Research article

Stability analysis of linear systems with a periodical time-varying delay based on an improved non-continuous piecewise Lyapunov functional

  • Received: 30 December 2024 Revised: 28 March 2025 Accepted: 09 April 2025 Published: 21 April 2025
  • MSC : 34D20, 34K20, 34K25

  • This paper mainly studies the stability of linear systems with a periodical time-varying delay. An improved delay-segmentation-based non-continuous piecewise Lyapunov–Krasovskii (L–K) functional is proposed. In comparison with the currently available L–K functional, this functional incorporates more delay-segmentation-interval-related information. Additionally, it effectively eases the boundary constraints at each segment point. Consequently, a stability criterion with reduced conservativeness for linear time-delay systems is derived. Finally, two numerical examples and a single-area load frequency control system are given to validate the efficiency of the proposed approach.

    Citation: Wei Wang, Chang-Xin Li, Ao-Qian Luo, Hui-Qin Xiao. Stability analysis of linear systems with a periodical time-varying delay based on an improved non-continuous piecewise Lyapunov functional[J]. AIMS Mathematics, 2025, 10(4): 9073-9093. doi: 10.3934/math.2025418

    Related Papers:

  • This paper mainly studies the stability of linear systems with a periodical time-varying delay. An improved delay-segmentation-based non-continuous piecewise Lyapunov–Krasovskii (L–K) functional is proposed. In comparison with the currently available L–K functional, this functional incorporates more delay-segmentation-interval-related information. Additionally, it effectively eases the boundary constraints at each segment point. Consequently, a stability criterion with reduced conservativeness for linear time-delay systems is derived. Finally, two numerical examples and a single-area load frequency control system are given to validate the efficiency of the proposed approach.



    加载中


    [1] A. Seuret, F. Gouaisbaut, Allowable delay sets for the stability analysis of linear time-varying delay systems using a delay-dependent reciprocally convex lemma, IFAC-PapersOnLine, 50 (2017), 1275–1280. https://doi.org/10.1016/j.ifacol.2017.08.131 doi: 10.1016/j.ifacol.2017.08.131
    [2] Y. L. Fan, C. K. Zhang, Y. F. Liu, Y. He, Q. G. Wang, Stability analysis of systems with time-varying delays for conservatism and complexity reduction, Syst. Control Lett., 193 (2024), 105948. https://doi.org/10.1016/j.sysconle.2024.105948 doi: 10.1016/j.sysconle.2024.105948
    [3] Y. He, C. K. Zhang, H. B. Zeng, M. Wu, Additional functions of variable-augmented-based free-weighting matrices and application to systems with time-varying delay, Internat. J. Systems Sci., 54 (2023), 991–1003. https://doi.org/10.1080/00207721.2022.2157198 doi: 10.1080/00207721.2022.2157198
    [4] P. Pepe, G. Pola, M. D. Di Benedetto, On Lyapunov–Krasovskii characterizations of stability notions for discrete-time systems with uncertain time-varying time delays, IEEE Trans. Automat. Control, 63 (2018), 1603–1617. https://doi.org/10.1109/TAC.2017.2749526 doi: 10.1109/TAC.2017.2749526
    [5] C. K. Zhang, W. H. Chen, C. Zhu, Y. He, M. Wu, Stability analysis of discrete-time systems with time-varying delay via a delay-dependent matrix-separation-based inequality, Automatica, 156 (2023), 111192. https://doi.org/10.1016/j.automatica.2023.111192 doi: 10.1016/j.automatica.2023.111192
    [6] Y. Mo, W. Yu, H. Hou, S. Dasgupta, Razumikhin-type ISS Lyapunov function and small gain theorem for discrete time time-delay systems with application to a biased min-consensus protocol, Automatica, 174 (2025), 112111. https://doi.org/10.1016/j.automatica.2025.112111 doi: 10.1016/j.automatica.2025.112111
    [7] T. S. Peng, H. B. Zeng, W. Wang, X. M. Zhang, X.-G. Liu, General and less conservative criteria on stability and stabilization of T–S fuzzy systems with time-varying delay, IEEE Trans. Fuzzy Syst., 31 (2023), 1531–1541. https://doi.org/10.1109/TFUZZ.2022.3204899 doi: 10.1109/TFUZZ.2022.3204899
    [8] Y. Li, Y. He, Y. Yang, Q. Liu, Membership-functions-derivative-dependent stability criteria for delayed {T}akagi{-S}ugeno fuzzy systems, IEEE Trans. Fuzzy Syst., 32 (2024), 4685–4698. https://doi.org/10.1109/TFUZZ.2024.3409782 doi: 10.1109/TFUZZ.2024.3409782
    [9] Y. Chen, G. Chen, Hierarchical admissibility criteria for T-S fuzzy singular systems with time-varying delay, Fuzzy Sets Syst., 492 (2024), 109065. https://doi.org/10.1016/j.fss.2024.109065 doi: 10.1016/j.fss.2024.109065
    [10] Z. Sheng, C. Lin, B. Chen, Q. G. Wang, Stability and stabilization of T–S fuzzy time-delay systems under sampled-data control via new asymmetric functional method, IEEE Trans. Fuzzy Syst., 31 (2023), 3197–3209. https://doi.org/10.1109/TFUZZ.2023.3247030 doi: 10.1109/TFUZZ.2023.3247030
    [11] H. B. Zeng, Z. J. Zhu, T. S. Peng, W. Wang, X. M. Zhang, Robust tracking control design for a class of nonlinear networked control systems considering bounded package dropouts and external disturbance, IEEE Trans. Fuzzy Syst., 32 (2024), 3608–3617. https://doi.org/10.1109/TFUZZ.2024.3377799 doi: 10.1109/TFUZZ.2024.3377799
    [12] L. Jin, Y. He, C. K. Zhang, L. Jiang, W. Yao, M. Wu, Delay-dependent stability of load frequency control with adjustable computation accuracy and complexity, Control Eng. Pract., 135 (2023), 105518. https://doi.org/10.1016/j.conengprac.2023.105518 doi: 10.1016/j.conengprac.2023.105518
    [13] C. G. Wei, X. C. Shangguan, Y. He, C. K. Zhang, D. Xu, Delay-dependent stability evaluation for temperature control load participating in load frequency control of microgrid, IEEE Trans. Ind. Electron., 72 (2025), 449–459. https://doi.org/10.1109/TIE.2024.3404126 doi: 10.1109/TIE.2024.3404126
    [14] W. M. Wang, H. B. Zeng, J. M. Liang, S. P. Xiao, Sampled-data-based load frequency control for power systems considering time delays, J. Franklin Inst., 362 (2025), 107477. https://doi.org/10.1016/j.jfranklin.2024.107477 doi: 10.1016/j.jfranklin.2024.107477
    [15] W. Wang, R. K. Xie, L. Ding, Stability analysis of load frequency control systems with electric vehicle considering time-varying delay, IEEE Access, 13 (2025), 3562–3571. https://doi.org/10.1109/ACCESS.2024.3519343 doi: 10.1109/ACCESS.2024.3519343
    [16] G. Zhuang, Q. Ma, B. Zhang, S. Xu, J. Xia, Admissibility and stabilization of stochastic singular {M}arkovian jump systems with time delays, Syst. Control Lett., 114 (2018), 1–10. https://doi.org/10.1016/j.sysconle.2018.02.004 doi: 10.1016/j.sysconle.2018.02.004
    [17] W. Le, Y. Ding, W. Wu, H. Liu, New stability criteria for semi-{M}arkov jump linear systems with time-varying delays, AIMS Mathematics, 6 (2021), 4447–4462. https://doi.org/10.3934/math.2021263 doi: 10.3934/math.2021263
    [18] W. Wang, J. Liang, M. Liu, L. Ding, H. Zeng, Novel robust stability criteria for Lur'e systems with time-varying delay, Mathematics, 12 (2024), 583. https://doi.org/10.3390/math12040583 doi: 10.3390/math12040583
    [19] W. Wang, J. M. Liang, H. B. Zeng, Sampled-data-based stability and stabilization of Lurie systems, Appl. Math. Comput., 501 (2025), 129455. https://doi.org/10.1016/j.amc.2025.129455 doi: 10.1016/j.amc.2025.129455
    [20] X. M. Zhang, Q. L. Han, Robust ${H}_{\infty}$ filtering for a class of uncertain linear systems with time-varying delay, Automatica, 44 (2008), 157–166. https://doi.org/10.1016/j.automatica.2007.04.024 doi: 10.1016/j.automatica.2007.04.024
    [21] X. M. Zhang, Q. L. Han, X. Ge, Sufficient conditions for a class of matrix-valued polynomial inequalities on closed intervals and application to ${H}_{\infty}$ filtering for linear systems with time-varying delays, Automatica, 125 (2021), 109390. https://doi.org/10.1016/j.automatica.2020.109390 doi: 10.1016/j.automatica.2020.109390
    [22] G. M. Zhuang, Z. K. Wang, X. P. Xie, J. W. Xia, Embedded-adaptive-observer-based ${H}_\infty$ integrated fault estimation and memory fault-tolerant control for nonlinear delayed implicit robotic arm, IEEE Trans. Ind. Inform., 20 (2024), 8317–8327. https://doi.org/10.1109/TII.2024.3372009 doi: 10.1109/TII.2024.3372009
    [23] R. H. Gielen, M. Lazar, S. V. Raković, Necessary and sufficient Razumikhin-type conditions for stability of delay difference equations, IEEE Trans. Automat. Control, 58 (2013), 2637–2642. https://doi.org/10.1109/TAC.2013.2255951 doi: 10.1109/TAC.2013.2255951
    [24] H. C. Lin, H. B. Zeng, X. M. Zhang, W. Wang, Stability analysis for delayed neural networks via a generalized reciprocally convex inequality, IEEE Trans. Neural Netw. Learn. Syst., 34 (2023), 7491–7499. https://doi.org/10.1109/TNNLS.2022.3144032 doi: 10.1109/TNNLS.2022.3144032
    [25] H. B. Zeng, Z. J. Zhu, W. Wang, X. M. Zhang, Relaxed stability criteria of delayed neural networks using delay-parameters-dependent slack matrices, Neural Netw., 180 (2024), 106676. https://doi.org/10.1016/j.neunet.2024.106676 doi: 10.1016/j.neunet.2024.106676
    [26] F. S. S. de Oliveira, F. O. Souza, Further refinements in stability conditions for time-varying delay systems, Appl. Math. Comput., 369 (2020), 124866. https://doi.org/10.1016/j.amc.2019.124866 doi: 10.1016/j.amc.2019.124866
    [27] W. Wang, H. B. Zeng, K. L. Teo, Y. J. Chen, Relaxed stability criteria of time-varying delay systems via delay-derivative-dependent slack matrices, J. Franklin Inst., 360 (2023), 6099–6109. https://doi.org/10.1016/j.jfranklin.2023.04.019 doi: 10.1016/j.jfranklin.2023.04.019
    [28] P. Park, J. W. Ko, C. Jeong, Reciprocally convex approach to stability of systems with time-varying delays, Automatica, 47 (2011), 235–238. https://doi.org/10.1016/j.automatica.2010.10.014 doi: 10.1016/j.automatica.2010.10.014
    [29] H. B. Zeng, Y. He, M. Wu, J. She, Free-matrix-based integral inequality for stability analysis of systems with time-varying delay, IEEE Trans. Automat. Control, 60 (2015), 2768–2772. https://doi.org/10.1109/TAC.2015.2404271 doi: 10.1109/TAC.2015.2404271
    [30] C. K. Zhang, Y. He, L. Jiang, M. Wu, H. B. Zeng, Stability analysis of systems with time-varying delay via relaxed integral inequalities, Syst. Control Lett., 92 (2016), 52–61. https://doi.org/10.1016/j.sysconle.2016.03.002 doi: 10.1016/j.sysconle.2016.03.002
    [31] A. Seuret, F. Gouaisbaut, Stability of linear systems with time-varying delays using {B}essel–{L}egendre inequalities, IEEE Trans. Automat. Control, 63 (2018), 225–232. https://doi.org/10.1109/TAC.2017.2730485 doi: 10.1109/TAC.2017.2730485
    [32] H. B. Zeng, X. G. Liu, W. Wang, A generalized free-matrix-based integral inequality for stability analysis of time-varying delay systems, Appl. Math.Comput., 354 (2019), 1–8. https://doi.org/10.1016/j.amc.2019.02.009 doi: 10.1016/j.amc.2019.02.009
    [33] W. M. Wang, Y. W. Wang, H. B. Zeng, J. Huang, Further results on stability analysis of {T–S} fuzzy systems with time-varying delay, IEEE Trans. Fuzzy Syst., 32 (2024), 3529–3541. https://doi.org/10.1109/TFUZZ.2024.3375449 doi: 10.1109/TFUZZ.2024.3375449
    [34] F. Gouaisbaut, D. Peaucelle, Delay-dependent stability analysis of linear time delay systems, IFAC Proc. Vol., 39 (2006), 54–59. https://doi.org/10.3182/20060710-3-IT-4901.00010 doi: 10.3182/20060710-3-IT-4901.00010
    [35] Q. L. Han, A new delay-dependent absolute stability criterion for a class of nonlinear neutral systems, Automatica, 44 (2008), 272–277. https://doi.org/10.1016/j.automatica.2007.04.009 doi: 10.1016/j.automatica.2007.04.009
    [36] X. M. Zhang, Q. L. Han, A. Seuret, F. Gouaisbaut, Y. He, Overview of recent advances in stability of linear systems with time-varying delays, IET Control Theory Appl., 13 (2019), 1–16. https://doi.org/10.1049/iet-cta.2018.5188 doi: 10.1049/iet-cta.2018.5188
    [37] H. B. Zeng, Y. He, K. L. Teo, Monotone-delay-interval-based Lyapunov functionals for stability analysis of systems with a periodically varying delay, Automatica, 138 (2022), 110030. https://doi.org/10.1016/j.automatica.2021.110030 doi: 10.1016/j.automatica.2021.110030
    [38] Y. Chen, H. B. Zeng, Y. Li, Stability analysis of linear delayed systems based on an allowable delay set partitioning approach, Automatica, 163 (2024), 111603. https://doi.org/10.1016/j.automatica.2024.111603 doi: 10.1016/j.automatica.2024.111603
    [39] J. de Canniere, H. van Brussel, J. van Bogaert, A contribution to the mathematical analysis of variable spindle speed machining, Appl. Math. Model., 5 (1981), 158–164. https://doi.org/10.1016/0307-904X(81)90038-X doi: 10.1016/0307-904X(81)90038-X
    [40] S. Jayaram, S. G. Kapoor, R. E. DeVor, Analytical stability analysis of variable spindle speed machining, J. Manuf. Sci. Eng., 122 (2000), 391–397. https://doi.org/10.1115/1.1285890 doi: 10.1115/1.1285890
    [41] W. Michiels, V. van Assche, S. I. Niculescu, Stabilization of time-delay systems with a controlled time-varying delay and applications, IEEE Trans. Automat. Control, 50 (2005), 493–504. https://doi.org/10.1109/TAC.2005.844723 doi: 10.1109/TAC.2005.844723
    [42] W. Wang, W. M. Wang, H. B. Zeng, Stability analysis of systems with cyclical delay via an improved delay-monotonicity-dependent Lyapunov functional, J. Franklin Inst., 360 (2023), 99–108. https://doi.org/10.1016/j.jfranklin.2022.11.032 doi: 10.1016/j.jfranklin.2022.11.032
    [43] H. B. Zeng, Y. J. Chen, Y. He, X. M. Zhang, A delay-derivative-dependent switched system model method for stability analysis of linear systems with time-varying delay, Automatica, 175 (2025), 112183. https://doi.org/10.1016/j.automatica.2025.112183 doi: 10.1016/j.automatica.2025.112183
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1255) PDF downloads(68) Cited by(15)

Article outline

Figures and Tables

Figures(3)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog