The stabilization problem of a class of fuzzy systems with particular uncertainty restrictions is addressed in this paper using an observer design. We construct a fuzzy controller that ensures the Takagi-Sugeno fuzzy systems' uncertain solutions will converge. The ability to examine the convergence of trajectories using an estimated state controller towards a certain region of the origin that defines the system's asymptotic behavior is one benefit of the methodology employed in this work. Additionally, we provide an example to demonstrate the primary result's validity.
Citation: Kahouli Omar, Maatoug Tarak, Delmotte François, Ali Hammami Mohamed, Ben Ali Naim, Alshammari Mohammad. Analysis and design for a class of fuzzy control nonlinear systems with state observer under disturbances[J]. AIMS Mathematics, 2025, 10(4): 9595-9613. doi: 10.3934/math.2025442
The stabilization problem of a class of fuzzy systems with particular uncertainty restrictions is addressed in this paper using an observer design. We construct a fuzzy controller that ensures the Takagi-Sugeno fuzzy systems' uncertain solutions will converge. The ability to examine the convergence of trajectories using an estimated state controller towards a certain region of the origin that defines the system's asymptotic behavior is one benefit of the methodology employed in this work. Additionally, we provide an example to demonstrate the primary result's validity.
| [1] |
J. P. Gauthier, I. Kupka, A separation principle for bilinear systems with dissipative drift, IEEE T. Automat. Contr., 37 (1992), 1970–1974. https://doi.org/10.1109/9.182484 doi: 10.1109/9.182484
|
| [2] |
J. P. Gauthier, H. Hammouri, S. Othman, Simple observer for nonlinear systems, applications to bioreactocrs, IEEE T. Automat. Contr., 37 (1992), 875–880. https://doi.org/10.1109/9.256352 doi: 10.1109/9.256352
|
| [3] | M. A. Hammami, H. Jerbi, Separation principle for nonlinear systems: A bilinear approach, Int. J. Appl. Math. Comput. Sci, 11 (2001), 481–492. |
| [4] | M. A. Hammami, Stabilization of a class of nonlinear systems using an observer design, In: Proceedings of 32nd IEEE Conference on Decision and Control, 1993, 1954–1959. https://doi.org/10.1109/CDC.1993.325537 |
| [5] | M. Ksantini, M. A. Hammami, F. Delmotte, On the global asymptotic stabilization of Takagi-Sugeno fuzzy systems with uncertainties, J. Adv. Res. Dyn. Control Syst., 7 (2015), 10–21. |
| [6] |
A. Larrache, M. Lhous, S. B. Rhila, M. Rachik, A. Tridane, An output sensitivity problem for a class of linear distributed systems with uncertain initial state, Arch. Control Sci., 30 (2020), 139–155. https://doi.org/10.24425/acs.2020.132589 doi: 10.24425/acs.2020.132589
|
| [7] |
M. Dlala, B. Ghanmi, M. A. Hammami, Exponential practical stability of nonlinear impulsive systems: converse theorem and applications, Dyn. Contin. Discrete Impuls. Syst., 21 (2014), 37–64. http://dx. doi.org/10.14736/kyb-2018-3-0496 doi: 10.14736/kyb-2018-3-0496
|
| [8] |
M. Ekramian, Observer based controller for Lipschitz nonlinear systems, Int. J. Syst. Sci., 48 (2017), 3411–3418. https://doi.org/10.1080/00207721.2017.1381894 doi: 10.1080/00207721.2017.1381894
|
| [9] |
N. Hadj Taieb, M. A. Hammami, F. Delmotte, A separation principle for Takagi-Sugeno control fuzzy systems, Arch. Control Sci., 29 (2019), 227–245. https://doi.org/10.24425/acs.2019.129379 doi: 10.24425/acs.2019.129379
|
| [10] |
H. Perez, B. Ogunnaike, S. Devasia, Output tracking between operating points for nonlinear process: Van de Vusse example, IEEE T. Contr. Syst. T., 10 (2002), 611–617. https://doi.org/10.1109/TCST.2002.1014680 doi: 10.1109/TCST.2002.1014680
|
| [11] |
K. Wang, R. He, H. Li, J. Tang, R. Liu, Y. Li, et al., Observer-based control for active suspension system with time-varying delay and uncertainty, Adv. Mech. Eng., 11 (2019), 11. https://doi.org/10.1177/1687814019889505 doi: 10.1177/1687814019889505
|
| [12] |
R. B. Salah, O. Kahouli, H. Hadjabdallah, A nonlinear Takagi-Sugeno fuzzy logic control for single machine power system, Int. J. Adv. Manuf. Technol., 90 (2017), 575–590. https://doi.org/10.1007/s00170-016-9351-4 doi: 10.1007/s00170-016-9351-4
|
| [13] |
L. X. Wang, W. Zhan, Robust disturbance attenuation with stability for linear systems with norm-bounded nonlinear uncertainties, IEEE T. Automat. Contr., 41 (1996), 886–888. https://doi.org/10.1109/9.506244 doi: 10.1109/9.506244
|
| [14] |
S. H. Wang, E. Wang, P. Dorato, Observing the states of systems with unmeasurable disturbances, IEEE T. Automat. Contr., 20 (1975), 716–717. https://doi.org/10.1109/TAC.1975.1101076 doi: 10.1109/TAC.1975.1101076
|
| [15] |
X. Song, Z. Peng, S. Shuai, V. Stojanovic, Interval observer design for unobservable switched nonlinear partial differential equation systems and its application, Int. J. Robust Nonlin., 34 (2024), 10990–11009. https://doi.org/10.1002/rnc.7553 doi: 10.1002/rnc.7553
|
| [16] | A. B. Abdallah, M. Dlala, M. A. Hammami, Exponential stability of perturbed nonlinear systems, Nonlinear Dyn. Syst. Theor., 5 (2005), 357–368. |
| [17] |
B. B. Hamed, I. Ellouze, M. A. Hammami, Practical uniform stability of nonlinear differential delay equations, Mediterr. J. Math., 8 (2011), 603–616. https://doi.org/10.1007/s00009-010-0083-7 doi: 10.1007/s00009-010-0083-7
|
| [18] |
B. Ben Hamed, M. A. Hammami, Practical stabilization of a class of uncertain time-varying nonlinear delay systems, J. Control Theory Appl., 7 (2009), 175–180. https://doi.org/10.1007/s11768-009-8017-2 doi: 10.1007/s11768-009-8017-2
|
| [19] |
M. Dlala, M. A. Hammami, Uniform exponential practical stability of impulsive perturbed systems, J. Dyn. Control Syst., 13 (2007), 373–386. https://doi.org/10.1007/s10883-007-9020-x doi: 10.1007/s10883-007-9020-x
|
| [20] |
M. A. Hammami, Global stabilization of a certain class of nonlinear dynamical systems using state detection, Appl. Math. Lett., 14 (2001), 913–919. https://doi.org/10.1016/S0893-9659(01)00065-9 doi: 10.1016/S0893-9659(01)00065-9
|
| [21] |
M. Hammi, M. A. Hammami, Non-linear integral inequalities and applications to asymptotic stability, IMA J. Math. Control Inform., 32 (2015), 717–735. https://doi.org/10.1093/imamci/dnu016 doi: 10.1093/imamci/dnu016
|
| [22] | Z. HajSalem, M. A. Hammami, M. Mohamed, On the global uniform asymptotic stability of time varying dynamical systems, Stud. Univ. Babes. Bol. Mat., 59 (2014), 57–67. |
| [23] |
M. A. Hammami, Global stabilization of a certain class of nonlinear dynamical systems using state detection, Appl. Math. Lett., 14 (2001), 913–919. https://doi.org/10.1016/S0893-9659(01)00065-9 doi: 10.1016/S0893-9659(01)00065-9
|
| [24] |
L. Xu, S. S. Ge, The pth moment exponential ultimate boundedness of impulsive stochastic differential systems, Appl. Math. Lett., 42 (2015), 22–29. https://doi.org/10.1016/j.aml.2014.10.018 doi: 10.1016/j.aml.2014.10.018
|
| [25] |
J. Yang, S. Li, X. Yu, Sliding-mode control for systems with mismatched uncertainties via a disturbance observer, IEEE T. Ind. Electron., 60 (2013), 160–169. https://doi.org/10.1109/TIE.2012.2183841 doi: 10.1109/TIE.2012.2183841
|
| [26] |
G. Yang, F. Hao, L. Zhang, L. Gao, Stabilization of discrete-time positive switched T-S fuzzy systems subject to actuator saturation, AIMS Math., 8 (2023), 12708–12728. https://doi.org/10.3934/math.2023640 doi: 10.3934/math.2023640
|
| [27] |
M. A. Hammami, On the stability of nonlinear control systems with uncertaintly, J. Dyn. Contr. Syst., 7 (2001) 171–179. https://doi.org/10.1023/A:1013099004015 doi: 10.1023/A:1013099004015
|
| [28] | L. A. Zadeh, Fuzzy sets and applications, 1987. |
| [29] |
Z. Zhang, K. Zhang, X. Xie, V. Stojanovic, ADP-based prescribed-time control for nonlinear time-varying delay systems with uncertain parameters, IEEE T. Automat. Sci. Eng., 22 (2024), 3086–3096. https://doi.org/10.1109/TASE.2024.3389020 doi: 10.1109/TASE.2024.3389020
|
| [30] | L. A. Zadeh, Fuzzy sets, fuzzy logic and fuzzy systems, 1996. https://doi.org/10.1142/2895 |
| [31] |
M. Sugeno, G. T. Kang, Structure identification of fuzzy model, Fuzzy Set. Syst., 28 (1988), 15–33. https://doi.org/10.1016/0165-0114(88)90113-3 doi: 10.1016/0165-0114(88)90113-3
|
| [32] | M. Sugeno, Fuzzy control, North-Holland, 1988. |
| [33] |
T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, IEEE T. Syst. Man Cy., 15 (1985) 116–132. https://doi.org/10.1109/TSMC.1985.6313399 doi: 10.1109/TSMC.1985.6313399
|
| [34] | K. Tanaka, H. O. Wang, Fuzzy control systems design and analysis: A linear matrix inequality approach, New York: John Wiley and Sons, 2001. |
| [35] |
M. C. M. Teixeira, E. Assuncao, R. G. Avellar, On relaxed LMI-based designs for fuzzy regulators and fuzzy observers, IEEE T. Fuzzy Syst., 11 (2003), 613–623. https://doi.org/10.1109/TFUZZ.2003.817840 doi: 10.1109/TFUZZ.2003.817840
|
| [36] |
H. K. Lam, F. H. F. Leung, Stability analysis of fuzzy control systems subject to uncertain grades of membership, IEEE T. Syst. Man Cy. B, 35 (2005), 1322–1325. https://doi.org/10.1109/TSMCB.2005.850181 doi: 10.1109/TSMCB.2005.850181
|
| [37] | Y. Menasria, H. Bouras, N. Debbache, An interval observer design for uncertain nonlinear systems based on the T-S fuzzy model, Arch. Control Sci., 27 (2017), 397–407. https://api.semanticscholar.org/CorpusID:55112664 |
| [38] |
R. Sriraman, R. Samidurai, V. C. Amritha, G. Rachakit, P. Balaji, System decomposition-based stability criteria for Takagi-Sugeno fuzzy uncertain stochastic delayed neural networks in quaternion field, AIMS Math., 8 (2023), 11589–11616. https://doi.org/10.3934/math.2023587 doi: 10.3934/math.2023587
|
| [39] |
R. Sriraman, P. Vignesh, V. C. Amritha, G. Rachakit, P. Balaji, Direct quaternion method-based stability criteria for quaternion-valued Takagi-Sugeno fuzzy BAM delayed neural networks using quaternion-valued Wirtinger-based integral inequality, AIMS Math., 8 (2023), 10486–10512. https://doi.org/10.3934/math.2023532 doi: 10.3934/math.2023532
|
| [40] |
F. You, S. Cheng, K. Tian, X. Zhang, Robust fault estimation based on learning observer for Takagi-Sugeno fuzzy systems with interval time-varying delay, Int. J. Adapt. Control, 34 (2020), 92–109. https://doi.org/10.1002/acs.3070 doi: 10.1002/acs.3070
|
| [41] |
D. Wang, Sliding mode observer based control for T-S fuzzy descriptor systems, Math. Found. Comput., 5 (2022), 17–32. https://doi.org/10.3934/mfc.2021017 doi: 10.3934/mfc.2021017
|
| [42] |
W. B. Xie, H. Li, Z. H. Wang, J. Zhang, Observer-based controller design for A T-S fuzzy system with unknown premise variables, Int. J. Control Autom. Syst., 17 (2019), 907–915. https://doi.org/10.1007/s12555-018-0245-0 doi: 10.1007/s12555-018-0245-0
|
| [43] |
Y. Dong, S. Song, X. Song, I. Tejado, Observer-based adaptive fuzzy quantized control for fractional-order nonlinear time-delay systems with unknown control gains, Mathematics, 12 (2024), 314. https://doi.org/10.3390/math12020314 doi: 10.3390/math12020314
|
| [44] |
W. You, X. Xie, H. Wang, J. Xia, V. Stojanovic, Relaxed model predictive control of T-S fuzzy fystems via a new switching-type homogeneous polynomial technique, IEEE T. Fuzzy Syst., 32 (2024), 4583–4594. https://doi.org/10.1109/TFUZZ.2024.3405078 doi: 10.1109/TFUZZ.2024.3405078
|
| [45] |
P. Bergsten, R. Palm, D. Driankov, Observers for Takagi-Sugeno fuzzy systems, IEEE T. Syst. Man Cy. B, 32 (2002), 114–121. https://doi.org/10.1109/3477.979966 doi: 10.1109/3477.979966
|
| [46] |
F. Delmotte, N. HadjTaieb, M. A. Hammami, H. Meghnafi, An observer design for Takagi-Sugeno fuzzy bilinear control systems, Arch. Control Sci., 33 (2023), 631–649. https://doi.org/10.24425/acs.2023.146959 doi: 10.24425/acs.2023.146959
|
| [47] |
N. Vafamand, M. H. Asemani, A. Khayatiyan, A robust L1 controller design for continuous-time TS systems with persistent bounded disturbance and actuator saturation, Eng. Appl. Artif. Intel., 56 (2016), 212–221. https://doi.org/10.1016/j.engappai.2016.09.002 doi: 10.1016/j.engappai.2016.09.002
|
| [48] |
X. D. Liu, Q. L. Zhang, New approaches to $ {H}^{\infty } $ controller designs based on fuzzy observers for T-S fuzzy systems via LMI, Automatica, 39 (2003), 1571–1582. https://doi.org/10.1016/S0005-1098(03)00172-9 doi: 10.1016/S0005-1098(03)00172-9
|
| [49] |
W. J. Wang, C. C. Kao, Estimator design for bilinear systems with bounded inputs, J. Chin. Inst. Eng., 14 (1991), 157–163. https://doi.org/10.1080/02533839.1991.9677321 doi: 10.1080/02533839.1991.9677321
|
| [50] |
R. Datta, R. Saravanakumar, R. Dey, B. Bhattacharya, Further results on stability analysis of Takagi-Sugeno fuzzy time-delay systems via improved Lyapunov-Krasovskii functional, AIMS Math., 7 (2022), 16464–16481. https://doi.org/10.3934/math.2022901 doi: 10.3934/math.2022901
|
| [51] |
F. Delmotte, T. M. Guerra, M. Ksontini, Continuous Takagi-Sugeno's models: Reduction of the number of LMI conditions in various fuzzy control design techniques, IEEE T. Fuzzy Syst., 15 (2007), 426–438. https://doi.org/10.1109/TFUZZ.2006.889829 doi: 10.1109/TFUZZ.2006.889829
|
| [52] |
O. Kahouli, A. Turki, M. Ksantini, M. A. Hammami, A. Aloui, On the boundedness of solutions of some fuzzy dynamical control systems, AIMS Math., 9 (2024), 5330–5348. https://doi.org/10.3934/math.2024257 doi: 10.3934/math.2024257
|
| [53] |
E. Kim, H. Lee, New approaches to relaxed quadratic stability condition of fuzzy control systems, IEEE T. Fuzzy Syst., 8 (2000), 523–534. https://doi.org/10.1109/91.873576 doi: 10.1109/91.873576
|
| [54] | M. Ksantini, M. A. Hammami, F. Delmotte, On the global exponential stabilization of Takagi-Sugeno fuzzy uncertain systems, Int. J. Innov. Comput. Inf. Control, 11 (2015), 281–294. |