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Abstract: A matrix completion problem asks whether a partial matrix has a completion to a
conventional matrix with a desired property. C. Mendes Araújo and J. R. Torregrosa explored the
completion problem of a combinatorially symmetric N0-matrix by applying an undirected graph.
However, in practical applications such as seismic data reconstruction, data transmission, and
engineering computation data are often incomplete and must be represented by a non-combinatorially
symmetric matrix. In this paper, we discuss the completion problem of a non-combinatorially
symmetric partial matrix by using a directed graph and prove that a non-combinatorially symmetric
partial matrix under a directed 2-tree is completed as an N1

0 -matrix.
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1. Introduction

A partial matrix is an array in which some entries are specified, while others are free to be chosen
from a certain set. A matrix completion problem asks whether a partial matrix can be completed to
a conventional matrix with a desired property. Matrix completion problems arise in optimization and
in the study of Euclidean distance matrices [1] and have also been extensively used in seismic data
reconstruction [2], data transmission [3], image processing [2], signal processing [2], and engineering
computation [2].

Matrix completion problems can be intuitively studied through graph theory, where undirected
graphs represent combinatorially symmetric matrices, and directed graphs model non-combinatorially
matrices. This graphical approach leverages the structural properties of graphs to simplify the analysis
of incomplete matrices, enabling the principled recovery of missing entries via spectral graph theory
and combinatorial optimization techniques. Matrix completion problems have been studied for many
classes of matrices [4–10]. Concurrently, algebraic state space theory (ASST), based on the semi-tensor
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product (STP), provides a robust algebraic framework for modeling and analyzing finite state machines
(FSMs) with diverse characteristics [11]. By integrating STP with graph structures, ASST not only
enriches the theoretical foundation of FSM analysis but also enhances its practical applicability in
systems with complex dynamics, such as networked control and signal processing. The synergy
between matrix completion and ASST lies in their shared capability to handle incomplete information
and complex system interactions. While matrix completion focuses on reconstructing missing data
through graph-regularized optimization, ASST systematically analyzes and controls FSM transitions
via algebraic state space representations. This duality is further strengthened by integrating STP
with graph-theoretic regularization, enabling robust analysis of both FSM behavior and partial matrix
reconstruction in real-world applications such as networked control systems and signal processing
pipelines.

An n × n real matrix is called an N1
0 -matrix if all its principal minors are non-positive and each

entry is non-positive (see, e.g., [12,13]). Obviously, the diagonal entries of N1
0 -matrix are non-positive.

A partial matrix is said to be a partial N1
0 -matrix if every completely specified principal submatrix is

an N1
0 -matrix. An n × n partial matrix A = (ai j) it is said to be non-combinatorially symmetric when

ai j is specified if and only if ai j is unknown. For a non-combinatorially symmetric partial matrix, all
main diagonal entries are specified. A natural way to describe an n× n non-combinatorially symmetric
partial matrix is by a digraph that has an arc if an entry is nonzero. The non-combinatorially symmetric
matrix completion problems have been studied in [5, 8]. And the non-combinatorially symmetric N-
matrix completion problem has been studied if the graph of its specified entries is an acyclic graph
or a double cycle in [5]. The combinatorially symmetric N1

0 -matrix completion was studied in [9].
In [10], the authors have studied the combinatorial symmetric partial N0-matrix completion problems
under undirected graphs, and they obtain that a combinatorially symmetric partial N0-matrix with no
null main diagonal entries has an N0-matrix completion. In this paper, our interest is in the N1

0 -matrix
completion problems under directed graphs. The study of this problem is different from the previous
one since some main diagonal entries can be zero, and each specified off-diagonal entry is negative.

The outline of this paper is as follows: we introduce the definition of linear directed 2-tree in
Section 2. We obtain the completion of a partial N1

0 -matrix if the digraph of its specified entries is a
linear directed 2-tree and discuss that the completion problem for a partial N1

0 -matrix under a nonlinear
directed 2-tree in Section 3.

2. The directed 2-tree

The completion of partial non-combinatorially symmetric matrices by using digraph theory is one
of the important research directions in combinatorial matrix theory. In this paper, we will study the
completion problem of an N1

0 -matrix under a linear directed 2-tree. First, we will introduce the linear
directed 2-tree.
Definition 2.1. [14] A digraph G consists of a finite nonempty set V of objects called vertices and a set
E of ordered pairs of distinct vertices, each element of E is called an arc or a directed edge. A digraph
H is called a subdigraph of digraph G if V(H) ⊆ V(G) and E(H) ⊆ E(G).
Definition 2.2. [14] If a digraph G has the property that for each pair u, v of distinct vertices of G, at
most one of (u, v) and (v, u) is an arc of G, then G is an oriented graph.
Definition 2.3. [14] A oriented graph G is transitive if whenever (u, v) and (v,w) are arcs of G, then

AIMS Mathematics Volume 10, Issue 4, 9055–9072.



9057

(u,w) is also an arc of G. In each oriented graph G, for some k(1 ≤ k ≤ n), there is a transitive
oriented subgraph. A maximum transitive oriented subgraph is a transitive oriented subgraph with the
maximum number of vertices among all transitive oriented subgraphs.

A natural way to describe an n × n partial matrix A is via a graph GA = (V, E), where the set
of vertices V is 1, 2, ..., n, and i, j, i , j, is an edge or arc when the (i, j) entry is specified. For a
non-combinatorially symmetric partial matrix, a natural way to describe an n × n non-combinatorially
symmetric partial matrix is via a digraph GA that has the corresponding arc if the (i, j) entry is specified.
Definition 2.4. [15] A clique in an undirected graph G is simply a complete (all possible edges) induced
subgraph. We also use clique to refer to a complete graph and use Kp to indicate a clique on p vertices.
Recall that a k-tree is a graph sequentially constructed from k + 1-cliques (Kk+1) via articulation
along k-cliques (see [16]). 2-trees is a graph in which the building blocks are triangles (K

′

3s) and the
articulation is along edges. A 2-tree is linear if there is a natural order to the building triangles that
have precisely two vertices of degree two.

K3 is considered to be, linear 2-tree. For more on linear 2-trees, see [15].
Based on Definition 2.4, we will explore the analogous structure in directed graphs, namely the

directed 2-tree. A oriented graph is called a directed k-tree if it is sequentially constructed from k + 1-
transitive oriented graphs via articulation along k-transitive oriented graphs. Thus, a directed 2-tree is
an oriented graph sequentially constructed from transitive oriented graphs of order 3 via articulation
along arcs. If there is a natural order to the building transitive digraphs of order 3, which have precisely
two vertices of degree two, then a directed 2-tree is called a linear directed 2-tree. Otherwise, a directed
2-tree is called a nonlinear directed 2-tree.
Example 2.5. Assume a partial matrix

A =



a11 a12 a13 a14 ? ?
? a22 a23 a24 ? ?
? ? a33 a34 a35 ?
? ? ? a44 a45 a46

? a52 ? ? a55 a56

? a62 a63 ? ? a66


,

whose graph is an oriented graph GA with a loop at each vertex; see Figure 1,

Figure 1. Oriented graph GA.

For GA = (V, E), let V = {V1,V2,V3,V4}, where V1 = {1, 2, 3},V2 = {2, 3, 4},V3 = {3, 4, 5},V4 =

{4, 5, 6}.
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A directed 2-tree Γ is sequentially constructed from these transitive oriented graphs of order 3 via
articulation along arcs; see Figure 2.

Figure 2. Directed 2-tree Γ.

The completion of A is

AC =



a11 a12 a13 a14 c15 c16

c21 a22 a23 a24 c25 c26

c31 c32 a33 a34 a35 c36

c41 c42 c43 a44 a45 a46

c51 a52 c53 c54 a55 a56

c61 a62 a63 c64 c65 a66


,

where ci j may be different values, the digraph GA of AC is also different.
Remark. Throughout the paper, we denote the entries of a partial matrix A as follows: ai j denotes
an specified entry, and ”?” denotes a unspecified entry. The entry ci j denotes a value assigned to the
unspecified entry during the process of completing a partial matrix. AC is the completion of the partial
matrix A.

Definition 2.6. [17] Let the partitioned (block) matrix A =

[
B C
D E

]
, where the matrix B is

nonsingular; the matrix A need not be square. Then,

A/B = E − DB−1C

is the Schur complement of B in the partitioned matrix A. In addition, we refer to the Guttman rank
formula:

rank(A) = rank(B) + rank(A/B).

3. The N1
0 -matrix completion under the directed 2-tree

In this section, we will obtain the completion of a partial N1
0 -matrix if the digraph of its specified

entries of is a linear directed 2-tree. In addition, we will discuss the completion problem for a partial
N1

0 -matrix under a nonlinear directed 2-tree.
The submatrix of a matrix A, of size n × n, lying in rows α and β, α, β ⊆{1, 2,. . . ,n}, is denoted by

A[α|β], and the principal submatrix A[α|α] is abbreviated to A[α]. Therefore, a real matrix A, of size
n × n, is an N1

0 -matrix only if det Ac[α] ≤ 0 for any α ⊆ {1, 2, ..., n}.
Proposition 3.1. Let A be an N1

0 -matrix. Then,
(1) If P is a permutation matrix, then PAPT is an N1

0 -matrix;
(2) If D is a positive diagonal matrix, then DA, DA is an N1

0 -matrix;
(3) Any principal submatrix of A is an N1

0 -matrix.
We suppose that all main diagonal entries in a partial N1

0 -matrix are specified and may be 0 or non-
zero.
Proposition 3.2. If A is 2 × 2 partial non-combinatorially symmetric matrix, whose digraph is a linear
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directed 2-tree, then there exists an N1
0 -matrix completion for A.

Proof: We can assume an 2 × 2 partial non-combinatorially symmetric N1
0 -matrix

A =
(
−a11 −a12

? −a22

)
,

with specified entries a11, a12, a22 ≥ 0.
Our aim is to prove the existence of c21 such that the completion

A =
(
−a11 −a12

−c21 −a22

)
.

We will consider the following two cases:
Case 1: a11a22 = 0.

We may choose c21 ≥ 0,then det Ac ≤ 0.
Case 2: a11a22 , 0.

We may choose c21 ≥ a11a22/a12,then det Ac ≤ 0.
Proposition 3.3. If A is a 3 × 3 non-combinatorially symmetric partial N1

0 -matrix whose digraph is a
linear directed 2-tree, then there exists an N1

0 -matrix completion for A.
Proof: We can assume an 3 × 3 partial non-combinatorially symmetric N1

0 -matrix

A =


−a11 −a12 −a13

? −a22 −a23

? ? −a33

 ,
where each ai j > 0(i > j, i, j = 1, 2, 3) and aii ≥ 0(i = 1, 2, 3).

Our aim is to prove the existence of nonnegative c13, c21, and c32 such that the completion

AC =


−a11 −a12 −a13

−c21 −a22 −a23

−c31 −c32 −a33

 ,
is N1

0 .
We may choose c13 = c21 = c32 = t ≥ 0, and show that det AC[α] ≤ 0 for any α ⊆ {1, 2, 3}. By

Proposition 3.2, we will consider the following four different cases:
Case 1: a11 = a22 = a33 = 0.

According to 3.2, all 2 × 2 principal minors are non-positive. det AC = t(−a12a23 − ta13) ≤ 0.
Case 2: a11a22a33 , 0.

If we choose t large enough, then,

det AC{1, 2} = −ta12 + a11a22 ≤ 0;
det AC{1, 3} = −ta13 + a11a33 ≤ 0;
det AC{2, 3} = −ta23 + a22a33 ≤ 0;
det AC = −a13t2 + (−a12a23 + a13a22 + a11a23 + a12a33)t − a11a22a33 ≤ 0.

Case 3: a11 = a22 = 0, a33 , 0 with a23 = a33.
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According to Property 3.2, all 2 × 2 principal minors are non-positive. det AC = t(−a12(a23 − a33) −
ta13) ≤ 0.
Case 4: a11 = 0, a22 = a33 , 0 with a23 = a33.

We may choose t ≥ a22, then all 2 × 2 principal minors are non-positive, and det AC = t(−a12(a23 −

a33) − a13(−t + a22)) = t(−t + a22) ≤ 0. □
Proposition 3.4. Let A be an 4× 4 non-combinatorially symmetric partial N1

0 -matrix whose digraph is
a linear directed 2-tree Γ; there exists an N1

0 -matrix completion for A.
Proof: Let Γ be the 4-vertex linear directed 2-tree with V = (V1,V2), V1 = {1, 2, 3},V2 = {2, 3, 4}. There
are the following two possibilities for the 4-vertex linear directed 2-tree; see Figure 3.

Figure 3. 4-Vertex linear directed 2-tree.

Case 1: Assume 4 × 4 partial non-combinatorially symmetric N1
0 -matrix

A =


−a11 −a12 −a13 −a14

? −a22 −a23 −a24

? ? −a33 −a34

? ? ? −a44

 ,
with each ai j ≥ 0(i, j = 1, 2, 3, 4), whose digraph is Γ1.

Our aim is to prove the existence of nonnegative c21, c31, c32, c41, c42, and c43 such that the completion

AC =


−a11 −a12 −a13 −a14

−c21 −a22 −a23 −a24

−c31 −c32 −a33 −a34

−c41 −c42 −c43 −a44


is an N1

0 -matrix.
We may choose ci j = t ≥ 0 and show that det AC[α] ≤ 0 for any α ⊆ {1, 2, 3, 4}. By Propositions 3.2

and 3.3, we will consider the following four different cases:
(1) a11 = a22 = a33 = a44 = 0 with a24 = a34 = a44.

It is easy to prove that det AC[α] ≤ 0 for any α ⊂ {1, 2, 3, 4} by Propositions 3.2 and 3.3. det AC =

−a14t2 − a13a34t − a12a23a34 ≤ 0.
(2) a11 = a22 = a33 = 0, a44 , 0 with a24 = a34 = a44.

It is easy to prove that det AC[α] ≤ 0 for any α ⊂ {1, 2, 3, 4} by Propositions 3.2 and 3.3. det AC =

−a14t2 ≤ 0.
(3) a11 = a22 = 0, a33a44 , 0 with a24 = a34 = a44.

We may choose t ≥ a33 and can easily prove that det AC[α] ≤ 0 for any α ⊂ {1, 2, 3, 4} by
Propositions 3.2 and 3.3. det AC = −a14t2 + a14a33t ≤ 0.
(4) a11a22a33a44 , 0

It is easy to prove that all 2 × 2 principal minors are non-positive.
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If we may choose t ≥ 0 and large enough, then,

det AC{1, 3, 4} = −a14t2 + (−a13a34 + a11a34 + a13a44 + a14a33)t − a11a33a44 ≤ 0;
det AC{1, 2, 4} = −a14t2 + (−a12a24 + a11a24 + a12a44 + a14a22)t − a11a22a44 ≤ 0;
det AC{1, 2, 3} = −a13t2 + (−a12a23 + a12a33 + a11a23 + a13a22)t − a11a22a33 ≤ 0;
det AC{2, 3, 4} = −a24t2 + (−a23a34 + a23a44 + a22a34 + a24a33)t − a22a33a44 ≤ 0.

det AC is a polynomial of t with the term −a14t3. Thus, we may make t large enough such that
det AC ≤ 0.
Case 2: We can assume an 4 × 4 partial non-combinatorially symmetric N1

0 -matrix

A =


−a11 −a12 −a13 ?

? −a22 −a23 −a24

? ? −a33 −a34

−a41 ? ? −a44

 ,
whose digraph is Γ2.

We will show that det AC[α] ≤ 0 for any α ⊆ {1, 2, 3, 4} with the following two different cases:
(1) a11 = a22 = a33 = a44 = 0 or a11 , 0, a22 = a33 = a44 = 0.

We may choose ”?” = 0. It is easy to prove that the completion

AC =


−a11 −a12 −a13 0

0 −a22 −a23 −a24

0 0 −a33 −a34

−a41 0 0 −a44


of A is an N1

0 -matrix.
(2) a11a22 , 0, a33 = a44 = 0 or a11a22a33 , 0, a44 = 0 or a11a22a33a44 , 0.

We may choose t > 0 and large enough. It is easy to prove that det AC[α] ≤ 0 for any α ⊂ {1, 2, 3, 4}
by Propositions 3.2 and 3.3; det AC is a polynomial of t with the term −t4. Thus, we may make t large
enough such that det AC ≤ 0. □
Proposition 3.5. Let A be 5 × 5 non-combinatorially symmetric partial N1

0 -matrix whose digraph is a
linear directed 2-tree Γ; there exists an N1

0 -matrix completion for A.
Proof: Let Γ be the 5-vertex linear directed 2-tree for V = (V1,V2,V3), where V1 = {1, 2, 3},V2 =

{2, 3, 4},V3 = {3, 4, 5}; there are the following four possibilities for the 5-vertex linear directed 2-tree,
see Figure 4.

Figure 4. 5-Vertex linear directed 2-tree.
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Case 1: Assume 5 × 5 partial non-combinatorially symmetric N1
0 -matrix

A =


−a11 −a12 −a13 −a14 ?

? −a22 −a23 −a24 −a25

? ? −a33 −a34 −a35

? ? ? −a44 −a45

? ? ? ? −a55


,

whose digraph is Γ1, where each ai j > 0(i > j, i, j = 1, 2, 3, 4, 5), and aii ≥ 0(i = 1, 2, 3, 4, 5).
Our aim is to prove the existence of nonnegative c15, c21c31, c32, c41, c42, c43, c51, c52, c53, and c54 such

that the completion

A =


−a11 −a12 −a13 −a14 −c15

−c21 −a22 −a23 −a24 −a25

−c31 −c32 −a33 −a34 −a35

−c41 −c42 −c43 −a44 −a45

−c51 −c52 −c53 −c54 −a55


is an N1

0 -matrix.
We may choose c21 = c32 = c43 = c54 = c15 = t and large enough and another entry ci j=0,
According to Proposition 3.2, all 2 × 2 principal minors are non-positive. According to Proposition

3.3, all 3 × 3 principal minors are non-positive.
Let α ⊆ {1, 2, 3, 4, 5} and |α| = k(k = 4, 5), det AC[α] is a polynomial of t with the term −tk. Thus,

we may make t large enough such that det AC[α] ≤ 0.
Case 2: Assume 5 × 5 partial non-combinatorially symmetric N1

0 -matrix

A =


−a11 −a12 −a13 −a14 ?

? −a22 −a23 −a24 ?
? ? −a33 −a34 −a35

? ? ? −a44 −a45

? −a52 ? ? −a55


,

whose digraph is Γ2, where each ai j > 0(i > j, i, j = 1, 2, 3, 4, 5), and a55 = 0.
We may make the completion of A is

AC =


−a11 −a12 −a13 −a14 −t
−t −a22 −a23 −a24 −t
−t −t −a33 −a34 −a35

−t −t −t −a44 −a45

0 −a52 0 0 −a55


.

If t is large enough, then it is easy to prove that det AC[α] ≤ 0 for any α ⊂ {1, 2, 3, 4, 5} by
Propositions 3.2–3.4.

AIMS Mathematics Volume 10, Issue 4, 9055–9072.



9063

Let the partitioned (block) matrix AC =

[
A1 A2

A3 A4

]
, where

A1 =


−a11 −a12 −a13 −a14

−t −a22 −a23 −a24

−t −t −a33 −a34

−t −t −t −a44


is nonsingular and A4 = −a55.

According to Definition 2.6, the Schur complement of A1

AC/A1 = A4 − A3A−1
1 A2

is nonzearo. So,
rank(AC) = rank(A1) + rank(AC/A1) = 5

and det AC[α] < 0.
Case 3: Assume 5 × 5 partial non-combinatorially symmetric N1

0 -matrix

A =


−a11 −a12 −a13 ? ?

? −a22 −a23 −a24 −a25

? ? −a33 −a34 −a35

−a41 ? ? −a44 −a45

? ? ? ? −a55


,

whose digraph is Γ3, where each ai j > 0(i > j, i, j = 1, 2, 3, 4, 5) and a55 = 0.
We may make the completion of A is

AC =


−a11 −a12 −a13 −t −t
−t −a22 −a23 −a24 −a25

−t −t −a33 −a34 −a35

−a41 −t −t −a44 −a45

0 0 0 0 −a55


.

If t is large enough, then AC is obviously N1
0 -matrix.

Case 4: Assume 5 × 5 partial non-combinatorially symmetric N1
0 -matrix

A =


−a11 −a12 −a13 ? ?

? −a22 −a23 −a24 ?
? ? −a33 −a34 −a35

−a41 ? ? −a44 −a45

? −a52 ? ? −a55


,

whose digraph is Γ3, where each ai j > 0(i > j, i, j = 1, 2, 3, 4, 5), and a55 = 0.
The proof is the same as Case 2.

Theorem 3.6. Let A be an n × n non-combinatorially symmetric partial N1
0 -matrix whose digraph is a

linear directed 2-tree. Then, there exists an N1
0 -matrix completion for A.
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Proof: A linear directed 2-tree Γ is sequentially constructed from these transitive oriented graphs of
order 3 via articulation along arcs, see Figure 5.

Figure 5. n-Vertex linear directed 2-tree.

We can assume an n × n partial non-combinatorially symmetric N1
0 -matrix

A =



−a11 −a12 −a13 · · · ? ?
−x21 −a22 −a23 · · · ? ?

? ? −a33 · · · ? ?
...

...
...

. . .
...

...

? ? ? · · · −an−1,n−1 −an−1,n

? ? ? · · · ? −ann


.

Our aim is to prove the existence of nonnegative ci j such that the completion

AC =



−a11 −a12 −a13 · · · −c1,n−1 −c1n

−c21 −a22 −a23 · · · −c2,n−1 −c2n

−c31 −c32 −a33 · · · −c3,n−1 −c3n
...

...
...

. . .
...

...

−cn−1,1 −cn−1,2 −cn−1,3 · · · −an−1,n−1 −an−1,n

−cn1 −cn2 −cn3 · · · −cn,n−1 −ann


is an N1

0 .
We may choose ci j = t and large enough. Our aim is to prove the existence of positive t such that

the completion

AC =



−a11 −a12 −a13 · · · −t −t
−t −a22 −a23 · · · −t −t
−t −t −a33 · · · −t −t
...

...
...

. . .
...

...

−t −t −t · · · −an−1,n−1 −an−1,n

−t −t −t · · · −t −ann


is an N1

0 -matrix.
According to Property 3.2, all 2 × 2 principal minors are non-positive. According to Property 3.3,

all 3 × 3 principal minors are non-positive.
Let α ⊆ {1, 2, ..., n} and |α| = k(k ≥ 4); det AC[α] is a polynomial of t with the term −tk. Thus, we

may make t large enough such that det AC[α] ≤ 0. □
Example 3.7. Assume an 5 × 5 partial non-combinatorially symmetric N1

0 -matrix
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A =


−1 −1 −2 −4 ?
? −1 −3 −5 −1
? ? −2 −6 −4
? ? ? −4 −3
? ? ? ? −3


,

whose digraph is a linear directed 2-tree. According to Theorem 3.6, we choose ”?” = −t, and our aim
is to find the positive t such that the completion of A

AC =


−1 −1 −2 −4 −10
−t −1 −3 −5 −1
−t −t −2 −6 −4
−t −t −t −4 −3
−t −t −t −t −3


is an N1

0 -matrix.
We may make t = 10 and obtain all the principal minors (det AC[α] ≤ 0, α ⊆ {1, 2, 3, 4, 5}) of AC.

Property 3.8. Let A be 4 × 4 partial N1
0 -matrix whose digraph is a nonlinear directed 2-tree with A

satisfying the following conditions: a11a22a33 = a13a23a41 and a22a33a44 = a23a24a41. Then, there exists
an N1

0 -matrix completion of A.
Proof: Suppose that the partial N1

0 -matrix is

A =


−a11 −a12 −a13 −a14

? −a22 −a23 −a24

? ? −a33 ?
−a41 ? ? −a44

 ,
where each ai j(i, j = 1, 2, 3, 4) is nonnegative.

Our aim is to prove the existence of nonnegative c21, c31, c32, c34, c42, and c43 such that the completion

Ac =


−a11 −a12 −a13 −a14

−c21 −a22 −a23 −a24

−c31 −c32 −a33 −c34

−a41 −c42 −c43 −a44


is an N1

0 -matrix.
We will consider the following four cases:

Case 1: a33 , 0, a44 , 0.
We may choose c31 = a11a33(a13)−1, c21 = a11a22(a12)−1 > 0, c32 = a22a33(a23)−1 > 0, c42 =

a22a44(a24)−1 > 0, and c34 = c43 = 0; it is easy to prove that all 2 × 2 principal minors are non-
positive. According to a11a22a33 = a13a23a41 and a22a33a44 = a23a24a41, we can prove det Ac{1, 2, 3} =
0, det Ac{1, 2, 4} = 0, det Ac{2, 3, 4} = 0, and det Ac{1, 3, 4} = a11 det Ac{3, 4} ≤ 0, then Ac{2, 3, 4} is an
N1

0 -matrix. We can choose and easily prove Ac is an N1
0 -matrix.

Case 2: a33 = 0, a44 , 0.
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We may choose c32 = a24a41(a44)−1 > 0, c21 = c31 = c42 = 0, and c43, c34 > 0 and large enough.
According to a22a33a44 = a23a34a41 and Property 3.3, we can easily prove Ac is an N1

0 -matrix.
Case 3: a33 , 0, a44 = 0.

We may choose c24 = a23a24(a33)−1 > 0, c21 = c31 = c42 = 0, and c43, c34 > 0 and large enough.
According to a22a33a44 = a23a24a41, and Property 3.3, we can easily prove Ac is an N1

0 -matrix.
Case 4: a33 = 0, a44 = 0.

We may choose ci j = t and large enough; we can easily prove Ac is an N1
0 -matrix.

Lemma 3.9. [12] Let A be an n × n matrix and D be a diagonal matrix with diagonal entries
d1, d2, . . . , dn. Then, |A + D| = |A| +

∑
i

diAi +
∑ ∑

i< j
did jAi j +

∑∑ ∑
i< j<k

did jdkAi jk + · · · + d1d2 . . . dn.

Where Ai is the determinant of the submatrix obtained by deleting the ith row and ith column. Ai j is
the determinant obtained by the ith and jth rows and the ith and jth columns, and so on.
Theorem 3.10. Let A be an n × n (n ≥ 4) non-combinatorially symmetric partial N1

0 -matrix, whose
digraph is a nonlinear directed 2-tree. Then, there exists an N1

0 -matrix completion of A.
Proof: The proof is by induction on n; the case in which n = 4 is shown in the proof of Property 3.8;
assume true for n − 1. By permutation, we can assume that the partial N1

0 -matrix has the form

A =



−a11 −a12 · · · ? ? ? · · · ?
? −a22 · · · ? ? ? · · · ?
...

...
. . .

...
...

... · · ·
...

? ? · · · −akk −ak,k+1 ? · · · ?
−ak+1,1 ? · · · ? −ak+1,k+1 −ak+1,k+2 · · · ?

? ? · · · ? ? −ak+2,k+2 · · · ?
...

... · · ·
...

...
...

. . .
...

? ? · · · −ank ? ? · · · −ann


.

Our aim is to prove the existence of nonnegative ci j such that the completion

Ac =



−a11 −a12 · · · −c1k −c1,k+1 −c1,k+2 · · · −c1n

−c21 −a22 · · · −c2k −c2,k+1 −c2,k+2 · · · −c2n
...

...
. . .

...
...

... · · ·
...

−ck1 −ck2 · · · −akk −ak,k+1 −ck,k+2 · · · −ckn

−ak+1,1 −ck+1,2 · · · −ck+1,k −ak+1,k+1 −ak+1,k+2 · · · −ck+1,n
...

... · · ·
...

...
...

. . .
...

−cn1 −cn2 · · · −ank −cn,k+1 −cn,k+2 · · · −ann


is an N1

0 matrix.

We will complete A to an N1
0 matrix Ac in the following four steps:

Step 1: Choose c2n and cn2 in an appropriate way so that Ac[{2, n}] is an N1
0 -matrix. Then, the principal
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submatrix

C =



−a22 −a23 −x24 · · · −x2,n−1 −c2n

−a32 −a33 −a34 · · · −x3,n−1 −x3n

−x24 −a43 −a44 · · · −x4,n−1 −x4n
...

...
...

. . .
...

...

−xn−1,2 −xn−1,3 −xn−1,4 · · · −dn−1 −an−1,n

−cn2 −xn3 −xn4 · · · −an,n−1 −ann


,

obtained by deleting row one and column one is a partial N1
0 -matrix that specified a pattern whose graph

is a nonlinear directed 2-tree with a common arc. By the induction hypothesis, C can be completed to
an N1

0 -matrix.
Without loss of generality, we assume that aii = 0 or 1 for all i by applying Proposition 3.1.
We may choose cn2 = c2n = t, and large enough, we can easily prove C[{2, n}] is an N1

0 -matrix.
Step 2: Using the induction hypothesis C can be completed to an N1

0 -matrix, denoted by Ac[{2, . . . , n}].
Step 3: For 2 < i, j < n, choose ci1 = ci2 and c1 j = c2 ja12 to obtain the completion Ac of A.
Step 4: Show Ac is an N1

0 -matrix. We must show that det Ac[α] ≤ 0 for any α ⊆ {1, 2, . . . , n}. For
1 <α, Ac[α] is a principal submatrix of the N1

0 -matrix Ac[{2, . . . , n}], so det Ac[α] ≤ 0. Thus, assume
1 ∈ α. We will consider the following four different cases:
Case 1: a11 = a22 = 1 with a12 ≥ 1.

Ac =



−1 −a12 −a12a23 · · · −a12c2,n−1 −t
−a21 −1 −a23 · · · −c2,n−1 −t/a12

−a32 −a32 −a33 · · · −c3,n−1 −c3n
...

...
...

. . .
...

...

−cn−1,2 −cn−1,2 −cn−1,3 · · · −an−1,n−1 −an−1,n

−t −t −cn3 · · · −an,n−1 −ann


.

For 2 ∈ α:
det Ac[α] = (a12 − 1) det Ac[α − {1}] ≤ 0.

For 2 < α: Ac[α] can be obtained from Ac[(α − {1}) ∪ {2}] by multiplying the first row by a12 ≥ 1
and adding diag (a12 − 1, 0, . . . , 0). According to Lemma 3.9,

det Ac[α] = a12 det Ac[(α − {1}) ∪ {2}] + (a12 − 1) det Ac[α − {1, 2}]
≤ a12Ac[(α − {1}) ∪ {2}]
≤ 0.

Case 2: a11 = 0, a22 = 1.

Ac =



0 −a12 −a12a23 · · · −a12c2,n−1 −t
−a21 −1 −a23 · · · −c2,n−1 −t/a12

−a32 −a32 −a33 · · · −c3,n−1 −c3n
...

...
...

. . .
...

...

−cn−1,2 −cn−1,2 −cn−1,3 · · · −an−1,n−1 −an−1,n

−t −t −cn3 · · · −an,n−1 −ann


.
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For 2 ∈ α:
det Ac[α] = a12 det Ac[α − {1}] ≤ 0.

For 2 < α: Ac[α] can be obtained from Ac[(α − {1}) ∪ {2}] by multiplying the first row by a12 > 0
and adding diag (a12, 0, . . . , 0). According to Lemma 3.9,

det Ac[α] = a12 det Ac[(α − {1}) ∪ {2}] + a12 det Ac[α − {1, 2}]
≤ a12 det Ac[(α − {1}) ∪ {2}]
≤ 0.

Case 3: a11 = a22 = 0.

Ac =



0 −a12 −a23 · · · −c2,n−1 −t
−a21 0 −a23 · · · −c2,n−1 −t
−a32 −a32 −a33 · · · −c3,n−1 −c3n
...

...
...

. . .
...

...

−cn−1,2 −cn−1,2 −cn−1,3 · · · −an−1,n−1 −an−1,n

−t −t −cn3 · · · −an,n−1 −ann


.

For 2 ∈ α:
det Ac[α] = a21 det Ac[α − {1}] + a12 det Ac[α − {1}|α − {2}],

in which Ac[α−{1}|α−{2}] can be obtained from Ac[α−{1}] by adding diag (−a21, 0, . . . , 0). According
to Lemma 3.9,

det Ac[α] = a21 det Ac[α − {1}] + a12(−a21 det Ac[α − {1, 2}] + det Ac[α − {1}]).

If det Ac[α − {1, 2}] = 0, then,

det Ac[α] = (1 + a12) det Ac[α − {1}] ≤ 0.

If det Ac[α − {1, 2}] , 0, it is possible to choose det Ac[α − {1}] ≤ a21 det Ac[α − {1, 2}], then
det Ac[α] ≤ 0.

For 2 < α:
det Ac[α] = det Ac[(α − {1}) ∪ {2}] ≤ 0.

Case 4: a11 = 1, a22 = 0 with a12 ≥ 1.

Ac =



−1 −a12 −a23 · · · −c2,n−1 −t
−a21 0 −a23 · · · −c2,n−1 −t
−a32 −a32 −a33 · · · −c3,n−1 −c3n
...

...
...

. . .
...

...

−cn−1,2 −cn−1,2 −cn−1,3 · · · −an−1,n−1 −an−1,n

−t −t −cn3 · · · −an,n−1 −ann


.
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For 2 ∈ α:
det Ac[α] = (a12 − 1) det Ac[α − {1}] + a21 det Ac[α − {2}|α − {1}]

in which Ac[α−{2}|α−{1}] can be obtained from Ac[α−{1}] by adding diag (−a12, 0, . . . , 0). According
to Lemma 3.9,

det Ac[α] = (a12 − 1) det Ac[α − {1}] + a21(−a12 det Ac[α − {1, 2}] + det Ac[α − {1}]).

If det Ac[α − {1, 2}] = 0, then

det Ac[α] = ((a12 − 1) det Ac[α − {1}] + a12 det Ac[α − {1}] ≤ 0.

If det Ac[α − {1, 2}] , 0, it is possible to choose

det Ac[α − {1}] ≤ a21 det Ac[α − {1, 2}],

then det Ac[α] ≤ 0.
For 2 < α:
Ac[α] can be obtained from Ac[(α − {1}) ∪ {2}] by adding diag (−1, 0, . . . , 0), according to Lemma

3.9,
det Ac[α] = det Ac[(α − {1}) ∪ {2}] − det Ac[α − {1, 2}].

If det Ac[α − {1, 2}] = 0, then det Ac[(α − {1}) ∪ {2}].
If det Ac[α − {1, 2}] , 0, it is possible to choose

det Ac[(α − {1}) ∪ {2}] ≤ det Ac[α − {1, 2}],

then det Ac[α] ≤ 0.
Example 3.11. Assume an 5 × 5 partial non-combinatorially symmetric N1

0 -matrix

A =


−1 −2 −3 ? ?
? −1 −4 −4 −6
? ? −1 −6 −1
−10 ? ? −1 −8

? −10 ? ? −1


,

whose digraph is a nonlinear directed 2-tree.
Our aim is to prove the existence of nonnegative ci j such that the completion

AC =


−1 −2 −3 −c14 −c15

−c21 −1 −4 −4 −6
−c31 −c32 −1 −6 −1
−10 −c42 −c43 −1 −8
−c51 −10 −c53 −c54 −1


is an N1

0 -matrix.
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First, we choose c32 = c42 = c43 = c53 = c54 = 10 so that the principal submatrix

AC[{2, 3, 4, 5}] =


−1 −4 −4 −6
−10 −1 −6 −1
−10 −10 −1 −8
−10 −10 −10 −1


is an N1

0 -matrix. Ac[{2, n}] is an N1
0 -matrix.

According to Theorem 3.10, we choose ci1 = ci2, c1 j = c2 ja12(i = 2, 3, 5, j = 4, 5), and make
c14 = 8, c15 = 12, c21 = 1, c31 = 10, c21 = 10 to obtain the N1

0 -completion

AC =


−1 −2 −3 −8 −12
−1 −1 −4 −4 −6
−10 −10 −1 −6 −1
−10 −10 −10 −1 −8
−10 −10 −10 −10 −1


of A.

4. Conclusions

In this paper, we discussed the completion problem of a non-combinatorially symmetric partial
N1

0 -matrix using directed graphs. We proved that a non-combinatorially incomplete matrix can be
completed to an N1

0 -matrix if its specified off-diagonal entries are negative and the graph of these entries
forms a directed 2-tree. This study extends previous research by considering the inherent asymmetry
and missing diagonal entries in matrices, providing an approach for reconstructing complex matrices
in practical applications.
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