To better capture asymmetry and heavy-tailedness, we have proposed a power-transformed asymmetric double autoregressive (PTADAR(p, q)) model. First we gave a sufficient condition for the existence of a strict stationarity solution of the PTADAR(p, q) model. Then we studied the quasi-maximum likelihood estimation (QMLE) of the model, and proved the consistency and asymptotic normality for the QMLE estimator. We set the power parameter $ \delta > 0 $, which includes $ \delta = 1, 2 $, and in empirical application, the power parameter $ \delta > 0 $ may be unknown. This could overcome the shortcomings of the double autoregressive (DAR(p, q)) model and asymmetry linear double autoregressive model, where the power parameter is only limited to 2 or 1. Based on QMLE, we proposed Akaike's information criterion (AIC) and Bayesian information criterion (BIC) for model selection. Illustrations and an empirical example show our model's usefulness, and we also compared it with other models.
Citation: Guobing Cui. Asymptotic theory for QMLE for power-transformed asymmetric double autoregressive models[J]. AIMS Mathematics, 2025, 10(4): 9094-9121. doi: 10.3934/math.2025419
To better capture asymmetry and heavy-tailedness, we have proposed a power-transformed asymmetric double autoregressive (PTADAR(p, q)) model. First we gave a sufficient condition for the existence of a strict stationarity solution of the PTADAR(p, q) model. Then we studied the quasi-maximum likelihood estimation (QMLE) of the model, and proved the consistency and asymptotic normality for the QMLE estimator. We set the power parameter $ \delta > 0 $, which includes $ \delta = 1, 2 $, and in empirical application, the power parameter $ \delta > 0 $ may be unknown. This could overcome the shortcomings of the double autoregressive (DAR(p, q)) model and asymmetry linear double autoregressive model, where the power parameter is only limited to 2 or 1. Based on QMLE, we proposed Akaike's information criterion (AIC) and Bayesian information criterion (BIC) for model selection. Illustrations and an empirical example show our model's usefulness, and we also compared it with other models.
| [1] |
R. F. Engle, Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation, Econometrica, 50 (1982), 987–1007. https://doi.org/10.2307/1912773 doi: 10.2307/1912773
|
| [2] |
T. Bollerslev, Generalized autoregressive conditional heteroscedasticity, J. Econometrics, 31 (1986), 307–327. https://doi.org/10.1016/0304-4076(86)90063-1 doi: 10.1016/0304-4076(86)90063-1
|
| [3] |
G. W. Schwert, Why does stock market volatility change over time?, J. Finance, 44 (1989), 1115–1153. https://doi.org/10.1111/j.1540-6261.1989.tb02647.x doi: 10.1111/j.1540-6261.1989.tb02647.x
|
| [4] |
D. B. Nelson, Conditional heteroskedasticity in asset returns: A new approach, Econometrica, 59 (1991), 347–370. https://doi.org/10.2307/2938260 doi: 10.2307/2938260
|
| [5] |
S. Y Hwang, T. Y. Kim, Power transformation and threshold modeling for ARCH innovations with applications to tests for ARCH structure, Stochastic Process. Appl., 110 (2004), 295–314. https://doi.org/10.1016/j.spa.2003.11.001 doi: 10.1016/j.spa.2003.11.001
|
| [6] |
J. Pan, H. Wang, H. Tong, Estimation and tests for power-transformed and threshold GARCH models, J. Econometrics, 142 (2008), 352–378. https://doi.org/10.1016/j.jeconom.2007.06.004 doi: 10.1016/j.jeconom.2007.06.004
|
| [7] |
C. Francq, J. M. Zakoïan, Inference in nonstationary asymmetric GARCH models, Ann. Statist., 41 (2013), 1970–1998. https://doi.org/10.1214/13-AOS1132 doi: 10.1214/13-AOS1132
|
| [8] |
C. Francq, L. Q. Thieu, QML inference for volatility models with covariates, Econometric Theory, 35 (2019), 37–72. https://doi.org/10.1017/S0266466617000512 doi: 10.1017/S0266466617000512
|
| [9] | Y. Tao, D. Li, Asymmetric GARCH modelling without moment conditions, arXiv: 2410.00574, 2024. https://doi.org/10.48550/arXiv.2410.00574 |
| [10] |
S. Ling, Estimation and testing stationarity for double-autoregressive models, J. R. Stat. Soc. Ser. B Stat. Methodol., 66 (2004), 63–78. https://doi.org/10.1111/j.1467-9868.2004.00432.x doi: 10.1111/j.1467-9868.2004.00432.x
|
| [11] | S. Ling, A double AR(p) model: structure and estimation, Statist. Sinica, 17 (2007), 161–175. |
| [12] |
D. Li, S. Ling, J. M. Zakoïan, Asymptotic inference in multiple-threshold double autoregressive models, J. Econometrics, 189 (2015), 415–427. https://doi.org/10.1016/j.jeconom.2015.03.033 doi: 10.1016/j.jeconom.2015.03.033
|
| [13] |
D. Li, S. Ling, R. Zhang, On a threshold double autoregressive model, J. Bus. Econom. Statist., 34 (2016), 68–80. https://doi.org/10.1080/07350015.2014.1001028 doi: 10.1080/07350015.2014.1001028
|
| [14] |
W. C. Ip, Y. Li, H. Wong, X. F. Zhang, A class of threshold autoregressive conditional heteroscedastic models, Stat. Interface, 4 (2011), 149–157. https://dx.doi.org/10.4310/SII.2011.v4.n2.a10 doi: 10.4310/SII.2011.v4.n2.a10
|
| [15] |
S. H. Tan, Q. Q. Zhu, Asymmetric linear double autoregression, J. Time Ser. Anal., 43 (2022), 371–388. https://doi.org/10.1111/jtsa.12618 doi: 10.1111/jtsa.12618
|
| [16] |
S. H. Tan, Q. Q. Zhu, On dual-asymmetry linear double AR models, Stat. Interface, 16 (2023), 3–16. https://dx.doi.org/10.4310/21-SII691 doi: 10.4310/21-SII691
|
| [17] |
D. Li, S. Guo, K. Zhu, Double AR model without intercept: An alternative to modeling nonstationarity and heteroscedasticity, Econometric Rev., 38 (2019), 319–331. https://doi.org/10.1080/07474938.2017.1310080 doi: 10.1080/07474938.2017.1310080
|
| [18] |
S. Guo, D. Li, M. Y. Li, Strict stationarity testing and GLAD estimation of double autoregressive models, J. Econometrics, 211 (2019), 319–337. https://doi.org/10.1016/j.jeconom.2019.01.012 doi: 10.1016/j.jeconom.2019.01.012
|
| [19] |
F. Y. Jiang, D. Li, K. Zhu, Non-standard inference for augmented double autoregressive models with null volatility coefficients, J. Econometrics, 215 (2020), 165–183. https://doi.org/10.1016/j.jeconom.2019.08.009 doi: 10.1016/j.jeconom.2019.08.009
|
| [20] |
H. Gong, D. Li, On the three-step non-Gaussian quasi-maximum likelihood estimation of heavy-tailed double autoregressive models, J. Time Ser. Anal., 41 (2020), 883–891. https://doi.org/10.1111/jtsa.12525 doi: 10.1111/jtsa.12525
|
| [21] |
K. Zhu, S. Ling, Quasi-maximum exponential likelihood estimators for a double AR(p) model, Statist. Sinica, 23 (2013), 251–270. http://dx.doi.org/10.5705/ss.2011.086 doi: 10.5705/ss.2011.086
|
| [22] |
D. B. H. Cline, H. M. H. Pu, Stability and the lyapounov exponent of threshold AR-ARCH models, Ann. Appl. Probab., 14 (2004), 1920–1949. https://doi.org/10.1214/105051604000000431 doi: 10.1214/105051604000000431
|
| [23] |
S. Ling, M. McAleer, Asymptotic theory for a vector ARMA-GARCH model, Econometric Theory, 19 (2003), 280–310. https://doi.org/10.1017/S0266466603192092 doi: 10.1017/S0266466603192092
|
| [24] | T. Amemiya, Advanced econometrics, Cambridge: Harvard University Press, 1985. |