convexity and nonpositive curvature, 2004. |
| [30] |
U. Kohlenbach, L. Leustean, Mann iterates of directionally non-expansive mappings in hyperbolic spaces, Abstr. Appl. Anal., 8 (2003), 449–477. https://doi.org/10.1155/S1085337503212021 doi: 10.1155/S1085337503212021
|
| [31] | Z. Opial, Weak convergence of the sequence of successive approximations for non-expansive mappings, Bull. Amer. Math. Soc., 73 (1967), 591–597. |
| [32] |
F. E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, Bull. Amer. Math. Soc., 73 (1967), 867–874. https://doi.org/10.1090/S0002-9904-1967-11820-2 doi: 10.1090/S0002-9904-1967-11820-2
|
| [33] |
A. Naor, L. Silberman Poincare inequalities, embeddings, and wild groups, Compos. Math., 147 (2011), 1546–1572. https://doi.org/10.1112/S0010437X11005343 doi: 10.1112/S0010437X11005343
|
| [34] | T. Suzuki, Fixed point theorems and convergence theorems for some generalized non-expansive mapping, J. Math. Anal. Appl., 340 (2008), 1088–1095. |
| [35] |
T. Suzuki, Generalized metric spaces do not have the compatible topology, Abstr. Appl. Anal., 2014 (2014), 458098. https://doi.org/10.1155/2014/458098 doi: 10.1155/2014/458098
|
| [36] | S. Banach, On operations in abstract sets and their application to integral equations, Fund. Math., 3 (1922), 133–181. |
| [37] |
D. A. Bini, G. Latouche, B. Meini, Solving nonlinear matrix equations arising in tree-like stochastic processes, Linear Algebra Appl., 366 (2003), 39–64. https://doi.org/10.1016/S0024-3795(02)00593-1 doi: 10.1016/S0024-3795(02)00593-1
|
| [38] |
M. L. Maheswari, K. S. Keerthana Shri, M. Sajid, Analysis on existence of system of coupled multi fractional nonlinear hybrid differential equations with coupled boundary conditions, AIMS Math., 9 (2024), 13642–13658. https://doi.org/10.3934/math.2024666 doi: 10.3934/math.2024666
|
| [39] |
J. H. He, Fractal calculus and its geometrical explanation, Res. Phys., 10 (2018), 272–276. https://doi.org/10.1016/j.rinp.2018.06.011 doi: 10.1016/j.rinp.2018.06.011
|
| [40] | A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, 2016. https://doi.org/10.48550/arXiv.1602.03408 |
| [41] |
J. H. He, A tutorial review on fractal space time and fractional calculus, Int. J. Theor. Phys., 53 (2014), 3698–3718. https://doi.org/10.1007/s10773-014-2123-8 doi: 10.1007/s10773-014-2123-8
|
| [42] |
S. K. Shafiullah, M. Sarwar, T. Abdeljawad, On theoretical and numerical analysis of fractal-fractional non-linear hybrid differential equations, Nonlinear Eng., 13 (2024), 20220372. https://doi.org/10.1515/nleng-2022-0372 doi: 10.1515/nleng-2022-0372
|
| [43] |
S. Qureshi, A. Atangana, Fractal-fractional diferentiation for the modeling and mathematical analysis of nonlinear diarrhea transmission dynamics under the use of real data, Chaos Soliton. Fract., 136 (2020), 109812. https://doi.org/10.1016/j.chaos.2020.109812 doi: 10.1016/j.chaos.2020.109812
|
| [44] |
T. Abdeljawad, M. Sher, K. Shah, M. Sarwar, I. Amacha, M. Alqudah, et al., Analysis of a class of fractal hybrid fractional differential equation with application to a biological model, Sci. Rep., 14 (2024), 18937. https://doi.org/10.1038/s41598-024-67158-8 doi: 10.1038/s41598-024-67158-8
|
| [45] |
C. Xu, Z. Liu, Y. Pang, S. Saifullah, M. Inc, Oscillatory, crossover behavior and chaos analysis of HIV-1 infection model using piece-wise Atangana-Baleanu fractional operator: Real data approach, Chaos Soliton. Fract., 164 (2022), 112662. https://doi.org/10.1016/j.chaos.2022.112662 doi: 10.1016/j.chaos.2022.112662
|
| [46] |
G. S. Teodoro, J. T. Machado, E. C. De Oliveira, A review of defnitions of fractional derivatives and other operators, J. Comput. Phys., 388 (2019), 195–208. https://doi.org/10.1016/j.jcp.2019.03.008 doi: 10.1016/j.jcp.2019.03.008
|