Decision rules are effective tools for managing information and characterizing datasets. As a result, they contribute significantly to fuzzy rough-set theory-based decision-making procedures. Rough set theory (RS) is a robust method for analyzing ambiguity in data. Moreover, cubic bipolar fuzzy sets (CBFS), an extension of bipolar fuzzy sets, can discuss both uncertainty and bipolarity in numerous situations. This article presents the robust decision-making approach named cubic bipolar fuzzy soft rough sets (CBFSRSs) by integrating RS and cubic bipolar fuzzy soft sets. This study explores the construction and fundamental characteristics of a novel approach based on CBFSs. We introduce and examine the concept of rough sets based on CBFSs, develop level sets for CBFSs, and highlight their key properties through illustrative examples. Additionally, we propose a decision-making framework based on CBFSRS that is capable of effectively managing uncertain, conflicting, and imprecise information. This approach demonstrates the potential of CBFSs in enhancing decision-making processes in large data environments. To demonstrate the practical benefit of CBFSRSs in decision-making, we provide an example of how CBFSRS standards might be used in decision-making processes to help decision-makers make well-informed and reasoned decisions. The example shows that the proposed strategies are useful and effective by applying them to real-life problems. It proves that they can handle complex, uncertain, and conflicting information in real decision-making situations.
Citation: Dhuha Saleh Aldhuhayyan, Kholood Mohammad Alsager. Multi-criteria evaluation of tree species for afforestation in arid regions using a hybrid cubic bipolar fuzzy soft rough set framework[J]. AIMS Mathematics, 2025, 10(5): 11813-11841. doi: 10.3934/math.2025534
Decision rules are effective tools for managing information and characterizing datasets. As a result, they contribute significantly to fuzzy rough-set theory-based decision-making procedures. Rough set theory (RS) is a robust method for analyzing ambiguity in data. Moreover, cubic bipolar fuzzy sets (CBFS), an extension of bipolar fuzzy sets, can discuss both uncertainty and bipolarity in numerous situations. This article presents the robust decision-making approach named cubic bipolar fuzzy soft rough sets (CBFSRSs) by integrating RS and cubic bipolar fuzzy soft sets. This study explores the construction and fundamental characteristics of a novel approach based on CBFSs. We introduce and examine the concept of rough sets based on CBFSs, develop level sets for CBFSs, and highlight their key properties through illustrative examples. Additionally, we propose a decision-making framework based on CBFSRS that is capable of effectively managing uncertain, conflicting, and imprecise information. This approach demonstrates the potential of CBFSs in enhancing decision-making processes in large data environments. To demonstrate the practical benefit of CBFSRSs in decision-making, we provide an example of how CBFSRS standards might be used in decision-making processes to help decision-makers make well-informed and reasoned decisions. The example shows that the proposed strategies are useful and effective by applying them to real-life problems. It proves that they can handle complex, uncertain, and conflicting information in real decision-making situations.
| [1] | L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X |
| [2] | Z. Pawlak, Rough sets, Int. J. Comput. Inf. Sci., 11 (1982), 341–356. https://doi.org/10.1007/BF01001956 |
| [3] | Z. Pawlak, Rough sets: theoretical aspects of reasoning about data, Vol. 9, Springer Dordrecht, 1991. https://doi.org/10.1007/978-94-011-3534-4 |
| [4] | Z. Pawlak, A. Skowron, Rudiments of rough sets, Inf. Sci., 177 (2007), 3–27. https://doi.org/10.1016/j.ins.2006.06.003 |
| [5] |
D. Dubois, H. Prade, Rough fuzzy sets and fuzzy rough sets, Int. J. Gen. Syst., 17 (1990), 191–209. https://doi.org/10.1080/03081079008935107 doi: 10.1080/03081079008935107
|
| [6] |
D. Molodtsov, Soft set theory–First results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5
|
| [7] | P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Comput. Math. Appl., 45 (2003), 555–562. https://doi.org/10.1016/S0898-1221(03)00016-6 |
| [8] |
P. K. Maji, A. R. Roy, R. Biswas, An application of soft sets in a decision making problem, Comput. Math. Appl., 44 (2002), 1077–1083. https://doi.org/10.1016/S0898-1221(02)00216-X doi: 10.1016/S0898-1221(02)00216-X
|
| [9] | H. Aktaş, N. Çağman, Soft sets and soft groups, Inf. Sci., 177 (2007), 2726–2735. https://doi.org/10.1016/j.ins.2006.12.008 |
| [10] |
M. I. Ali, F. Feng, X. Liu, W. K. Min, M. Shabir, On some new operations in soft set theory, Comput. Math. Appl., 57 (2009), 1547–1553. https://doi.org/10.1016/j.camwa.2008.11.009 doi: 10.1016/j.camwa.2008.11.009
|
| [11] |
F. Feng, C. Li, B. Davvaz, M. I. Ali, Soft sets combined with fuzzy sets and rough sets: a tentative approachh, Soft Comput., 14 (2010), 899–911. https://doi.org/10.1007/s00500-009-0465-6 doi: 10.1007/s00500-009-0465-6
|
| [12] |
M. I. Ali, M. Shabir, M. Naz, Algebraic structures of soft sets associated with new operations, Comput. Math. Appl., 61 (2011), 2647–2654. https://doi.org/10.1016/j.camwa.2011.03.011 doi: 10.1016/j.camwa.2011.03.011
|
| [13] |
M. I. Ali, Another view on reduction of parameters in soft sets, Appl. Soft Comput., 12 (2012), 1814–1821. https://doi.org/10.1016/j.asoc.2012.01.002 doi: 10.1016/j.asoc.2012.01.002
|
| [14] | W. R. Zhang, Bipolar fuzzy sets and relations: a computational framework for cognitive modeling and multiagent decision analysis, NAFIPS/IFIS/NASA $'$94. Proceedings of the First International Joint Conference of The North American Fuzzy Information Processing Society Biannual Conference. The Industrial Fuzzy Control and Intellige, IEEE, 1994,305–309. https://doi.org/10.1109/IJCF.1994.375115 |
| [15] |
M. Shabir, R. Gul, Modified rough bipolar soft sets, J. Intell. Fuzzy Syst., 39 (2020), 4259–4283. https://doi.org/10.3233/JIFS-200317 doi: 10.3233/JIFS-200317
|
| [16] |
N. Malik, M. Shabir, T. M. Al-shami, R. Gul, A. Mhemdi, Medical decision-making techniques based on bipolar soft information, AIMS Math., 8 (2023), 18185–18205. https://doi.org/10.3934/math.2023924 doi: 10.3934/math.2023924
|
| [17] |
R. Gul, M. Shabir, M. Naz, M. Aslam, A novel approach toward roughness of bipolar soft sets and their applications in MCGDM, IEEE Access, 9 (2021), 135102–135120. https://doi.org/10.1109/ACCESS.2021.3116097 doi: 10.1109/ACCESS.2021.3116097
|
| [18] |
S. Kousar, N. Kausar, Multi-criteria decision-making for sustainable agritourism: An integrated fuzzy-rough approach, Spectrum Oper. Res., 2 (2025), 134–150. https://doi.org/10.31181/sor21202515 doi: 10.31181/sor21202515
|
| [19] |
K. Y. Shen, Exploring the relationship between financial performance indicators, ESG, and stock price returns: a rough set-based bipolar approach, Decis. Making Adv., 2 (2024), 186–198. https://doi.org/10.31181/dma21202434 doi: 10.31181/dma21202434
|
| [20] |
R. Gul, An extension of VIKOR approach for MCDM using bipolar fuzzy preference $\delta$-covering based bipolar fuzzy rough set model, Spectrum Operational Res., 2 (2025), 72–91. https://doi.org/10.31181/sor21202511 doi: 10.31181/sor21202511
|
| [21] |
M. Naz, M. Shabir, On fuzzy bipolar soft sets, their algebraic structures and applications, J. Intell. Fuzzy Syst., 26 (2014), 1645–1656. https://doi.org/10.3233/IFS-130844 doi: 10.3233/IFS-130844
|
| [22] | Y. B. Jun, C. S. Kim, K. O. Yang, Annals of fuzzy mathematics and informatics, Cubic Sets, 4 (2011), 83–98. |
| [23] |
M. Riaz, S. T. Tehrim, Multi-attribute group decision making based on cubic bipolar fuzzy information using averaging aggregation operators, J. Intell. Fuzzy Syst., 37 (2019), 2473–2494. https://doi.org/10.3233/JIFS-182751 doi: 10.3233/JIFS-182751
|
| [24] |
M. Riaz, S. T. Tehrim, Cubic bipolar fuzzy ordered weighted geometric aggregation operators and their application using internal and external cubic bipolar fuzzy data, Comp. Appl. Math., 38 (2019), 87. https://doi.org/10.1007/s40314-019-0843-3 doi: 10.1007/s40314-019-0843-3
|
| [25] |
H. Zhang, L. Shu, Generalized interval-valued fuzzy rough set and its application in decision making, Int. J. Fuzzy Syst., 17 (2015), 279–291. https://doi.org/10.1007/s40815-015-0012-9 doi: 10.1007/s40815-015-0012-9
|
| [26] |
H. Zhang, L. Shu, S. Liao, Intuitionistic fuzzy soft rough set and its application in decision making, Abstr. Appl. Anal., 2014 (2014), 287314. https://doi.org/10.1155/2014/287314 doi: 10.1155/2014/287314
|
| [27] |
J. Jiang, X. Liu, Z. Wang, W. Ding, S. Zhang, H. Xu, Large group decision-making with a rough integrated asymmetric cloud model under multi-granularity linguistic environment, Inf. Sci., 678 (2024), 120994. https://doi.org/10.1016/j.ins.2024.120994 doi: 10.1016/j.ins.2024.120994
|
| [28] |
H. L. Yang, S. G. Li, Z. L. Guo, C. H. Ma, Transformation of bipolar fuzzy rough set models, Knowl.-Based Syst., 27 (2012), 60–68. https://doi.org/10.1016/j.knosys.2011.07.012 doi: 10.1016/j.knosys.2011.07.012
|
| [29] |
N. Malik, M. Shabir, Rough fuzzy bipolar soft sets and application in decision-making problems, Soft Comput., 23 (2019), 1603–1614. https://doi.org/10.1007/s00500-017-2883-1 doi: 10.1007/s00500-017-2883-1
|
| [30] |
K. M. Alsager, Decision-making framework based on multineutrosophic soft rough sets, Math. Probl. Eng., 2022 (2022), 2868970. https://doi.org/10.1155/2022/2868970 doi: 10.1155/2022/2868970
|
| [31] |
K. M. Alsager, N. O. Alshehri, A decision-making approach based on multi $Q$-dual hesitant fuzzy soft rough model, J. Intell. Fuzzy Syst., 38 (2020), 1623–1635. https://doi.org/10.3233/JIFS-182624 doi: 10.3233/JIFS-182624
|
| [32] | K. M. Alsager, N. O. Alshehri, Single valued neutrosophic hesitant fuzzy rough set and its application, World Academy of Science, Engineering and Technology International Journal of Computer and Information Engineering, Vol. 13, 2019. https://doi.org/10.5281/zenodo.2576992 |
| [33] |
P. Huidobro, P. Alonso, V. Janiš, S. Montes, Convexity and level sets for interval-valued fuzzy sets, Fuzzy Optim. Decis. Making, 21 (2022), 553–580. https://doi.org/10.1007/s10700-021-09376-7 doi: 10.1007/s10700-021-09376-7
|
| [34] |
R. Gul, M. Shabir, Roughness of a set by ($\alpha$, $\beta$)-indiscernibility of Bipolar fuzzy relation, Comp. Appl. Math., 39 (2020), 160. https://doi.org/10.1007/s40314-020-01174-y doi: 10.1007/s40314-020-01174-y
|
| [35] |
L. Zhou, W. Z. Wu, Characterization of rough set approximations in Atanassov intuitionistic fuzzy set theory, Comput. Appl. Math., 62 (2011), 282–296. https://doi.org/10.1016/j.camwa.2011.05.009 doi: 10.1016/j.camwa.2011.05.009
|
| [36] |
L. Zhou, W. Z. Wu, On generalized intuitionistic fuzzy rough approximation operators, Inf. Sci., 178 (2008), 2448–2465. https://doi.org/10.1016/j.ins.2008.01.012 doi: 10.1016/j.ins.2008.01.012
|
| [37] |
S. Yin, Y. Zhao, A. Hussain, K. Ullah, Comprehensive evaluation of rural regional integrated clean energy systems considering multi-subject interest coordination with pythagorean fuzzy information, Eng. Appl. Artif. Intel., 138 (2024), 109342. https://doi.org/10.1016/j.engappai.2024.109342 doi: 10.1016/j.engappai.2024.109342
|
| [38] | S. Nanda, S. Majumdar, Fuzzy rough sets, Fuzzy Sets Syst., 45 (1992), 157–160. https://doi.org/10.1016/0165-0114(92)90114-J |
| [39] | K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 |
| [40] |
L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning–I, Inf. Sci., 8 (1975), 199–249. https://doi.org/10.1016/0020-0255(75)90036-5 doi: 10.1016/0020-0255(75)90036-5
|
| [41] |
N. Çağman, S. Enginoğlu, Soft matrix theory and its decision making, Comput. Appl. Math., 59 (2010), 3308–3314. https://doi.org/10.1016/j.camwa.2010.03.015 doi: 10.1016/j.camwa.2010.03.015
|
| [42] | N. Cagman, S. Enginoglu, Fuzzy soft matrix theory and its application in decision making, Iran. J. Fuzzy Syst., 9 (2012), 109–119. |
| [43] |
M. Riaz, D. Pamucar, A. Habib, M. Riaz, A new TOPSIS approach using cosine similarity measures and cubic bipolar fuzzy information for sustainable plastic recycling process, Math. Probl. Eng., 2021 (2021), 4309544. https://doi.org/10.1155/2021/4309544 doi: 10.1155/2021/4309544
|