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Abstract: A matrix completion problem asks whether a partial matrix has a completion to a
conventional matrix with a desired property. C. Mendes Araijo and J. R. Torregrosa explored the
completion problem of a combinatorially symmetric NO-matrix by applying an undirected graph.
However, in practical applications such as seismic data reconstruction, data transmission, and
engineering computation data are often incomplete and must be represented by a non-combinatorially
symmetric matrix. In this paper, we discuss the completion problem of a non-combinatorially
symmetric partial matrix by using a directed graph and prove that a non-combinatorially symmetric
partial matrix under a directed 2-tree is completed as an N-matrix.
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1. Introduction

A partial matrix is an array in which some entries are specified, while others are free to be chosen
from a certain set. A matrix completion problem asks whether a partial matrix can be completed to
a conventional matrix with a desired property. Matrix completion problems arise in optimization and
in the study of Euclidean distance matrices [1] and have also been extensively used in seismic data
reconstruction [2], data transmission [3], image processing [2], signal processing [2], and engineering
computation [2].

Matrix completion problems can be intuitively studied through graph theory, where undirected
graphs represent combinatorially symmetric matrices, and directed graphs model non-combinatorially
matrices. This graphical approach leverages the structural properties of graphs to simplify the analysis
of incomplete matrices, enabling the principled recovery of missing entries via spectral graph theory
and combinatorial optimization techniques. Matrix completion problems have been studied for many
classes of matrices [4—10]. Concurrently, algebraic state space theory (ASST), based on the semi-tensor
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product (STP), provides a robust algebraic framework for modeling and analyzing finite state machines
(FSMs) with diverse characteristics [11]. By integrating STP with graph structures, ASST not only
enriches the theoretical foundation of FSM analysis but also enhances its practical applicability in
systems with complex dynamics, such as networked control and signal processing. The synergy
between matrix completion and ASST lies in their shared capability to handle incomplete information
and complex system interactions. While matrix completion focuses on reconstructing missing data
through graph-regularized optimization, ASST systematically analyzes and controls FSM transitions
via algebraic state space representations. This duality is further strengthened by integrating STP
with graph-theoretic regularization, enabling robust analysis of both FSM behavior and partial matrix
reconstruction in real-world applications such as networked control systems and signal processing
pipelines.

An n X n real matrix is called an Nj-matrix if all its principal minors are non-positive and each
entry is non-positive (see, e.g., [12,13]). Obviously, the diagonal entries of Nj-matrix are non-positive.
A partial matrix is said to be a partial Né -matrix if every completely specified principal submatrix is
an Nj-matrix. An n X n partial matrix A = (a;;) it is said to be non-combinatorially symmetric when
a;; is specified if and only if a;; is unknown. For a non-combinatorially symmetric partial matrix, all
main diagonal entries are specified. A natural way to describe an n X n non-combinatorially symmetric
partial matrix is by a digraph that has an arc if an entry is nonzero. The non-combinatorially symmetric
matrix completion problems have been studied in [5, 8]. And the non-combinatorially symmetric N-
matrix completion problem has been studied if the graph of its specified entries is an acyclic graph
or a double cycle in [5]. The combinatorially symmetric Né—matrix completion was studied in [9].
In [10], the authors have studied the combinatorial symmetric partial Ny-matrix completion problems
under undirected graphs, and they obtain that a combinatorially symmetric partial Ny-matrix with no
null main diagonal entries has an Ny-matrix completion. In this paper, our interest is in the Nj-matrix
completion problems under directed graphs. The study of this problem is different from the previous
one since some main diagonal entries can be zero, and each specified off-diagonal entry is negative.

The outline of this paper is as follows: we introduce the definition of linear directed 2-tree in
Section 2. We obtain the completion of a partial Ny-matrix if the digraph of its specified entries is a
linear directed 2-tree and discuss that the completion problem for a partial N;-matrix under a nonlinear
directed 2-tree in Section 3.

2. The directed 2-tree

The completion of partial non-combinatorially symmetric matrices by using digraph theory is one
of the important research directions in combinatorial matrix theory. In this paper, we will study the
completion problem of an Nj-matrix under a linear directed 2-tree. First, we will introduce the linear
directed 2-tree.

Definition 2.1. [14] A digraph G consists of a finite nonempty set V of objects called vertices and a set
E of ordered pairs of distinct vertices, each element of E is called an arc or a directed edge. A digraph
H is called a subdigraph of digraph G if V(H) C V(G) and E(H) C E(G).

Definition 2.2. [14] If a digraph G has the property that for each pair u,v of distinct vertices of G, at
most one of (u,v) and (v, u) is an arc of G, then G is an oriented graph.

Definition 2.3. [14] A oriented graph G is transitive if whenever (u,v) and (v,w) are arcs of G, then
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(u,w) is also an arc of G. In each oriented graph G, for some k(1 < k < n), there is a transitive
oriented subgraph. A maximum transitive oriented subgraph is a transitive oriented subgraph with the
maximum number of vertices among all transitive oriented subgraphs.

A natural way to describe an n X n partial matrix A is via a graph G4 = (V, E), where the set
of vertices V is 1,2,...,n, and i, j,i # J, is an edge or arc when the (i, j) entry is specified. For a
non-combinatorially symmetric partial matrix, a natural way to describe an n X n non-combinatorially
symmetric partial matrix is via a digraph G, that has the corresponding arc if the (i, j) entry is specified.
Definition 2.4. [15] A clique in an undirected graph G is simply a complete (all possible edges) induced
subgraph. We also use clique to refer to a complete graph and use K, to indicate a clique on p vertices.
Recall that a k-tree is a graph sequentially constructed from k + 1-cliques (K;.1) via articulation
along k-cliques (see [16]). 2-trees is a graph in which the building blocks are triangles (K;s) and the
articulation is along edges. A 2-tree is linear if there is a natural order to the building triangles that
have precisely two vertices of degree two.

K5 is considered to be, linear 2-tree. For more on linear 2-trees, see [15].

Based on Definition 2.4, we will explore the analogous structure in directed graphs, namely the
directed 2-tree. A oriented graph is called a directed k-tree if it is sequentially constructed from k + 1-
transitive oriented graphs via articulation along k-transitive oriented graphs. Thus, a directed 2-tree is
an oriented graph sequentially constructed from transitive oriented graphs of order 3 via articulation
along arcs. If there is a natural order to the building transitive digraphs of order 3, which have precisely
two vertices of degree two, then a directed 2-tree is called a linear directed 2-tree. Otherwise, a directed
2-tree is called a nonlinear directed 2-tree.

Example 2.5. Assume a partial matrix

ayp dp az dpg

7 axn ax ax

? 7 ay az ass
707 ? Qu ass as |
?
?

? ? dss  dsg

? 7

asy
dey dg3

aes |

whose graph is an oriented graph G4 with a loop at each vertex; see Figure 1,

4
Figure 1. Oriented graph G4.

For GA = (‘/,E)’ let V = {Vla V2a V3’ V4}’ where Vl = {1’293}, V2 = {2’3,4}7 V3 = {394’5}a V4 =
{4,5,6}.
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A directed 2-tree I' is sequentially constructed from these transitive oriented graphs of order 3 via
articulation along arcs; see Figure 2.

Figure 2. Directed 2-tree I'.

The completion of A is
aip dpp a3 dig Ci5 Cie
Cy1 Qpy Az3 dpg Cp5 Co6
C31 C32 A3z dzg dzs Csg
Ac
Cq1 C42 C43 Q44 d45 Q46
Cs51 QAsp Cs3 Cs4 Qss  dse
| C61 de2 A6z Cea Co5 do6 |

where ¢;; may be different values, the digraph G4 of Ac is also different.

Remark. Throughout the paper, we denote the entries of a partial matrix A as follows: a;; denotes
an specified entry, and ”?” denotes a unspecified entry. The entry c¢;; denotes a value assigned to the
unspecified entry during the process of completing a partial matrix. A is the completion of the partial
matrix A.

Definition 2.6. [17] Let the partitioned (block) matrix A = [ B

D E ], where the matrix B is

nonsingular; the matrix A need not be square. Then,
A/B=E-DB'C

is the Schur complement of B in the partitioned matrix A. In addition, we refer to the Guttman rank
formula:
rank(A) = rank(B) + rank(A/B).

3. The N)-matrix completion under the directed 2-tree

In this section, we will obtain the completion of a partial N;-matrix if the digraph of its specified
entries of is a linear directed 2-tree. In addition, we will discuss the completion problem for a partial
Né -matrix under a nonlinear directed 2-tree.

The submatrix of a matrix A, of size n X n, lying in rows « and S, a, 8 C{1, 2,...,n}, is denoted by
Al|B], and the principal submatrix A[a|a] is abbreviated to A[a]. Therefore, a real matrix A, of size
nXn,1s an N&—matrix only if detA.[a] < O for any @ C {1, 2, ..., n}.

Proposition 3.1. Let A be an Nj-matrix. Then,

(1) If P is a permutation matrix, then PAP” is an N,-matrix;

(2) If D is a positive diagonal matrix, then DA, DA is an N(l) -matrix;

(3) Any principal submatrix of A is an Né -matrix.

We suppose that all main diagonal entries in a partial N,-matrix are specified and may be 0 or non-
Zero.

Proposition 3.2. If A is 2 X 2 partial non-combinatorially symmetric matrix, whose digraph is a linear
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directed 2-tree, then there exists an Nj-matrix completion for A.
Proof: We can assume an 2 X 2 partial non-combinatorially symmetric N,-matrix

-a;; —a
A= ( 11 12 ),
7 —axn
with specified entries a1, a2, a» > 0.
Our aim is to prove the existence of c¢;; such that the completion

A :( —dyin —dan )
—C1 —axy

We will consider the following two cases:
Case 1: a;1axn = 0.

We may choose ¢;; > O,then detA, < 0.
Case 2: ajja»n # 0.

We may choose ¢y; > aj1a2/a;,then detA, < 0.
Proposition 3.3. If A is a 3 X 3 non-combinatorially symmetric partial Nj-matrix whose digraph is a
linear directed 2-tree, then there exists an Né -matrix completion for A.
Proof: We can assume an 3 X 3 partial non-combinatorially symmetric N,-matrix

—dap; —dpp —aps
A= 7 —ay —axp |,
? ? —as3

where each a;; > 0(i > j,i,j=1,2,3)and a; > 0( = 1,2, 3).
Our aim is to prove the existence of nonnegative c;3, ¢»1, and c3; such that the completion

—ap —ap —dps
Ac=| —ca —an -—axn |,
—C31 —C3 —das3
is N;.
We may choose c¢13 = ¢31 = ¢3 =t > 0, and show that detAc[a] < O for any @ C {1,2,3}. By
Proposition 3.2, we will consider the following four different cases:
Case 1: ajg = ajy =asz = 0.
According to 3.2, all 2 X 2 principal minors are non-positive. det A¢c = t(—aj,a23 — tajz) < 0.
Case 2: ajjanasz # 0.
If we choose t large enough, then,

detAc{l,2} = —ta;, + ajjan <0;
detAc{1,3} = —ta;3 + a;jazz < 0;
detAc{Z, 3} = —tay; + axpazz < O;

2
detAc = —apt” + (—apax + apzax + ayaxs + apaszs)t — ajaxnass < 0.
Case 3: ajp =day = 0, asy # 0 with arz = A4sz3.
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According to Property 3.2, all 2 X 2 principal minors are non-positive. det A¢c = t(—aj(a; — ass) —
ta;z) < 0.
Case 4: an = 0, ay =aszz # 0 with arz = Aasz3z.

We may choose ¢ > ay,, then all 2 X 2 principal minors are non-positive, and det A¢c = #(—ap(ax; —
az) —ap(—t+axy)) =H(-t+axy)<0.0
Proposition 3.4. Let A be an 4 X 4 non-combinatorially symmetric partial Ny-matrix whose digraph is
a linear directed 2-tree I'; there exists an N(])—matrix completion for A.
Proof: Let I be the 4-vertex linear directed 2-tree with V = (V, V,), V| = {1,2,3}, V, = {2, 3,4}. There
are the following two possibilities for the 4-vertex linear directed 2-tree; see Figure 3.

Figure 3. 4-Vertex linear directed 2-tree.

Case 1: Assume 4 X 4 partial non-combinatorially symmetric NO1 -matrix

—dy;p —app —adiz —dig
_ ? —dpy —dy3 —dp
A - B
? 7 —ax —ax
? ? ? —dyq

with each a;; > 0(i, j = 1,2,3,4), whose digraph is T';.
Our aim is to prove the existence of nonnegative c;;, c31, €32, €41, C42, and c43 such that the completion

—ap; —dip —ai3 —dis
Ac = —C21 —dpp —az3 —dx4
—C31 —C3p —da33z —dz
—C41 —Cqp —C43 —dy4

is an N,-matrix.

We may choose ¢;; = t > 0 and show that det Ac[a] < 0 for any a C {1, 2, 3,4}. By Propositions 3.2
and 3.3, we will consider the following four different cases:
(1) a1 = ax = azz = ag = 0 with axy = azs = aus.

It is easy to prove that detAc[a] < O for any @ C {1, 2, 3,4} by Propositions 3.2 and 3.3. detAc¢
—ay4t* — ay3azut — apanass < 0.
(2) ai1 = ayp = azz = 0,a44 # 0 with ay = azs = aus.

It is easy to prove that detAc[a] < O for any @ C {1,2, 3,4} by Propositions 3.2 and 3.3. detAc¢
—014[2 <0.
(3) ai1 = axp = 0,asx3a44 # 0 with ayy = az4 = au.

We may choose t > as; and can easily prove that detAc[a] < O for any @ C {1,2,3,4} by
Propositions 3.2 and 3.3. det A¢c = —apt* + ajzast < 0.
4) ay1anazzas # 0

It is easy to prove that all 2 x 2 principal minors are non-positive.
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If we may choose ¢ > 0 and large enough, then,

detAc{l1,3,4} = —aut® + (—ai3as4 + a11G34 + a13aas + a14a33)t — a11a33044 < 0;
detAcf{l,2,4} = —at* + (—ai2an4 + ap1aos + A120ss + a1aa0)t — ay1anag < 0;
detAc{l1,2,3} = —ap3t® + (—anan + anass + aja + aizan)t — ajjanass < 0;
det Ac(2,3,4} = —aut® + (—axnas + ardu + ands + auan)t — anaysas < 0.

detAc¢ is a polynomial of ¢ with the term —a4#>. Thus, we may make ¢ large enough such that
detAc <0.
Case 2: We can assume an 4 X 4 partial non-combinatorially symmetric N,-matrix

—dyp; —dp —aps ?
r)

! —dyy —Aaz3 —d4
A=
? ? —as3z3z —dz4
—ay ? 7 —au
whose digraph is I',.
We will show that det Ac[a] < O for any a C {1, 2, 3, 4} with the following two different cases:
(D) ain =axn =azz =ay =00ray #0,axn =as; =ass = 0.

We may choose ”?” = 0. It is easy to prove that the completion

—dapp —dp —aps 0

0 —dpy —dz3 —dpg

AC =
0 0 —az3 —az4
—ay; 0 0 —au

of A is an Nj-matrix.
(2) anay * 0, as3 = dgq = 0 or ajaxpasz * 0, Ay = 0 or a|ax»aszs * 0.

We may choose ¢ > 0 and large enough. It is easy to prove that det Ac[a] < O for any @ C {1, 2, 3,4}
by Propositions 3.2 and 3.3; det A¢ is a polynomial of # with the term —#*. Thus, we may make ¢ large
enough such that detA¢c < 0. O
Proposition 3.5. Let A be 5 X 5 non-combinatorially symmetric partial N,-matrix whose digraph is a
linear directed 2-tree I'; there exists an Ny-matrix completion for A.

Proof: Let I' be the 5-vertex linear directed 2-tree for V = (Vi,V,, V3), where V; = {1,2,3},V, =
{2,3,4}, V3 = {3,4,5}; there are the following four possibilities for the 5-vertex linear directed 2-tree,
see Figure 4.

Figure 4. 5-Vertex linear directed 2-tree.
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Case 1: Assume 5 x 5 partial non-combinatorially symmetric N-matrix

—ajp —ap —aj;z —dig ?

7 —axn —ax; —ay —as
A= ? 7 —azz —ay —ass |,

? ? ? —A4q4 —Ays

? ? ? ? —dadss

whose digraph is I'j, where each a;; > 0 > j,i,j=1,2,3,4,5),and a; > 0(i = 1,2,3,4,5).
Our aim is to prove the existence of nonnegative cis, 2131, C32, C41, C42, C43, C51, C52, C53, and ¢s4 such
that the completion

—ap; —dip —ai3z —diy —Cis
—Cy1 —dyp —dz3 —dy4 —dps
A=| —c31 —c3» —azx —azy —ass
—C41 —C4p —C43 —d4q —d4s
—C51 —Cs5p —Cs53 —Cs4 —ds5

is an Nj-matrix.
We may choose ¢y = ¢35 = c43 = ¢54 = ¢15 = t and large enough and another entry c¢;;=0,
According to Proposition 3.2, all 2 X 2 principal minors are non-positive. According to Proposition
3.3, all 3 x 3 principal minors are non-positive.
Leta C {1,2,3,4,5} and |a| = k(k = 4,5), det Ac[a] is a polynomial of ¢ with the term —*. Thus,
we may make ¢ large enough such that det A¢[a] < 0.
Case 2: Assume 5 X 5 partial non-combinatorially symmetric N-matrix

—a; —ap —a;3 —ay !

7 —axn —axp -—-ay !

A= ? 7 —azy —ay —ass |,
? ? ? —a4yq4 —Aygs
? —dads) ? ? —dadss5

whose digraph is I';, where each a;; > 00 > j,i,j=1,2,3,4,5), and ass = 0.
We may make the completion of A is

—aj; —ap —aiz —ajis I

=t —axp» —ax —ay —i
Ac=| -t -t =—-ax —ay —ass
—t —t =1l  —dyq —Aags

0 =-as, O 0 -ass

If ¢ is large enough, then it is easy to prove that detAc[a] < O for any @ C {1,2,3,4,5} by
Propositions 3.2-3.4.
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.. . A A
Let the partitioned (block) matrix A¢c = P21 where
Az Ay

—ajr —app —dajz —apg

-t —ayp —ax» -—a
A = 2 23 24
—t =1 —asz —axn
—t —t -t —Qy

is nonsingular and A; = —ass.
According to Definition 2.6, the Schur complement of A

Ac/A| = Ay — A3AT'A,

1S nonzearo. So,
rank(Ac) = rank(A,) + rank(Ac/A)) =5

and detAc[a] < 0.
Case 3: Assume 5 x 5 partial non-combinatorially symmetric N-matrix

—dp —adip —a;s ? ?
? —dyy —dy3 —dyy —ds
A= ? 7 —ax —axy —ass |,
—ay ? 7 —au —ass
? ? ? ? —dadss

whose digraph is I';, where each a;; > 0(i > j,i,j=1,2,3,4,5) and ass = 0.
We may make the completion of A is

—a;; —ap —aiz i —t
=1 —ax» —ax —ay —a
Ac=| -t -t =—ax —ay —ass
—aq I =1 —a4 —ays

0 0 0 0 —dss

If ¢ is large enough, then A¢ is obviously Né -matrix.
Case 4: Assume 5 x 5 partial non-combinatorially symmetric Né -matrix

—ap —dip —a;3 ? ?
? —dpy —dz3 —dp4 ?
A= ? 7 —ax —ay —ass |,
—ay ? 7 —au —ass
? —ds) ? ? —dss

whose digraph is I';, where each a;; > 0 > j,i,j=1,2,3,4,5), and ass = 0.

The proof is the same as Case 2.
Theorem 3.6. Let A be an n X n non-combinatorially symmetric partial N,-matrix whose digraph is a
linear directed 2-tree. Then, there exists an Né -matrix completion for A.
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Proof: A linear directed 2-tree I' is sequentially constructed from these transitive oriented graphs of
order 3 via articulation along arcs, see Figure 5.

Figure 5. n-Vertex linear directed 2-tree.

We can assume an n X n partial non-combinatorially symmetric N,-matrix

—app —dp —aps
—X21 —dpn —da4z3
? (7 —as3

—dup—1 n—1 —duy—1 N
? —Qpn

Our aim is to prove the existence of nonnegative c;; such that the completion

—aj —apn —apz e —Cln-1 —Cin
—C21 —an —azy —Con-1 —Co
—C31 —C32 —dazz —C3n-1 —C3p
Ac = ) .
—Cp-1,1 —Cp-12 —Cp-13 **° —Au_1n-1 —Au-1n
—Cn1 —Cn2 —Cn3 e —Cnn-1 —Uup

is an N,.
We may choose ¢;; = t and large enough. Our aim is to prove the existence of positive ¢ such that
the completion

—ap —ap —a;3 - -t —t
-t —axp -—-ay --- -t —t
—t -t —-azz - —t —t
Ac = :
—t —t —t —Qp-1n-1 —An-1n
—t -t —t —t —Qny

is an Nj-matrix.

According to Property 3.2, all 2 X 2 principal minors are non-positive. According to Property 3.3,
all 3 x 3 principal minors are non-positive.

Let o C {1,2,...,n} and |a| = k(k > 4); det Ac[a] is a polynomial of t with the term —#*. Thus, we
may make ¢ large enough such that det Ac[a] < 0. O
Example 3.7. Assume an 5 X 5 partial non-combinatorially symmetric N;-matrix

AIMS Mathematics Volume 10, Issue 4, 9055-9072.
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?7 -1 -3 -5 -1
A= 7?7 7?7 -2 -6 -4 |,
?7 07 -4 -3
?7 07 ?7 -3
whose digraph is a linear directed 2-tree. According to Theorem 3.6, we choose ”?” = —¢, and our aim

is to find the positive ¢ such that the completion of A

-1 -1 -2 -4 -10
—t -1 -3 =5 -1

is an Nj-matrix.

We may make ¢ = 10 and obtain all the principal minors (det Ac[a] < 0,a C {1,2,3,4,5}) of Ac.
Property 3.8. Let A be 4 x 4 partial Ny-matrix whose digraph is a nonlinear directed 2-tree with A
satisfying the following conditions: ajaxass = aj3arzas and axassas = arzaxsas;. Then, there exists
an Nj-matrix completion of A.

Proof: Suppose that the partial N;-matrix is

—dapy —dp —diz —dadig
(7

! —dpy —Az3 —dyg
A= s
? ? —das33 ?
—ay ? 7 —au

where each a;;(i, j = 1,2, 3,4) is nonnegative.
Our aim is to prove the existence of nonnegative c;;, c31, €32, €34, C42, and c43 such that the completion

—dp; —dip —aiz —dug
A = —C1 —dyp —az3 —dy4
—C31 —C3p —a3zz —C34
—a41 —C4 —C43 —Au4

is an Nj-matrix.

We will consider the following four cases:
Case 1: a3;3 # 0,a44 # 0.

We may choose ¢35 = apjass(aiz)™, ¢ = anan(an)™ > 0, ¢ = anass(an)™ > 0,cp =
aragu(ay)™' > 0, and ¢33 = cg3 = 0; it is easy to prove that all 2 X 2 principal minors are non-
positive. According to ajjarnasz; = a13aas and apaszzas = ay3araas;, we can prove det A {1,2,3} =
0,detA.{1,2,4} = 0,detA.{2,3,4} = 0, and detA.{1,3,4} = a;; detA.{3,4} <0, then A.{2,3,4}is an
N,-matrix. We can choose and easily prove A, is an Ny-matrix.

Case 2: a3z = 0,a44 # 0.
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We may choose c3, = araan(ass)™ > 0, ¢y = ¢c31 = cap = 0, and cq3, 34 > 0 and large enough.
According to ayassas, = asassas and Property 3.3, we can easily prove A, is an N(} -matrix.
Case 3: a33 # 0,a44 = 0.

We may choose ¢yy = anas(as)™ > 0, ¢y = ¢33 = cgp = 0, and ¢43, ¢34 > 0 and large enough.
According to axasszas, = asaxas, and Property 3.3, we can easily prove A, is an N&-matrix.
Case 4: a3z = 0,a44 = 0.

We may choose ¢;; = ¢ and large enough; we can easily prove A, is an Nj-matrix.
Lemma 3.9. [12] Let A be an n X n matrix and D be a diagonal matrix with diagonal entries
dy,d>,...,d, Then, |A + D| = |A| + ZdiAi + Z Z dideij + Z Z Z d,‘djdkAijk + -+ dd,...d,
i i<j i<j<k

Where A; is the determinant of the submatrix obtair;ed by deleting thje ith row and ith column. A;; is
the determinant obtained by the ith and jth rows and the ith and jth columns, and so on.

Theorem 3.10. Let A be an n X n (n > 4) non-combinatorially symmetric partial Nj-matrix, whose
digraph is a nonlinear directed 2-tree. Then, there exists an Né -matrix completion of A.

Proof: The proof is by induction on #n; the case in which n = 4 is shown in the proof of Property 3.8;
assume true for n — 1. By permutation, we can assume that the partial N,-matrix has the form

—dan —dap
? —dan
A= ? ? o Tk Akl ?
T R S S B (TR
? ? Tt ? ? —Ak+2,k+2
2 2 —a 9 2 m

Our aim is to prove the existence of nonnegative c;; such that the completion

—dar —dap T —Cik —C1 k+1 —Clk+2 —Cln

—C2] —dy —Cok —C2k+1 —Cok+2 —Cop

A= —Ck1 —Cr2 te —Ak —Af k+1 —Ckk+2 —Ckn
—ak+1,1 —Ck+12 0 TCk+lk T Ak+lk+l  TOk+1k+2 0 TCk+ln

—Cnl —Cn2 Ut —Apk _Cn,k+l —Cnk+2 Tt —Apn

is an N matrix.

We will complete A to an N, matrix A, in the following four steps:
Step 1: Choose ¢;, and ¢, in an appropriate way so that A.[{2, n}] is an NO‘-matrix. Then, the principal
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submatrix
—an —a; —X24 T X2p-1 —Cop
—asp —asj —Az4 . X3 —X3p
—X24 —a43 —A44 T X4p-l —X4n
C= )
—Xn-12 “Xp-13 “Xp-14 - —dp-1  —Au_1n
—Cn2 —Xn3 —Xn4 o TOpp-1 —Upn

obtained by deleting row one and column one is a partial N,-matrix that specified a pattern whose graph
is a nonlinear directed 2-tree with a common arc. By the induction hypothesis, C can be completed to
an Nj-matrix.

Without loss of generality, we assume that a; = 0 or 1 for all i by applying Proposition 3.1.

We may choose ¢,; = ¢;, = ¢, and large enough, we can easily prove C[{2,n}] is an Né-matrix.
Step 2: Using the induction hypothesis C can be completed to an Né -matrix, denoted by A [{2,...,n}].
Step 3: For 2 < i, j < n, choose ¢;; = ¢;» and ¢;j = ¢,ja,, to obtain the completion A, of A.

Step 4: Show A, is an Né—matrix. We must show that detA.[a] < O for any @ C {1,2,...,n}. For
1 ¢, Aa] is a principal submatrix of the N&-matrix A{2,...,n}], sodetA.[a] < 0. Thus, assume
1 € @. We will consider the following four different cases:

Case 1: ajg =ay = 1 with ap = 1.

-1 —app —apd . —apCu-| —1
—ay -1 —ax3 ot —Cop1 —tlan
—dasp —aszp —asj s —C3n-1 —C3p
A, =
_Cn—l,2 _Cn—l,2 _Cn—1,3 e —Up—1,n-1 —Adp—1n
-t -t —Cp3 ot —pn-1 —dnp

For 2 € a:
detA.Ja] = (a1 — 1)detA.Ja —{1}] <O0.

For 2 ¢ a: A.[a] can be obtained from A [(a — {1}) U {2}] by multiplying the first row by a;, > 1
and adding diag (a;; — 1, 0,...,0). According to Lemma 3.9,

detA fa] = apdetA[(a—{1}) U{2}] + (a1, — 1)detA [a —{1,2}]

< apAl(a—{1}) U {2}]
< 0.
Case 2: a;; = 0,ax»n = 1.
0 —dap —dapdz; - —apla-1 —t
—das -1 —a;3 s —C2n-1 —t/a
—aszp —dasz; —das3 te —C3 -1 —C3p
A, =
—Cp-12 —Cp-12 —Cp-13 -  —Qu_1p-1 —Au-1n
—t —f —Cn3 e _an,n—l —pn
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For 2 € a:
detA.Ja] = appdetAJa —{1}] <O.

For 2 ¢ a: A.[a] can be obtained from A [(a — {1}) U {2}] by multiplying the first row by a;, > 0
and adding diag (ay,, 0, ...,0). According to Lemma 3.9,

detA.Ja] = apdetAf(a—{1}) U{2}] +apdetAJa —{1,2}]
< apdetA (e —{1}) U{2}]
< 0.
Case 3: aip =an»n = 0.
0 —ai  —axp . —Coped —t
—day) 0 —ay3 . —Cru- —t
A = —aszp —asz —dzz —C3 -1 —C3p
—Cp-12 —Cp-12 —Cp-13 *°° —Uu-1n-1 —Ap-1n

—t -t —Cn3 T —Apn-1 —Uun

For2 € a:
detA.[a] = ary detA Ja — {1}] + ajp det A Ja — {1}a — {2}],

in which A [a —{1}|a—{2}] can be obtained from A [ —{1}] by adding diag (—ay;,0,...,0). According
to Lemma 3.9,

detA fa] = ap detAfa —{1}] + ap(—ay detA [a —{1,2}] + detA [a — {1}]).
If detA.[a —{1,2}] =0, then,
detA.[a] = (1 +ajp)detAfJa—{1}] <O0.

If detA.[a — {1,2}] # O, it is possible to choose detA.[a — {1}] < ay;detA.[a — {1,2}], then
detA.[a] <0.
For 2 ¢ a:
detA.[a] = detA. [(a—{1})U{2}] <0.

Case4: a;; =1,a»n =0withap;, > 1.

-1 —ajp —ax3 . —Cop- —t
—das) 0 —dy . —Cyu-i —1
—asp —dasp —azz —C3n-1 —C3p
A, =
—Cn-12 —Cp-12 —Cp-13 *°° —Au_ip-1 —Ap-1pn
ot -1 —Cn3 e —Apn-1 —Apn
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For?2 € a:
detA.Ja] = (a;p — 1)detA.Ja — {1}] + ay; det A Ja — {2}|a — {1}]

in which A [a —{2}|a—{1}] can be obtained from A .[a@—{1}] by adding diag (—a,,0,...,0). According
to Lemma 3.9,
detA.fa] = (ap—1)detAfa —{1}] + ay(—a,detAfa —{1,2}] + detA [a — {1}]).
IfdetA.[a —{1,2}] = 0, then
detA.[a] = ((a;p — D detA [a — {1}] + ajp det A [a — {1}] < 0.
If detA [a — {1,2}] # O, it is possible to choose
detA.[a — {1}] < ay; detA. [a —{1,2}],

then det A .[a] < 0.
For 2 ¢ a:
A.[a] can be obtained from A [(a — {1}) U {2}] by adding diag (-1,0,...,0), according to Lemma
3.9,
detA.Ja] = detA [(a - {1}) U {2}] —detA.Ja — {1,2}].

If detA.Ja — {1,2}] = 0, then det A [(a — {1}) U {2}].
If detA [a — {1,2}] # O, it is possible to choose

detA.[(a = {1}) U {2}] < detA [a - {1,2}],

then det A [a] < 0.
Example 3.11. Assume an 5 X 5 partial non-combinatorially symmetric N, -matrix

-1 =2 -3 7 79
2 -1 -4 -4 -6
A=l 2 2 -1 -6 -1,
10 ? 27 -1 -8
2 -10 ? 2 -1

whose digraph is a nonlinear directed 2-tree.
Our aim is to prove the existence of nonnegative c;; such that the completion

-1 -2 -3 —C14 —Ci15
—C21 -1 -4 -4 -6

AC =| —C31 —C3 -1 -6 -1
-10 —C4p —C43 -1 -8
—cs51 —10 —cs3 —css -1

is an Nj-matrix.
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First, we choose ¢35 = ¢4 = c43 = ¢53 = 54 = 10 so that the principal submatrix

-1 -4 -4 -6
10 -1 -6 -1
-10 -10 -1 -8
~10 -10 -10 -1

Acli2,3,4,5}] =

is an Nj-matrix. A.[{2,n}] is an N}-matrix.
According to Theorem 3.10, we choose ¢;; = cp,c1j = cjan(i = 2,3,5,j = 4,5), and make
cia=8,c15=12,¢91 = 1,¢31 = 10, ¢5; = 10 to obtain the Né—completion

-1 -2 -3 -8 -1I2
1 -1 -4 -4 -6
Ac=| -10 =10 -1 -6 -1
-10 -10 -10 -1 -8
10 -10 -10 -10 -1

of A.
4. Conclusions

In this paper, we discussed the completion problem of a non-combinatorially symmetric partial
Né—matrix using directed graphs. We proved that a non-combinatorially incomplete matrix can be
completed to an N,-matrix if its specified off-diagonal entries are negative and the graph of these entries
forms a directed 2-tree. This study extends previous research by considering the inherent asymmetry
and missing diagonal entries in matrices, providing an approach for reconstructing complex matrices
in practical applications.
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