In this paper, we revisit a velocity averaging lemma for the relativistic free transport equation using a modified vector field method. After averaging with respect to the velocity of the solution by certain weight functions $ \varphi $, we demonstrate that the averaged quantity $ \rho_{\varphi}(t, x) $ belongs to the Sobolev space $ W_{x}^{1, p} $ for $ p\in[1, +\infty] $. This result reveals the regularizing effect of the velocity averaging of the solution. Furthermore, we also show the quantitative effects of both the particle mass and the speed of light. The proof relies on the key observation that the differential operator $ t\, \nabla_{x}+[\nabla_{v}(\hat{v}) ]^{-1}\nabla_{v} $ commutes with the operator $ \partial_{t}+ \hat{v} \cdot \nabla_{x} $.
Citation: Baoyan Sun, Man Wu. The velocity averaging lemma to the relativistic free transport equation[J]. AIMS Mathematics, 2025, 10(4): 9369-9377. doi: 10.3934/math.2025433
In this paper, we revisit a velocity averaging lemma for the relativistic free transport equation using a modified vector field method. After averaging with respect to the velocity of the solution by certain weight functions $ \varphi $, we demonstrate that the averaged quantity $ \rho_{\varphi}(t, x) $ belongs to the Sobolev space $ W_{x}^{1, p} $ for $ p\in[1, +\infty] $. This result reveals the regularizing effect of the velocity averaging of the solution. Furthermore, we also show the quantitative effects of both the particle mass and the speed of light. The proof relies on the key observation that the differential operator $ t\, \nabla_{x}+[\nabla_{v}(\hat{v}) ]^{-1}\nabla_{v} $ commutes with the operator $ \partial_{t}+ \hat{v} \cdot \nabla_{x} $.
| [1] |
D. Arsénio, N. Lerner, An energy method for averaging lemmas, Pure Appl. Anal., 3 (2021), 319–362. https://doi.org/10.2140/paa.2021.3.319 doi: 10.2140/paa.2021.3.319
|
| [2] |
D. Arsénio, N. Masmoudi, Maximal gain of regularity in velocity averaging lemmas, Anal. PDE, 12 (2019), 333–388. https://doi.org/10.2140/apde.2019.12.333 doi: 10.2140/apde.2019.12.333
|
| [3] |
L. Bigorgne, A vector field method for massless relativistic transport equations and applications, J. Funct. Anal., 278 (2020), 108365. https://doi.org/10.1016/j.jfa.2019.108365 doi: 10.1016/j.jfa.2019.108365
|
| [4] |
F. Bouchut, Hypoelliptic regularity in kinetic equations, J. Math. Pures Appl., 81 (2002), 1135–1159. https://doi.org/10.1016/S0021-7824(02)01264-3 doi: 10.1016/S0021-7824(02)01264-3
|
| [5] |
F. Bouchut, L. Desvillettes, Averaging lemmas without time Fourier transform and application to discretized kinetic equations, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 19–36. https://doi.org/10.1017/S030821050002744X doi: 10.1017/S030821050002744X
|
| [6] |
I. K. Chen, P. H. Chuang, C. H. Hsia, J. K. Su, A revisit of the velocity averaging lemma: On the regularity of stationary Boltzmann equation in a bounded convex domain, J. Stat. Phys., 189 (2022), 17. https://doi.org/10.1007/s10955-022-02977-5 doi: 10.1007/s10955-022-02977-5
|
| [7] |
R. J. DiPerna, P. L. Lions, Y. Meyer, $L^p$ regularity of velocity averages, Ann. Inst. H. Poincaré Anal. Non Linéaire, 8 (1991), 271–287. https://doi.org/10.1016/S0294-1449(16)30264-5 doi: 10.1016/S0294-1449(16)30264-5
|
| [8] |
D. Fajman, J. Joudioux, J. Smulevici, A vector field method for relativistic transport equations with applications, Anal. PDE, 10 (2017), 1539–1612. https://doi.org/10.2140/apde.2017.10.1539 doi: 10.2140/apde.2017.10.1539
|
| [9] |
F. Golse, P. L. Lions, B. Perthame, R. Sentis, Regularity of the moments for the solution of a transport equation, J. Funct. Anal., 76 (1988), 110–125. https://doi.org/10.1016/0022-1236(88)90051-1 doi: 10.1016/0022-1236(88)90051-1
|
| [10] |
F. Golse, L. Saint-Raymond, Velocity averaging in $L^1$ for the transport equation, C. R. Acad. Sci. Paris, 334 (2002), 557–562. https://doi.org/10.1016/S1631-073X(02)02302-6 doi: 10.1016/S1631-073X(02)02302-6
|
| [11] | M. P. Gualdani, S. Mischler, C. Mouhot, Factorization of non-symmetric operators and exponential $H$-theorem, Mém. Soc. Math. Fr., 153 (2017), 137. Available from: https://smf.emath.fr/publications/factorisation-doperateurs-non-symetriques-et-theoreme-h-exponentiel |
| [12] |
B. Guo, D. Huang, J. Zhang, Decay of solutions to a two-layer quasi-geostrophic model, Anal. Appl., 15 (2017), 595–606. https://doi.org/10.1142/S0219530517500117 doi: 10.1142/S0219530517500117
|
| [13] |
J. Huang, Z. Jiang, Average regularity of the solution to an equation with the relativistic-free transport operator, Acta Math. Sci., 37 (2017), 1281–1294. https://doi.org/10.1016/S0252-9602(17)30073-5 doi: 10.1016/S0252-9602(17)30073-5
|
| [14] |
P. E. Jabin, H. Y. Lin, E. Tadmor, Commutator method for averaging lemmas, Anal. PDE, 15 (2022), 1561–1584. https://doi.org/10.2140/apde.2022.15.1561 doi: 10.2140/apde.2022.15.1561
|
| [15] |
Y. C. Lin, M. J. Lyu, K. C. Wu, Relativistic Boltzmann equation: Large time behavior and finite speed of propagation, SIAM J. Math. Anal., 52 (2020), 5994–6032. https://doi.org/10.1137/20M1332761 doi: 10.1137/20M1332761
|
| [16] |
M. J. Lyu, B. Sun, A remark on the velocity averaging lemma of the transport equation with general case, Netw. Heterog. Media, 19 (2024), 157–168. https://doi.org/10.3934/nhm.2024007 doi: 10.3934/nhm.2024007
|
| [17] |
X. Xu, X. Pu, J. Zhang, Asymptotic limit of the Navier-Stokes-Poisson-Korteweg system in the half-space, J. Diff. Equ., 335 (2022), 201–243. https://doi.org/10.1016/j.jde.2022.07.006 doi: 10.1016/j.jde.2022.07.006
|
| [18] |
S. Zeb, S. Gul, K. Shah, D. Santina, N. Mlaiki, Melting heat transfer and thermal radiation effects on MHD tangent hyperbolic nanofluid flow with chemical reaction and activation energy, Therm. Sci., 27 (2023), 253–261. https://doi.org/10.2298/TSCI23S1253Z doi: 10.2298/TSCI23S1253Z
|