In this paper, we investigate the problem of entropy estimation for the inverse exponential Rayleigh distribution under progressively Type-Ⅱ censored samples. For the Shannon entropy of the inverse Rayleigh distribution, the maximum likelihood estimation and Bayesian estimation are studied, as well as the interval estimation. Under the Bayesian method, we used three different loss functions to discuss the Shannon entropy under each of these loss functions. The three loss functions are as follows: the weighted squared error loss function, the K-loss function, and the precautionary loss function. The Bayesian estimates of Shannon's entropy under these three loss functions are computed using the Lindley approximation and mixed Gibbs sampling. Finally, we calculated the estimated values, mean squared errors, and variances of the estimators through Monte Carlo simulations. To evaluate the performance of the estimation methods, we chose to use the mean squared errors for a comparative analysis. In the subsequent step, we applied the estimated results to a real dataset.
Citation: Haiping Ren, Ziwen Zhang, Qin Gong. Estimation of Shannon entropy of the inverse exponential Rayleigh model under progressively Type-Ⅱ censored test[J]. AIMS Mathematics, 2025, 10(4): 9378-9414. doi: 10.3934/math.2025434
In this paper, we investigate the problem of entropy estimation for the inverse exponential Rayleigh distribution under progressively Type-Ⅱ censored samples. For the Shannon entropy of the inverse Rayleigh distribution, the maximum likelihood estimation and Bayesian estimation are studied, as well as the interval estimation. Under the Bayesian method, we used three different loss functions to discuss the Shannon entropy under each of these loss functions. The three loss functions are as follows: the weighted squared error loss function, the K-loss function, and the precautionary loss function. The Bayesian estimates of Shannon's entropy under these three loss functions are computed using the Lindley approximation and mixed Gibbs sampling. Finally, we calculated the estimated values, mean squared errors, and variances of the estimators through Monte Carlo simulations. To evaluate the performance of the estimation methods, we chose to use the mean squared errors for a comparative analysis. In the subsequent step, we applied the estimated results to a real dataset.
| [1] |
H. P. Ren, Q. Gong, X. Hu, Estimation of entropy for generalized rayleigh distribution under progressively type-Ⅱ censored samples, Axioms, 12 (2023), 776. https://doi.org/10.3390/axioms12080776 doi: 10.3390/axioms12080776
|
| [2] |
K. Maiti, S. Kaya, D. Kundu, Statistical inference on the Shannon and renyi entropy measures of generalized exponential distribution under the progressive censoring, SN. Comput. Sci., 3 (2022), 317. https://doi.org/10.1007/s42979-022-01200-2 doi: 10.1007/s42979-022-01200-2
|
| [3] |
R. Xu, W. Gui, Entropy estimation of inverse Weibull distribution under adaptive type-Ⅱ progressive hybrid censoring schemes, Symmetry, 11 (2019), 1463. https://doi.org/10.3390/sym11121463 doi: 10.3390/sym11121463
|
| [4] |
M. Shrahili, A. R. El-Saee, Estimation of entropy for log-logistic distribution under progressive Type-Ⅱ censoring, J. Nanomater., 2022 (2022), 2739606. https://doi.org/10.1155/2022/2739606 doi: 10.1155/2022/2739606
|
| [5] |
R. K. Maurya, Y. M. Tripathi, T. Sen, On progressively censored inverted exponentiated rayleigh distribution, J. Stat. Comput. Simul., 89 (2018), 492–518. https://doi.org/10.1080/00949655.2018.1558225 doi: 10.1080/00949655.2018.1558225
|
| [6] |
M. M. Yousef, A. S. Hassan, A. H. Al-Nefaie, Bayesian estimation using MCMC method of system reliability for inverted Topp–Leone distribution based on ranked set sampling, Mathematics, 10 (2022), 3122. https://doi.org/10.3390/math10173122 doi: 10.3390/math10173122
|
| [7] |
A. A. Mutairi, A. Alrashidi, N. T. Al-Sayed, S. M. Behairy, M. Elgarhy, S. G. Nassr, Bayesian and E-Bayesian estimation based on constant-stress partially accelerated life testing for inverted Topp–Leone distribution, Open Phys., 21 (2023), 20230126. https://doi.org/10.1515/phys-2023-0126 doi: 10.1515/phys-2023-0126
|
| [8] |
H. Panahi, Reliability analysis for stress–strength model from inverted exponentiated rayleigh based on the hybrid censored sample, Int. J. Qual. Reliab. Ma., 40 (2022), 1412–1428. https://doi.org/10.1108/IJQRM-05-2021-0130 doi: 10.1108/IJQRM-05-2021-0130
|
| [9] |
H. Panahi, N. Moradi, Estimation of the inverted exponentiated rayleigh distribution based on adaptive type Ⅱ progressive hybrid censored sample, J. Comput. Appl. Math., 364 (2020), 112345. https://doi.org/10.1016/j.cam.2019.112345 doi: 10.1016/j.cam.2019.112345
|
| [10] |
M. K. Rastogi, Y. M. Tripathi, Estimation for an inverted exponentiated Rayleigh distribution under type Ⅱ progressive censoring, J. Appl. Stat., 41 (2014), 2375–2405. https://doi.org/10.1080/02664763.2014.910500 doi: 10.1080/02664763.2014.910500
|
| [11] |
L. Wang, S. -J. Wu, Y. M. Tripathi, S. Dey, Estimation and prediction of modified progressive hybrid censored data from inverted exponentiated rayleigh distribution, Qual. Technol. Quant. M., 21 (2023), 502–524. https://doi.org/10.1080/16843703.2023.2219556 doi: 10.1080/16843703.2023.2219556
|
| [12] | A. K. Al-kadim, A. N. Hussein, New proposed length-biased weighted exponential and Rayleigh distribution with application, Math. Theor. Model., 4 (2014), 137–152. |
| [13] | H. J. Kim, Reliability estimation in the mixed distribution of exponential and rayleigh distributions, J. Korean Data Anal. Soc., 13 (2011), 1687–1696. |
| [14] |
M. Shuvashree, K. Debasis, On the joint Type-Ⅱ generalized progressive hybrid censoring scheme, Commun. Stat. Theory Methods., 49 (2020), 958–976. https://doi.org/10.1080/03610926.2018.1554128 doi: 10.1080/03610926.2018.1554128
|
| [15] |
H. M. Almongy, F. Y. Alshenawy, Applying transformer insulation using weibull extended distribution based on progressive censoring scheme, Axioms, 10 (2021), 100. https://doi.org/10.3390/axioms10020100 doi: 10.3390/axioms10020100
|
| [16] |
A. F. Hashem, S. A. Alyami, Utilizing empirical bayes estimation to Assess reliability in Inverted exponentiated rayleigh distribution with progressive hybrid censored medical data, Axioms., 12 (2023), 872. https://doi.org/10.3390/AXIOMS12090872 doi: 10.3390/AXIOMS12090872
|
| [17] |
G. V. Sriramachandran, M. Palanivel, Acceptance Sampling Plan from Truncated Life Tests based on exponentiated Inverse Rayleigh distribution, Am. J. Math. Manag. Sci., 33 (2014), 20–35. https://doi.org/10.1080/01966324.2013.877362 doi: 10.1080/01966324.2013.877362
|
| [18] |
T. Kayal, Y. M. Tripathi, M. K. Rastogi, Estimation and prediction for an inverted exponentiated rayleigh distribution under hybrid censoring, Commun. Stat. Theory Methods., 47 (2018), 1615–1640. https://doi.org/10.1080/03610926.2017.1322702 doi: 10.1080/03610926.2017.1322702
|
| [19] |
S. Anwar, L. S. Ahmad, A. Khan, S. Almutlak, Stress-strength reliability estimation for the inverted exponentiated rayleigh distribution under unified progressive hybrid censoring with application, Electron. Res. Arch., 31 (2023), 4011–4033. https://doi.org/10.3934/era.2023204 doi: 10.3934/era.2023204
|
| [20] |
I. Chalabi, High-resolution sea clutter modelling using compound inverted exponentiated rayleigh distribution, Remot. Sens. Lett., 14 (2023), 433–441. https://doi.org/10.1080/2150704X.2023.2215894 doi: 10.1080/2150704X.2023.2215894
|
| [21] |
L. Wang, Y. M. Tripathi, C. Lodhi, X. J. Zuo, Inference for constant-stress Weibull competing risks model under generalized progressive hybrid censoring, Math. Comput. Simul. Lett., 192 (2021), 70–83. https://doi.org/10.1016/j.matcom.2021.08.017 doi: 10.1016/j.matcom.2021.08.017
|
| [22] |
H. Z. Muhammed, E. M. Al Metwally, Bayesian and non-bayesian estimation for the shape parameters of new versions of bivariate inverse weibull distribution based on progressive type Ⅱ censoring, Ann. Data Sci., 10 (2023), 481–512. https://doi.org/10.1007/s40745-020-00316-7 doi: 10.1007/s40745-020-00316-7
|
| [23] |
M. Z. Raqab, Discriminating between the generalized rayleigh and weibull distributions, J. Appl. Stat., 40 (2013), 1480–1493. https://doi.org/10.1080/02664763.2013.788614 doi: 10.1080/02664763.2013.788614
|
| [24] |
J. Fan, W. Gui, Statistical inference of inverted exponentiated rayleigh distribution under joint progressively type-Ⅱ censoring, Entropy, 24 (2022), 171. https://doi.org/10.3390/e24020171 doi: 10.3390/e24020171
|
| [25] |
S. Gao, J. Yu, W. Gui, Pivotal inference for the inverted exponentiated rayleigh distribution based on progressive type-Ⅱ censored data, Am. J. Math. Manag. Sci., 39 (2020), 315–328. https://doi.org/10.1080/01966324.2020.1762142 doi: 10.1080/01966324.2020.1762142
|
| [26] |
J. Ma, L. Wang, Y. M. Tripathi, M. K. Rastogi, Reliability inference for stress-strength model based on inverted exponential rayleigh distribution under progressive type-Ⅱ censored data, Commun. Stat. -Simul. C., 52 (2021), 2388–2407. https://doi.org/10.1080/03610918.2021.1908552 doi: 10.1080/03610918.2021.1908552
|
| [27] |
M. E. Ghitany, V. K. Tuan, N. Balakrishnan, Likelihood estimation for a general class of inverse exponentiated distributions based on complete and progressively censored data, J. Stat. Comput. Simul., 84 (2014), 96–106. https://doi.org/10.1080/00949655.2012.696117 doi: 10.1080/00949655.2012.696117
|
| [28] |
M. Shrahili, A. R. El-Saeed, A. S. Hassan, I. Elbatal, M. Elgarhy, Estimation of entropy for log-logistic distribution under progressive type-Ⅱ censoring, J. Nanomater., 2022 (2022), 2739606. https://doi.org/10.1155/2022/2739606 doi: 10.1155/2022/2739606
|
| [29] |
M. Z. Raqab, Discriminating between the generalized rayleigh and weibull distributions, J. Appl. Stat., 40 (2013), 1480–1493. https://doi.org/10.1080/02664763.2013.788614 doi: 10.1080/02664763.2013.788614
|
| [30] |
S. Gao, W. Gui, Parameter estimation of the inverted exponentiated rayleigh distribution based on progressively first-failure censored samples, Int. J. Syst. Assur. Eng., 10 (2019), 925–936. https://doi.org/10.1007/s13198-019-00822-9 doi: 10.1007/s13198-019-00822-9
|
| [31] |
W. Yan, P. Li, Y. Yu, Statistical inference for the reliability of burr-XII distribution under improved adaptive type-Ⅱ progressive censoring, Appl. Math. Model., 95 (2021), 38–52. https://doi.org/10.1016/j.apm.2021.01.050 doi: 10.1016/j.apm.2021.01.050
|
| [32] |
A. F. Hashem, S. A. Alyami, Inference on a new lifetime distribution under progressive type Ⅱ censoring for a parallel-series structure, Complexity, 2021 (2012), 6684918. https://doi.org/10.1155/2021/6684918 doi: 10.1155/2021/6684918
|
| [33] |
D. A. Ramadan, Assessing the lifetime performance index of weighted lomax distribution based on progressive type-Ⅱ censoring scheme for bladder cancer, Int. J. Biomath., 14 (2021), 2150018. https://doi.org/10.1142/S1793524521500182 doi: 10.1142/S1793524521500182
|
| [34] |
J. Ren, W. Gui, Statistical analysis of adaptive type-Ⅱ progressively censored competing risks for weibull models, Appl. Math. Model., 98 (2021), 323–342. https://doi.org/10.1016/j.apm.2021.05.008 doi: 10.1016/j.apm.2021.05.008
|
| [35] |
D. Kundu, Bayesian inference and life testing plan for the weibull distribution in presence of progressive censoring, Technometrics, 50 (2008), 144–154. https://doi.org/10.1198/004017008000000217 doi: 10.1198/004017008000000217
|
| [36] |
M. Han, E-bayesian estimations of parameter and its evaluation standard: expected mean square error under different loss functions, Commun. Stat. -Simul. C., 50 (2021), 1971–1988. https://doi.org/10.1080/03610918.2019.1589510 doi: 10.1080/03610918.2019.1589510
|
| [37] |
M. N. Abd, H. A. Rasheed, Bayesian estimation for the reliability function of two parameter exponential distribution under different loss functions, AIP Conf. Proc., 3036 (2024), 040036. https://doi.org/10.1063/5.0203008 doi: 10.1063/5.0203008
|
| [38] |
A. S. Hassan, E. A. Elsherpieny, R. E. Mohamed, Classical and bayesian estimation of entropy for pareto distribution in presence of outliers with application, Sankhya A., 85 (2023), 707–740. https://doi.org/10.1007/s13171-021-00274-z doi: 10.1007/s13171-021-00274-z
|
| [39] | A. Gelman, J. B. Carlin, A. Vehtari, D. B. Rubin, Bayesian data analysis, 3 Eds., Boca Raton: Chapman & Hall/CRC, 2014. https://doi.org/10.1201/b16018 |
| [40] |
A. Kohansal, On estimation of reliability in a multicomponent stress-strength model for a kumaraswamy distribution based on progressively censored sample, Stat. Pap., 60 (2019), 2185–2224. https://doi.org/10.1007/s00362-017-0916-6 doi: 10.1007/s00362-017-0916-6
|
| [41] |
B. Efron, Logistic Regression, Survival analysis, and the kaplan-meier curve, J. Amer. Statist. Assoc., 83 (2012), 414–425. https://doi.org/10.1080/01621459.1988.10478612 doi: 10.1080/01621459.1988.10478612
|
| [42] |
M. Z. Raqab, Discriminating between the generalized rayleigh and weibull distributions, J. Appl. Stat., 40 (2013), 1480–1493. https://doi.org/10.1080/02664763.2013.788614 doi: 10.1080/02664763.2013.788614
|