Research article

New insights into rough approximations of a fuzzy set inspired by soft relations with decision making applications

  • Published: 25 April 2025
  • MSC : 03E72, 18B40

  • In the fields of mathematics and information sciences, binary relations are vital. Fuzzy sets (FSs), rough sets (RSs), and soft sets (SSs) are mathematical strategies that effectively handle ambiguous and imprecise data in practical situations. This work presents various properties of the roughness of fuzzy sets regarding foresets (F-sets) and aftersets (A-sets) using soft binary relations (SBRs). Initially, two pairs of fuzzy soft sets (FSSs) are obtained by approximating a fuzzy subset using an SBR, and their distinctive axiomatic systems are explored. Additionally, two types of fuzzy topologies that result from soft reflexive relations (SRRs) are examined. Numerous similarity relations allied with SBRs are also investigated. In addition, we present the accuracy measure and roughness measure for a fuzzy subset based on the mass assignment of the fuzzy subset through soft relations. Next, we outline a decision-making (DM) approach within the context of the proposed method. In addition, we provide two algorithms and decision phases. Ultimately, an applied example is used to evaluate the reliability of the decision processes. An extensive comparison study confirms the proposed method's feasibility and superiority over current DM methods.

    Citation: Rani Sumaira Kanwal, Saqib Mazher Qurashi, Rizwan Gul, Alaa M. Abd El-latif, Tareq M. Al-shami, Faiza Tufail. New insights into rough approximations of a fuzzy set inspired by soft relations with decision making applications[J]. AIMS Mathematics, 2025, 10(4): 9637-9673. doi: 10.3934/math.2025444

    Related Papers:

  • In the fields of mathematics and information sciences, binary relations are vital. Fuzzy sets (FSs), rough sets (RSs), and soft sets (SSs) are mathematical strategies that effectively handle ambiguous and imprecise data in practical situations. This work presents various properties of the roughness of fuzzy sets regarding foresets (F-sets) and aftersets (A-sets) using soft binary relations (SBRs). Initially, two pairs of fuzzy soft sets (FSSs) are obtained by approximating a fuzzy subset using an SBR, and their distinctive axiomatic systems are explored. Additionally, two types of fuzzy topologies that result from soft reflexive relations (SRRs) are examined. Numerous similarity relations allied with SBRs are also investigated. In addition, we present the accuracy measure and roughness measure for a fuzzy subset based on the mass assignment of the fuzzy subset through soft relations. Next, we outline a decision-making (DM) approach within the context of the proposed method. In addition, we provide two algorithms and decision phases. Ultimately, an applied example is used to evaluate the reliability of the decision processes. An extensive comparison study confirms the proposed method's feasibility and superiority over current DM methods.



    加载中


    [1] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [2] N. Palaniappan, Fuzzy topology, Alpha Science International, 2002.
    [3] D. Molodtsov, Soft set theory-First results, Comput. Math. Appl. , 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5
    [4] M. I. Ali, A note on soft sets, rough sets and fuzzy soft sets, Appl. Soft Comput. , 11 (2011) 3329–3332. https://doi.org/10.1016/j.asoc.2011.01.003 doi: 10.1016/j.asoc.2011.01.003
    [5] P. K. Maji, A. R. Roy, R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl. , 44 (2002), 1077–1083. https://doi.org/10.1016/S0898-1221(02)00216-X doi: 10.1016/S0898-1221(02)00216-X
    [6] P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Comput. Math. Appl., 45 (2003), 555–562. https://doi.org/10.1016/S0898-1221(03)00016-6 doi: 10.1016/S0898-1221(03)00016-6
    [7] D. Chen, E. C. C. Tsang, D. S. Yeung, X. Z. Wang, The parameterization reduction of soft sets and its application, Comput. Math. Appl., 49 (2005), 757–763. https://doi.org/10.1016/j.camwa.2004.10.036 doi: 10.1016/j.camwa.2004.10.036
    [8] S. Ayub, W. Mahmood, M. Shabir, A. N. Koam, R. Gul, A study on soft multi-granulation rough sets and their applications, IEEE Access, 10 (2022), 115541–115554. https://doi.org/10.1109/ACCESS.2022.3218695 doi: 10.1109/ACCESS.2022.3218695
    [9] J. C. R. Alcantud, A. Z. Khameneh, G. Santos-García, M. Akram, A systematic literature review of soft set theory, Neural Comput. Appl. , 36 (2024), 8951–8975. https://doi.org/10.1007/s00521-024-09552-x doi: 10.1007/s00521-024-09552-x
    [10] E. Bayram, G. Çelik, M. Gezek, An advanced encryption system based on soft sets, AIMS Math. , 9 (2024), 32232–32256. https://doi.org/10.3934/math.20241547 doi: 10.3934/math.20241547
    [11] A. Adeel, M. Akram, N. Çağman, Decision-making analysis based on hesitant fuzzy N-soft ELECTRE-I approach, Soft Comput. , 26 (2022), 11849–11863. https://doi.org/10.1007/s00500-022-06981-5 doi: 10.1007/s00500-022-06981-5
    [12] F. Feng, J. Cho, W. Pedrycz, H. Fujita, T. Herawan, Soft set based association rule mining, Knowl. -Based Syst. , 111 (2016), 268–282. https://doi.org/10.1016/j.knosys.2016.08.020 doi: 10.1016/j.knosys.2016.08.020
    [13] Z. C. Liu, J. C. R. Alcantud, K. Y. Qin, L. Xiong, The soft sets and fuzzy sets-based neural networks and application, IEEE Access, 111 (2020), 41615–41625. https://doi.org/10.1109/ACCESS.2020.2976731 doi: 10.1109/ACCESS.2020.2976731
    [14] B. K. Tripathy, T. R. Sooraj, R. K. Mohanty, Rough set and soft set models in image processing, In: Intelligent multimedia data analysis, Berlin, Boston, De Gruyter, 2019,123–144. https://doi.org/10.1515/9783110552072-006
    [15] Z. Pawlak, Rough sets, Int. J. Comput. Inf. Sci., 11 (1982), 341–356. https://doi.org/10.1007/BF01001956 doi: 10.1007/BF01001956
    [16] T. M. Al-shami, M. M. A. Al-Shamiri, M. Arar, Unavoidable corrections for θβ-ideal approximation spaces, AIMS Math. , 9 (2024), 32399–32408. https://doi.org/10.3934/math.20241553 doi: 10.3934/math.20241553
    [17] T. M. Al-shami, A. Mhemdi, Overlapping containment rough neighborhoods and their generalized approximation spaces with applications, J. Appl. Math. Comput. , 71 (2025), 869–900. https://doi.org/10.1007/s12190-024-02261-7 doi: 10.1007/s12190-024-02261-7
    [18] T. M. Al-shami, M. Hosny, M. Arar, Rodyna A. Hosny, Generalized rough approximation spaces inspired by cardinality neighborhoods and ideals with application to dengue disease, J. Appl. Math. Comput. , 71 (2025), 247–277. https://doi.org/10.1007/s12190-024-02235-9 doi: 10.1007/s12190-024-02235-9
    [19] T. M. Al-shami, R. A. Hosny, A. Mhemdi, M. Hosny, Cardinality rough neighborhoods with applications, AIMS Math. , 9 (2024), 31366–31392. https://doi.org/10.3934/math.20241511 doi: 10.3934/math.20241511
    [20] T. M. Al-shami, M. Hosny, M. Arar, R. A. Hosny, Cardinality rough neighborhoods via ideals with medical applications, Comput. Appl. Math. , 44 (2025), 132. https://doi.org/10.1007/s40314-024-03069-8 doi: 10.1007/s40314-024-03069-8
    [21] T. M. Al-shami, M. Hosny, Generalized approximation spaces generation from $ {\mathbb{I}}_{j} $-neighborhoods and ideals with application to Chikungunya disease, AIMS Math. , 9 (2024), 10050–10077. https://doi.org/10.3934/math.2024492 doi: 10.3934/math.2024492
    [22] T. M. Al-shami, A. Mhemdi, Approximation spaces inspired by subset rough neighborhoods with applications, Demonstr. Math. , 56 (2023), 20220223. https://doi.org/10.1515/dema-2022-0223 doi: 10.1515/dema-2022-0223
    [23] K. Kaur, A. Gupta, T. M. Al-shami, M. Hosny, A new multi-ideal nano-topological model via neighborhoods for diagnosis and cure of dengue, Comput. Appl. Math. , 43 (2024). https://doi.org/10.1007/s40314-024-02910-4 doi: 10.1007/s40314-024-02910-4
    [24] W. Zhu, Generalized rough sets based on relations, Inform. Sciences, 177 (2007), 4997–5011. https://doi.org/10.1016/j.ins.2007.05.037 doi: 10.1016/j.ins.2007.05.037
    [25] Y. H. She, X. L. He, H. X. Shi, Y. H. Qian, A multiple-valued logic approach for multigranulation rough set model, Int. J. Approx. Reason. , 82 (2017), 270–284. https://doi.org/10.1016/j.ijar.2016.12.006 doi: 10.1016/j.ijar.2016.12.006
    [26] D. Dubois, H. Prade, Putting rough sets and fuzzy sets together, In: Intelligent decision support: Handbook of applications and advances of the rough sets theory, 1992,203–232. https://doi.org/10.1007/978-94-015-7975-9_14
    [27] R. Gul, S. Ayub, M. Shabir, A. Y. Hummdi, A. Aljaedi, Z. Bassfar, A novel approach for fuzzification of rough sets based on fuzzy preference relation: Properties and application to medicine selection problem, IEEE Access, 12 (2024), 67681–67703. https://doi.org/10.1109/ACCESS.2024.3396526 doi: 10.1109/ACCESS.2024.3396526
    [28] M. Shabir, T. Shaheen, A new methodology for fuzzification of rough sets based on α- indiscernibility, Fuzzy Set. Syst. , 312 (2017), 1–16. https://doi.org/10.1016/j.fss.2016.07.001 doi: 10.1016/j.fss.2016.07.001
    [29] S. Greco, B. Matarazzo, R. Slowinski, Rough approximation of preference relation by dominance relations, Eur. J. Oper. Res. , 117 (1999), 63–83. https://doi.org/10.1016/S0377-2217(98)00127-1 doi: 10.1016/S0377-2217(98)00127-1
    [30] J. Zhan, K. Zhu, Reviews on decision making methods based on (fuzzy) soft sets and rough soft sets, J. Intell. Fuzzy Syst. , 29 (2015), 1169–1176.
    [31] A. S. Salama, A. Mhemdi, O. G. Elbarbary, T. M. Al-shami, Topological approaches for rough continuous functions with applications, Complexity, 2021 (2021), https://doi.org/10.1155/2021/5586187 doi: 10.1155/2021/5586187
    [32] M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl. , 61 (2011), 1786–1799. https://doi.org/10.1016/j.camwa.2011.02.006 doi: 10.1016/j.camwa.2011.02.006
    [33] Z. W. Li, T. S. Xie, The relationship among soft sets, soft rough sets and topologies, Soft Comput., 18 (2014), 717–728. https://doi.org/10.1007/s00500-013-1108-5 doi: 10.1007/s00500-013-1108-5
    [34] M. Riaz, F. Karaaslan, I. Nawaz, M. Sohail, Soft multi-rough set topology with applications to multi-criteria decision-making problems, Soft Comput. , 25 (2021), 799–815. https://doi.org/10.1007/s00500-020-05382-w doi: 10.1007/s00500-020-05382-w
    [35] S. M. Qurashi, B. Almutairi, R. S. Kanwal, M. Krstic and M. Yousaf, Rough substructures based on overlaps of successor in quantales under serial fuzzy relations, IEEE Access, 11 (2023), 88778–88794. https://doi.org/10.1109/ACCESS.2023.3306028 doi: 10.1109/ACCESS.2023.3306028
    [36] F. Feng, M. I. Ali, M. Shabir, Soft relations applied to semigroups, Filomat, 27 (2013), 1183–1196. https://doi.org/10.2298/FIL1307183F doi: 10.2298/FIL1307183F
    [37] M. Shabir, J. Din, I. A. Ganieb, Multigranulation roughness based on soft relations, J. Intell. Fuzzy Syst. , 40 (2021), 10893–10908.
    [38] R. Prasertpong, Roughness of soft sets and fuzzy sets in semigroups based on set-valued picture hesitant fuzzy relations, AIMS Math. , 7 (2022), 2891–2928. https://doi.org/10.3934/math.2022160 doi: 10.3934/math.2022160
    [39] S. Mehmood, R. Gul, M. Shabir, T. Alballa, H. A. E. W. Khalifa, Roughness of fuzzy sets by binary relations induced from soft relations with application in decision making, Phys. Scr. , 100 (2024), 015245. https://doi.org/10.1088/1402-4896/ad999c doi: 10.1088/1402-4896/ad999c
    [40] F. Feng, C. X. Li, B. Davvaz, M. I. Ali, Soft sets combined with fuzzy sets and rough sets: A tentative approach, Soft Comput. , 14 (2010), 899–911. https://doi.org/10.1007/s00500-009-0465-6 doi: 10.1007/s00500-009-0465-6
    [41] F. Feng, X. Y. Liu, V. Leoreanu-Fotea, Y. B. Jun, Soft sets and soft rough sets, Inform. Sciences, 181 (2011), 1125–1137. https://doi.org/10.1016/j.ins.2010.11.004 doi: 10.1016/j.ins.2010.11.004
    [42] R. S. Kanwal, M. Shabir, Approximation of ideals in semigroups by soft relations, J. Intell. Fuzzy Syst. , 35 (2018), 3895–3908. https://doi.org/10.3233/JIFS-18834 doi: 10.3233/JIFS-18834
    [43] M. Shabir, R. S. Kanwal, M. I. Ali, Reduction of an information system, Soft Comput. , 24 (2020), 10801–10813. https://doi.org/10.1007/s00500-019-04582-3 doi: 10.1007/s00500-019-04582-3
    [44] M. I. Ali, F. Feng, X. Y. Liu, W. K. Minc, M. Shabir, On some new operations in soft set theory, Comput. Math. Appl. , 57 (2009), 1547–1553. https://doi.org/10.1016/j.camwa.2008.11.009 doi: 10.1016/j.camwa.2008.11.009
    [45] P. K. Maji, R. Biswas, A. R. Roy, Fuzzy soft sets, J. Fuzzy Math. , 9 (2001), 589–602.
    [46] F. Feng, X. Y. Liu, V. Leoreanu-Fotea, Y. B. Jun, Soft sets and soft rough sets, Inform. Sciences, 181 (2011), 1125–1137. https://doi.org/10.1016/j.ins.2010.11.004 doi: 10.1016/j.ins.2010.11.004
    [47] M. Shabir, M. I. Ali, T. Shaheen, Another approach to soft rough sets, Knowl. -Based Syst. , 40 (2013), 72–80. https://doi.org/10.1016/j.knosys.2012.11.012 doi: 10.1016/j.knosys.2012.11.012
    [48] J. M. Zhan, Q. M. Wang, Certain types of soft coverings based rough sets with applications, Int. J. Mach. Learn. Cyber. , 10 (2019), 1065–1076. https://doi.org/10.1007/s13042-018-0785-x doi: 10.1007/s13042-018-0785-x
    [49] S. Ayub, W. Mahmood, M. Shabir, R. Gul, A study of modules of fractions under fuzzy sets and soft sets, New Math. Nat. Comput. , 20 (2024), 247–271. https://doi.org/10.1142/S1793005724500145 doi: 10.1142/S1793005724500145
    [50] J. F. Baldwin, J. Lawry and T. P. Martin, Mass assignment based induction of decision trees on words, In: Proceedings of the Information Processing and Management of Uncertainty in Knowledge-Based Systems, 1 (1998), 6–10.
    [51] M. Banerjee, S. K. Pal, Roughness of a fuzzy set, Inf. Sci., 93 (1996), 235–246. https://doi.org/10.1016/0020-0255(96)00081-3 doi: 10.1016/0020-0255(96)00081-3
    [52] M. I. Ali, Another view on parametric reduction in soft sets, Appl. Soft Comput. , 12 (2012), 1814–1821. https://doi.org/10.1016/j.asoc.2012.01.002 doi: 10.1016/j.asoc.2012.01.002
    [53] Z. Kong, L. Q. Gao, L. F. Wang, S. Li, The normal parameter reduction of soft sets and its algorithm, Comput. Math. Appl., 56 (2008), 3029–3037. https://doi.org/10.1016/j.camwa.2008.07.013 doi: 10.1016/j.camwa.2008.07.013
    [54] N. Çağman, S. Enginoğlu, Soft matrix theory and its decision-making, Comput. Math. Appl., 59 (2010), 3308–3314. https://doi.org/10.1016/j.camwa.2010.03.015 doi: 10.1016/j.camwa.2010.03.015
    [55] G. L. Liu, Rough set theory based on two universal sets and its applications, Knowl. -Based Syst. , 23 (2010), 110–115. https://doi.org/10.1016/j.knosys.2009.06.011 doi: 10.1016/j.knosys.2009.06.011
    [56] C. H. Liu, D. Q. Miao, N. Zhang, Graded rough set model based on two universes and its properties, Knowl. -Based Syst. , 33 (2012), 65–72. https://doi.org/10.1016/j.knosys.2012.02.012 doi: 10.1016/j.knosys.2012.02.012
    [57] W. M. Ma, B. Z. Sun, Probabilistic rough set over two universes and rough entropy, Int. J. Approx. Reason. , 53 (2012), 608–619. https://doi.org/10.1016/j.ijar.2011.12.010 doi: 10.1016/j.ijar.2011.12.010
    [58] W. H. Xu, W. X. Sun, Y. F. Liu, W. X. Zhang, Fuzzy rough set models over two universes, Int. J. Mach. Learn. Cyber. , 4 (2013), 631–645. https://doi.org/10.1007/s13042-012-0129-1 doi: 10.1007/s13042-012-0129-1
    [59] Y. H. Shen, F. X. Wang, Variable precision rough set model over two universes and its properties, Soft Comput. , 15 (2011), 557–567. https://doi.org/10.1007/s00500-010-0562-6 doi: 10.1007/s00500-010-0562-6
    [60] B. Z. Sun, W. M. Ma, H. Y. Zhao, An approach to emergency decision making based on decision-theoretic rough set over two universes, Soft Comput. , 20 (2016), 3617–3628. https://doi.org/10.1007/s00500-015-1721-6 doi: 10.1007/s00500-015-1721-6
    [61] F. Feng, Y. B. Jun, X. Y. Liu, L. F. Li, An adjustable approach to fuzzy soft set based decision making, J. Comput. Appl. Math. , 234 (2010), 10–20. https://doi.org/10.1016/j.cam.2009.11.055 doi: 10.1016/j.cam.2009.11.055
    [62] A. R. Roy, P. K. Maji, A fuzzy soft set theoretic approach to decision making problems, J. Comput. Appl. Math. , 203 (2007), 412–418. https://doi.org/10.1016/j.cam.2006.04.008 doi: 10.1016/j.cam.2006.04.008
    [63] K. Gogoi, A. K. Dutta, C. Chutia, Application of fuzzy soft set theory in day to day problems, Int. J. Comput. Appl. , 85 (2014), 27–31. https://doi.org/10.5120/14854-3221 doi: 10.5120/14854-3221
    [64] Y. C. Jiang, H. Liu, Y. Tang, Q. M. Chen, Semantic decision-making using ontology based soft sets, Math. Comput. Model. , 53 (2011), 1140–1149. https://doi.org/10.1016/j.mcm.2010.11.080 doi: 10.1016/j.mcm.2010.11.080
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1228) PDF downloads(37) Cited by(1)

Article outline

Figures and Tables

Figures(2)  /  Tables(15)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog