Research article

Completion problems of partial $ N_0^1 $-matrices under directed 2-trees

  • Received: 23 January 2025 Revised: 24 March 2025 Accepted: 02 April 2025 Published: 21 April 2025
  • MSC : 05C22, 05C50, 15A48, 15A57

  • A matrix completion problem asks whether a partial matrix has a completion to a conventional matrix with a desired property. C. Mendes Ara$ \acute {u} $jo and J. R. Torregrosa explored the completion problem of a combinatorially symmetric N0-matrix by applying an undirected graph. However, in practical applications such as seismic data reconstruction, data transmission, and engineering computation data are often incomplete and must be represented by a non-combinatorially symmetric matrix. In this paper, we discuss the completion problem of a non-combinatorially symmetric partial matrix by using a directed graph and prove that a non-combinatorially symmetric partial matrix under a directed 2-tree is completed as an $ N_0^1 $-matrix.

    Citation: Gu-Fang Mou. Completion problems of partial $ N_0^1 $-matrices under directed 2-trees[J]. AIMS Mathematics, 2025, 10(4): 9055-9072. doi: 10.3934/math.2025417

    Related Papers:

  • A matrix completion problem asks whether a partial matrix has a completion to a conventional matrix with a desired property. C. Mendes Ara$ \acute {u} $jo and J. R. Torregrosa explored the completion problem of a combinatorially symmetric N0-matrix by applying an undirected graph. However, in practical applications such as seismic data reconstruction, data transmission, and engineering computation data are often incomplete and must be represented by a non-combinatorially symmetric matrix. In this paper, we discuss the completion problem of a non-combinatorially symmetric partial matrix by using a directed graph and prove that a non-combinatorially symmetric partial matrix under a directed 2-tree is completed as an $ N_0^1 $-matrix.



    加载中


    [1] M. Laurent, A connection between positive semidefinite and Euclidean distance matrix completion problems, Linear Algebra Appl., 273 (1998), 9–22. http://doi.org/10.1016/S0024-3795(97)83714-7 doi: 10.1016/S0024-3795(97)83714-7
    [2] R. Ma, N. Barzigar, A. Roozgard, S. Cheng, Decomposition approach for low-rank matrix completion and its applications, IEEE T. Signal Proces., 62 (2014), 1671–1683. http://doi.org/10.1109/TSP.2014.2301139 doi: 10.1109/TSP.2014.2301139
    [3] G. Ivanyos, M. Karpinski, N. Saxena, Deterministic polynomial time algorithms for matrix completion problems, SIAM J. Comput., 39 (2010), 1193–1211. https://doi.org/10.1137/090781231 doi: 10.1137/090781231
    [4] C. M. Ara$\acute {u}$jo, J. R. Torregrosa, A. M. Urbano, $N$-Matrix completion problem, Linear Algebra Appl., 372 (2003), 111–125. https://doi.org/10.1016/S0024-3795(03)00500-7 doi: 10.1016/S0024-3795(03)00500-7
    [5] C. M. Ara$\acute {u}$jo, J. R. Torregrosa, A. M. Urbano, The $N$-matrix completion problem under digraphs assumptions, Linear Algebra Appl., 380 (2004), 213–225. http://doi.org/10.1016/j.laa.2003.10.017 doi: 10.1016/j.laa.2003.10.017
    [6] L. Hogben, Graph theoretic methods for matrix completion problems, Linear Algebra Appl., 328 (2001), 161–202. http://doi.org/10.1016/S0024-3795(00)00299-8 doi: 10.1016/S0024-3795(00)00299-8
    [7] C. M. Ara$\acute {u}$jo, J. R. Torregrosa, A. M. Urbano, The symmetric $N$-matrix completion problem, Linear Algebra Appl., 406 (2005), 235–252. http://doi.org/10.1016/j.laa.2005.04.008 doi: 10.1016/j.laa.2005.04.008
    [8] L. Hogben, The symmetric $M$-matrix and symmetric inverse $M$-matrix completion problems, Linear Algebra Appl., 353 (2002), 159–168. http://doi.org/10.1016/S0024-3795(02)00301-4 doi: 10.1016/S0024-3795(02)00301-4
    [9] G. F. Mou, T.-Z. Huang, The $N_{0}^{1}$-matrix completion problem, REVISTA DE LA UNI$\acute {O}$N MATEM$\acute {A}$TICA ARGENTINA, 54 (2013), 1–14.
    [10] C. Jordan, C. M. Ara$\acute {u}$jo, J. R. Torregrosa, $N_0$ completions on partial matrices, Appl. Math. Comput., 211 (2009), 303–312. http://doi.org/10.1016/j.amc.2009.01.063 doi: 10.1016/j.amc.2009.01.063
    [11] Y. Y. Yan, D. Z. Cheng, J.-E Feng, H. T. Li, J. M. Yue, Survey on applications of algebraic state space theory of logical systems to finite state machines, Sci. China Inf. Sci., 66 (2023), 111201. http://doi.org/10.1007/S11432-022-3538-4 doi: 10.1007/S11432-022-3538-4
    [12] T. Parthasathy, G. Ravindran, $N$-Matrices, Linear Algebra Appl., 139 (1990), 89–102. http://doi.org/10.1016/0024-3795(90)90390-X
    [13] S.-W. Zhou, T.-Z. Huang, On Perron complements of inverse $N_0$-matrices, Linear Algebra Appl., 434 (2011), 2081–2088. http://doi.org/10.1016/j.laa.2010.12.004 doi: 10.1016/j.laa.2010.12.004
    [14] G. Chartrand, P. Zhang, Introduction to graph theory, New York: McGraw-Hill, 2004.
    [15] J. R. S. Blair, B. Peyton, An introduction to chordal graphs an clique trees, In: Graph theory and sparse matrix computation, New York: Springer, 1993, 1–29. http://doi.org/10.1007/978-1-4613-8369-7_1
    [16] C. R. Johnson, R. Loewy, P. A. Smith, The graphs for which the maximum multiplicity of an eigenvalue is two, Linear Multilinear A., 57 (2009), 713–736. http://doi.org/10.1080/01445340802354580 doi: 10.1080/01445340802354580
    [17] J. W. Helton, I. Klep, R. Gomez, Determinant expansions of signed matrices and of certain Jacobians, SIAM J. Matrix Anal. A., 31 (2012), 732–754. http://doi.org/10.1137/080718838 doi: 10.1137/080718838
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(770) PDF downloads(34) Cited by(0)

Article outline

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog