Research article

Autonomous block method for uncertainty analysis in first-order real-world models using fuzzy initial value problem

  • Published: 25 April 2025
  • MSC : 35A15, 45G15, 65H20, 49M27

  • This article employs fuzzy derivatives and fuzzy differential equations (FDEs) to handle uncertainty in real-world applications. When exact answers are unavailable, numerical approaches are utilized to derive approximations for FDE. The autonomous two-step block method (TBM) with two higher fuzzy derivatives is used to discover optimum solutions to first-order FDEs with greater absolute accuracy. The technique competency is evaluated by analyzing first-order real-world models with fuzzy initial value problems (FIVPs). Using fuzzy calculus principles, we establish a novel universal fuzzification formulation of the TBM approach with the Taylor series. TBM is a convergent, zero-stable, and absolute stability region approach for solving linear and nonlinear fuzzy models, with a focus on regulating the convergence of approximate solutions. The developed method offers approximations for difficulties encountered in real life and is a transformational and workable method for solving first-order FIVPs.

    Citation: Kashif Hussain, Ala Amourah, Jamal Salah, Ali Fareed Jameel, Nidal Anakira. Autonomous block method for uncertainty analysis in first-order real-world models using fuzzy initial value problem[J]. AIMS Mathematics, 2025, 10(4): 9614-9636. doi: 10.3934/math.2025443

    Related Papers:

  • This article employs fuzzy derivatives and fuzzy differential equations (FDEs) to handle uncertainty in real-world applications. When exact answers are unavailable, numerical approaches are utilized to derive approximations for FDE. The autonomous two-step block method (TBM) with two higher fuzzy derivatives is used to discover optimum solutions to first-order FDEs with greater absolute accuracy. The technique competency is evaluated by analyzing first-order real-world models with fuzzy initial value problems (FIVPs). Using fuzzy calculus principles, we establish a novel universal fuzzification formulation of the TBM approach with the Taylor series. TBM is a convergent, zero-stable, and absolute stability region approach for solving linear and nonlinear fuzzy models, with a focus on regulating the convergence of approximate solutions. The developed method offers approximations for difficulties encountered in real life and is a transformational and workable method for solving first-order FIVPs.



    加载中


    [1] S. Abbasbandy, T. A. Viranloo, O. Lopez-Pouso, J. J. Nieto, Numerical methods for fuzzy differential inclusions, Comput. Math. Appl., 48 (2004), 1633−1641. https://doi.org/10.1016/j.camwa.2004.03.009 doi: 10.1016/j.camwa.2004.03.009
    [2] O. Adeyeye, Z. Omar, Numerical solution of first order initial value problems using a self-starting implicit two-step Obrechkoff-type block method, J. Math. Stat., 12 (2016), 127−134. https://doi.org/10.3844/jmssp.2016.127.134 doi: 10.3844/jmssp.2016.127.134
    [3] N. B. Ahmad, J. Kavikumar, M. Mamat, A. Hamzah, N. Shamsidah, Fuzzy differential equations by using modified Romberg's method, Prosiding Seminar Kebangsaan Aplikasi Sains dan Matematik, 29 (2013), 51−64.
    [4] A. Ahmadian, S. Salahshour, C. S. Chan, D. Baleanu, Numerical solutions of fuzzy differential equations by an efficient Runge–Kutta method with generalized differentiability, Fuzzy Set. Syst., 33 (2018), 47−67. https://doi.org/10.1016/j.fss.2016.11.013 doi: 10.1016/j.fss.2016.11.013
    [5] N. Ahmady, T. Allahviranloo, E. Ahmady, A modified Euler method for solving fuzzy differential equations under generalized differentiability, Comput. Appl. Math., 39 (2020), 1−21. https://doi.org/10.1007/s40314-020-1112-1 doi: 10.1007/s40314-020-1112-1
    [6] T. Allahviranloo, S. Abbasbandy, N. Ahmady, E. Ahmady, Improved predictor-corrector method for solving fuzzy initial value problems, Inform. Sci., 179 (2009), 945−955. https://doi.org/10.1016/j.ins.2008.11.030 doi: 10.1016/j.ins.2008.11.030
    [7] F. Babakordi, T. Allahviranloo, A new method for solving fuzzy Bernoulli differential equation, J. Math. Ext., 15 (2021), 1−20.
    [8] B. Bede, L. Stefanini, Generalized differentiability of fuzzy-valued functions, Fuzzy Set. Syst., 230 (2013), 119−141. https://doi.org/10.1016/j.fss.2012.10.003 doi: 10.1016/j.fss.2012.10.003
    [9] S. S. L. Chang, L. A. Zadeh, On fuzzy mapping and control, IEEE T. Syst. Man Cy., 2 (1972), 30−34. https://doi.org/10.1109/TSMC.1972.5408553 doi: 10.1109/TSMC.1972.5408553
    [10] T. K. Fook, Z. B. Ibrahim, Two points hybrid block method for solving first-order fuzzy differential equations, J. Soft Comput. Appl., 20 (2016)), 45−53. https://doi.org/10.5899/2016/jsca-00083 doi: 10.5899/2016/jsca-00083
    [11] H. A. Hashim, A. H. Shather, A. F. Jameel, A. Saaban, Numerical solution of first order nonlinear fuzzy initial value problems by six-stage fifth-order Runge Kutta method, Int. J. Innov. Technol. Explor. Eng., 8 (2019), 166−170.
    [12] W. Hohenauer, Hohenauer-Physical modelling based on first order ODEs, SIMIODE, 2018, 1−22.
    [13] K. Hussain, O. Adeyeye, N. Ahmad, Higher derivative block method with generalized step length for solving first-order fuzzy initial value problems, IIUM Eng. J., 24 (2023), 158−169. https://doi.org/10.31436/iiumej.v24i1.2380 doi: 10.31436/iiumej.v24i1.2380
    [14] K. Hussain, O. Adeyeye, N. Ahmad, Numerical solution of second order fuzzy ordinary differential equations using two-step block method with third and fourth derivatives, J. Nigerian Soc. Phys. Sci., 5 (2023), 1087. https://doi.org/10.46481/jnsps.2023.1087 doi: 10.46481/jnsps.2023.1087
    [15] K. Hussain, O. Adeyeye, N. Ahmad, R. Bibi, Third-fourth derivative three-step block method for direct solution of second-order fuzzy ordinary differential equations, IAENG Int. J. Comput. Sci., 49 (2022), 856−863.
    [16] S. Isa, Z. A. Majid, F. Ismail, F. Rabiei, Diagonally implicit multistep block method of order four for solving fuzzy differential equations using Seikkala derivatives, Symmetry, 10 (2018), 42−63. https://doi.org/10.3390/sym10020042 doi: 10.3390/sym10020042
    [17] K. Ivaz, A. Khastan, J. J. Nieto, A numerical method for fuzzy differential equations and hybrid fuzzy differential equations, Abstr. Appl. Anal., 3 (20133), 1−10. https://doi.org/10.1155/2013/735128 doi: 10.1155/2013/735128
    [18] R. Jafari, W. Yu, X. Li, S. Razvarz, Numerical solution of fuzzy differential equations with Z-numbers using Bernstein neural networks, Int. J. Comput. Intell. Syst., 10 (2017), 1226−1237. https://doi.org/10.2991/ijcis.10.1.81 doi: 10.2991/ijcis.10.1.81
    [19] M. K. Jain, S. R. K. Iyenger, Numerical methods for scientific and engineering computation, New Age International Limited Publication, 2007.
    [20] A. Jameel, N. R. Anakira, A. K. Alomari, I. Hashim, M. A. Shakhatreh, Numerical solution of n'th order fuzzy initial value problems by six stages, J. Nonlinear Sci. Appl., 9 (2016), 627−640. https://doi.org/10.22436/jnsa.009.02.26 doi: 10.22436/jnsa.009.02.26
    [21] A. F. Jameel, A. I. M. Ismail, A. Sadeghi, Numerical solution of fuzzy IVP with trapezoidal and triangular fuzzy numbers by using the fifth-order Runge-Kutta method, World Appl. Sci. J., 17 (2012), 1667−1674.
    [22] T. Jayakumar, K. Kanakarajan, Numerical solution for hybrid fuzzy system by improved Euler method, Int. J. Appl. Math. Sci., 6 (2012), 1847−1862.
    [23] K. Kanagarajan, M. Sambath, Runge-Kutta nystrom method of order three for solving fuzzy differential equations, Comput. Meth. Appl. Math., 10 (2010), 195−203. https://doi.org/10.2478/cmam-2010-0011 doi: 10.2478/cmam-2010-0011
    [24] M. Keshavarz, T. Allahviranloo, S. Abbasbandy, M. Modarressi, A study of fuzzy methods for solving systems of fuzzy differential equations, New Math. Nat. Comput., 17 (2021), 1−27. https://doi.org/10.1142/S1793005721500010 doi: 10.1142/S1793005721500010
    [25] M. Ma, M. Friedman, A. Kandel, Numerical solutions of fuzzy differential equations, Fuzzy Set. Syst., 105 (1999), 133−138. https://doi.org/10.1016/S0165-0114(97)00233-9 doi: 10.1016/S0165-0114(97)00233-9
    [26] F. H. Maghool, Z. H. Radhy, H. A. Mehdi, H. M. Abass, Simpson's rule to solve fuzzy differential equations, Int. J. Adv. Res. Sci. Eng. Techno., 6 (2019), 11306−11315.
    [27] S. Mehrkanoon, M. Suleiman, Z. Majid, Block method for numerical solution of fuzzy differential equations, Int. Math. Forum, 4 (2009), 2269−2280.
    [28] H. S. Najafi, F. R. Sasemasi, S. S. Roudkoli, S. F. Nodehi, Comparison of two methods for solving fuzzy differential equations based on Euler method and Zadeh's extension, J. Math. Comput. Sci., 2 (2011), 295−306. https://doi.org/10.22436/jmcs.002.02.09 doi: 10.22436/jmcs.002.02.09
    [29] V. Nirmala, V. Parimala, P. Rajarajeswari, Application of Runge-Kutta method for finding multiple numerical solutions to intuitionistic fuzzy differential equations, J. Phys. : Conf. Ser., 1139 (2018), 1−8. https://doi.org/10.1088/1742-6596/1139/1/012012 doi: 10.1088/1742-6596/1139/1/012012
    [30] N. Parandin, Numerical solution of fuzzy differential equations of 2nd-order by Runge-Kutta method, J. Math. Ext., 7 (2014), 47−62.
    [31] P. Prakash, V. Kalaiselvi, Numerical solutions of fuzzy differential equations by using hybrid methods, Fuzzy Inf. Eng., 4 (2012), 445−455. https://doi.org/10.1007/s12543-012-0126-9 doi: 10.1007/s12543-012-0126-9
    [32] M. L. Puri, D. A. Ralescu, Differentials of fuzzy functions, J. Math. Anal. Appl., 91 (1983), 552−558. https://doi.org/10.1016/0022-247X(83)90169-5 doi: 10.1016/0022-247X(83)90169-5
    [33] F. Rabiei, F. A. Hamid, M. M. Rashidi, F. Ismail, Numerical simulation of fuzzy differential equations using general linear method and B-series, Adv. Mech. Eng., 9 (2017), 1−16. https://doi.org/10.1177/1687814017715419 doi: 10.1177/1687814017715419
    [34] P. Rajkumar, S. Rubanraj, Numerical solution of fuzzy differential equations by seventh order Runge-Kutta method, J. Comput. Math. Sci., 10 (2019), 1518−1528. https://doi.org/10.29055/jcms/1143 doi: 10.29055/jcms/1143
    [35] A. Ramli, Z. A. Majid, An implicit multistep block method for fuzzy differential equations, In: 7th International Conference on Research and Educations in Mathematics (ICREM7), 107 (2015), 113−119. https://doi.org/10.1109/ICREM.2015.7357031
    [36] A. Ramli, Z. A. Majid, Fourth-order diagonally implicit multistep block method for solving fuzzy differential equations, Int. J. Pure Appl. Math., 107 (2016), 635−660. https://doi.org/10.12732/ijpam.v107i3.12 doi: 10.12732/ijpam.v107i3.12
    [37] M. M. Salih, Using predictor-corrector methods for solving fuzzy differential equations, Discover. Math. (Menemui Matematik), 36 (2014), 9−17.
    [38] S. Seikkala, On the fuzzy initial value problem, Fuzzy Set. Syst., 24 (1987), 319−330. https://doi.org/10.1016/0165-0114(87)90030-3 doi: 10.1016/0165-0114(87)90030-3
    [39] K. Sevindir, H. Cetinkaya, On numerical solutions of fuzzy differential equations, Int. J. Dev. Res., 8 (2018), 22971−22979.
    [40] J. Shokri, Numerical solution of fuzzy differential equations, Appl. Math. Sci., 45 (2007), 2231−2246.
    [41] T. Smita, S. Chakraverty, Euler-based new solution method for fuzzy initial value problems, Int. J. Artif. Intell. Soft Comput., 4 (2014), 58−79. https://doi.org/10.1504/IJAISC.2014.059288 doi: 10.1504/IJAISC.2014.059288
    [42] Z. T. Yassin, W. Al-Hayani, A. F. Jameel, A. Amourah, N. Anakira, Solving fuzzy system of Fredholm integro-differential equations of the second kind by using homotopy analysis method, AIMS Math., 10 (2025), 1704−1740. https://doi.org/10.3934/math.2025078 doi: 10.3934/math.2025078
    [43] I. S. Zawawi, Z. B. Ibrahim, M. Suleiman, Diagonally implicit block backward differentiation formulas for solving fuzzy differential equations, AIP Conf. Proc., 1522 (2013), 681−687. https://doi.org/10.1063/1.4801191 doi: 10.1063/1.4801191
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(828) PDF downloads(35) Cited by(0)

Article outline

Figures and Tables

Figures(17)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog