Research article

Almost automorphic solutions for mean-field SDEs driven by Lévy noise

  • Published: 15 May 2025
  • MSC : 34C27, 34G20, 60G51, 60H10

  • The paper is dedicated to studying the almost automorphic solutions for mean-field SDEs with Lévy noise. It is proven that if the coefficients satisfy the Lipschitz conditions, the equation admits a unique bounded solution, and the solution can inherit in distribution the almost automorphy of the coefficients. In addition, we investigate the global asymptotic stability of these solutions. We also give an example of the stochastic heat equation to illustrate our work.

    Citation: Xin Liu, Yongqi Hou. Almost automorphic solutions for mean-field SDEs driven by Lévy noise[J]. AIMS Mathematics, 2025, 10(5): 11159-11183. doi: 10.3934/math.2025506

    Related Papers:

  • The paper is dedicated to studying the almost automorphic solutions for mean-field SDEs with Lévy noise. It is proven that if the coefficients satisfy the Lipschitz conditions, the equation admits a unique bounded solution, and the solution can inherit in distribution the almost automorphy of the coefficients. In addition, we investigate the global asymptotic stability of these solutions. We also give an example of the stochastic heat equation to illustrate our work.



    加载中


    [1] D. Applebaum, Lévy process and stochastic calculus, 2Eds., Cambridge: Cambridge University Press, 2009. https://doi.org/10.1017/CBO9780511809781
    [2] S. Bochner, Curvature and Betti numbers in real and complex vector bundles, Univ. e Politec. Torino Rend. Sem. Mat., 15 (1955), 225–253.
    [3] S. Bochner, A new approach to almost periodicity, PNAS, 48 (1962), 2039–2043. https://doi.org/10.1073/pnas.48.12.2039 doi: 10.1073/pnas.48.12.2039
    [4] R. Buckdahn, B. Djehiche, J. Li, S. Peng, Mean-field backward stochastic differential equations: a limit approach, Ann. Probab., 37 (2009), 1524–1565. https://doi.org/10.1214/08-AOP442 doi: 10.1214/08-AOP442
    [5] R. Carmona, F. Delarue, Probabilistic analysis of mean-field games, SIAM J. Control Optim., 51 (2013), 2705–2734. https://doi.org/10.1137/120883499 doi: 10.1137/120883499
    [6] D. Cheban, Bohr-Levitan almost periodic and almost automorphic solutions of equation $x'(t) = f(t-1, x(t-1))-f(t, x(t))$, In: Analysis, applications, and computations, Cham: Birkhäuser, 2023, 73–88. https://doi.org/10.1007/978-3-031-36375-7_3
    [7] F. Chen, X. Zhang, Almost automorphic solutions for mean-field stochastic differential equations driven by fractional Brownian motion, Stoch. Anal. Appl., 37 (2019), 1–18. https://doi.org/10.1080/07362994.2018.1486205 doi: 10.1080/07362994.2018.1486205
    [8] Z. Chen, W. Lin, Square-mean pseudo almost automorphic process and its application to stochastic evolution equations, J. Funct. Anal., 261 (2011), 69–89. https://doi.org/10.1016/j.jfa.2011.03.005 doi: 10.1016/j.jfa.2011.03.005
    [9] P. de Raynal, N. Frikha, Well-posedness for some non-linear SDEs and related PDE on the Wasserstein space, J. Math. Pure. Appl., 159 (2022), 1–167. https://doi.org/10.1016/j.matpur.2021.12.001 doi: 10.1016/j.matpur.2021.12.001
    [10] M. Dieye, A. Diop, M. Mbaye, M. McKibben, On weighted pseudo almost automorphic mild solutions for some mean field stochastic evolution equations, Stochastics, 96 (2024), 1388–1427. https://doi.org/10.1080/17442508.2023.2283554 doi: 10.1080/17442508.2023.2283554
    [11] A. M. Fink, Almost periodic differential equation, Berlin: Springer-Verlag, 1974. https://doi.org/10.1007/BFb0070324
    [12] M. Fu, Z. Liu, Square-mean almost automorphic solutions for some stochastic differential equations, Proc. Amer. Math. Soc., 138 (2010), 3689–3701. https://doi.org/10.1090/S0002-9939-10-10377-3 doi: 10.1090/S0002-9939-10-10377-3
    [13] R. A. Johnson, A linear, almost periodic equation with an almost automorphic solution, Proc. Amer. Math. Soc., 82 (1981), 199–205. https://doi.org/10.1090/S0002-9939-1981-0609651-0 doi: 10.1090/S0002-9939-1981-0609651-0
    [14] M. Kac, Foundations of kinetic theory, In: Proceedings of the third Berkeley symposium on mathematical statistics and probability, III, Los Angeles: University of California Press, 1956,171–197. https://doi.org/10.1525/9780520350694-012
    [15] Z. Li, J. Luo, Mean-field reflected backward stochastic differential equations, Stat. Probabil. Lett., 82 (2012), 1961–1968. https://doi.org/10.1016/j.spl.2012.06.018 doi: 10.1016/j.spl.2012.06.018
    [16] Z. Li, L. Xu, Almost automorphic solutions for stochastic differential equations driven by Lévy noise, Physica A, 545 (2020), 122964. https://doi.org/10.1016/j.physa.2019.122964 doi: 10.1016/j.physa.2019.122964
    [17] Z. Li, L. Xu, L. Yan, McKean-Vlasov stochastic differential equations driven by the time-changed Brownian motion, J. Math. Anal. Appl., 527 (2023), 127336. https://doi.org/10.1016/j.jmaa.2023.127336 doi: 10.1016/j.jmaa.2023.127336
    [18] P. Lions, Medium-field games, Collège de France, Public lectures, 2006–2012. Available from: https://www.college-de-france.fr/en/chair/pierre-louis-lions-partial-differential-equations-and-applications-statutory-chair/events.
    [19] S. Liu, H. Gao, Stability of almost automorphic solutions for McKean-Vlasov SDEs, Appl. Anal., 103 (2024), 668–682. https://doi.org/10.1080/00036811.2023.2203697 doi: 10.1080/00036811.2023.2203697
    [20] Z. Liu, K. Sun, Almost automorphic solutions for stochastic differential equations driven by Lévy noise, J. Funct. Anal., 266 (2014), 1115–1149. https://doi.org/10.1016/j.jfa.2013.11.011 doi: 10.1016/j.jfa.2013.11.011
    [21] H. P. McKean, Propagation of chaos for a class of nonlinear parabolic equations, In: Lecture series in differential equations session, New York: Van Nostrand, 1967, 41–57.
    [22] Y. Mishura, A. Veretennikov, Existence and uniqueness theorems for solutions of McKean-Vlasov stochastic equations, Theor. Probab. Math. St., 103 (2020), 59–101. https://doi.org/10.1090/tpms/1135 doi: 10.1090/tpms/1135
    [23] W. Shen, Y. Yi, Almost automorphic and almost periodic dynamics in skew-product semiflows, Providence: American Mathematical Society, 1998.
    [24] A. Sznitman, Topics in propagation of chaos, In: École dÉté de probabilités de Saint-Flour XIX-1989, Berlin: Springer, 1991,165–251, https://doi.org/10.1007/BFb0085169
    [25] W. Veech, Almost automorphic functions, PNAS, 49 (1963), 462–464. https://doi.org/10.1073/pnas.49.4.462 doi: 10.1073/pnas.49.4.462
    [26] F. Wang, Distribution dependent SDEs for Landau type equations, Stoch. Proc. Appl., 128 (2018), 595–621. https://doi.org/10.1016/j.spa.2017.05.006 doi: 10.1016/j.spa.2017.05.006
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(824) PDF downloads(45) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog