We consider the following class of fractional $ p&q $-Laplacian differential equation with Choquard term:
$ \left\{ \begin{array}{ll} (-\Delta )_{p}^{s}u+(-\Delta )_{q}^{s}u+V(x)(|u{{|}^{p-2}}u+|u{{|}^{q-2}}u) +\int_{{{\mathbb{R}}^{N}}}{g}(x)|u{{|}^{r}}dx = \int_{{{\mathbb{R}}^{N}}}{\int_{{{\mathbb{R}}^{N}}}{\frac{k(u(x))K(u(y))}{|x-y{{|}^{\alpha }}}}}dxdy,&\;x\in {{\mathbb{R}}^{N}}, \\ u\in W_{V}^{s,p}({{\mathbb{R}}^{N}})\bigcap{W_{V}^{s,q}}({{\mathbb{R}}^{N}}),&\;x\in {{\mathbb{R}}^{N}}, \end{array} \right. $
where $ s\in (0, 1), 2\le p\le r\le q < N/s, 0 < \alpha < N $, $ (-\Delta)_{m}^{s} $ with $ m \in \{p, q\} $ is the fractional $ m $-Laplacian operator, $ g(x):{{\mathbb{R}}^{N}}\to \mathbb{R} $, by introducing a potential term function to restore compactness in the corresponding spaces. Using variational techniques and inequalities such as Hardy–Littlewood–Sobolev, we ensure the geometric conditions of the mountain pass theorem in order to show the existence of solutions.
Citation: Liyan Wang, Baocheng Zhang, Zhihui Lv, Kun Chi, Bin Ge. Existence of solutions for the fractional $ p&q $-Laplacian equation with nonlocal Choquard reaction[J]. AIMS Mathematics, 2025, 10(4): 9042-9054. doi: 10.3934/math.2025416
We consider the following class of fractional $ p&q $-Laplacian differential equation with Choquard term:
$ \left\{ \begin{array}{ll} (-\Delta )_{p}^{s}u+(-\Delta )_{q}^{s}u+V(x)(|u{{|}^{p-2}}u+|u{{|}^{q-2}}u) +\int_{{{\mathbb{R}}^{N}}}{g}(x)|u{{|}^{r}}dx = \int_{{{\mathbb{R}}^{N}}}{\int_{{{\mathbb{R}}^{N}}}{\frac{k(u(x))K(u(y))}{|x-y{{|}^{\alpha }}}}}dxdy,&\;x\in {{\mathbb{R}}^{N}}, \\ u\in W_{V}^{s,p}({{\mathbb{R}}^{N}})\bigcap{W_{V}^{s,q}}({{\mathbb{R}}^{N}}),&\;x\in {{\mathbb{R}}^{N}}, \end{array} \right. $
where $ s\in (0, 1), 2\le p\le r\le q < N/s, 0 < \alpha < N $, $ (-\Delta)_{m}^{s} $ with $ m \in \{p, q\} $ is the fractional $ m $-Laplacian operator, $ g(x):{{\mathbb{R}}^{N}}\to \mathbb{R} $, by introducing a potential term function to restore compactness in the corresponding spaces. Using variational techniques and inequalities such as Hardy–Littlewood–Sobolev, we ensure the geometric conditions of the mountain pass theorem in order to show the existence of solutions.
| [1] | S. I. Pekar, Untersuchung über die Elektronentheorie der Kristalle, Akademie Verlag: Berlin, Germany, 1954. https://dx.doi.org/10.1515/9783112649305 |
| [2] |
E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Stud. Appl. Math., 57 (1977), 93–105. https://dx.doi.org/10.1002/sapm197757293 doi: 10.1002/sapm197757293
|
| [3] |
E. Lenzmann, Uniqueness of ground states for pseudorelativistic Hartree equations, Anal. PDE, 2 (2009), 1–27. https://dx.doi.org/10.2140/apde.2009.2.1 doi: 10.2140/apde.2009.2.1
|
| [4] |
V. Moroz, J. V. Schaftingen, Groundstates of nonlinear Choquard equations: existence, qualitative properties, and decay asymptotics, J. Funct. Anal., 265 (2013), 153–184. https://dx.doi.org/10.1016/j.jfa.2013.04.007 doi: 10.1016/j.jfa.2013.04.007
|
| [5] |
V. Moroz, J. Van Schaftingen, Semi-classical states for the Choquard equations, Calc. Var., 52 (2015), 199–235. https://dx.doi.org/10.1007/s00526-014-0709-x doi: 10.1007/s00526-014-0709-x
|
| [6] |
J. Frölich, B. L. G. Jonsson, E. Lenzmann, Boson stars as solitary waves, Commun. Math. Phys., 274 (2007), 1–30. https://dx.doi.org/10.1007/s00220-007-0272-9 doi: 10.1007/s00220-007-0272-9
|
| [7] |
V. Ambrosio, Fractional $ p&q $ Laplacian problems in $\mathbb{R}^N$ with critical growth, Z. Anal. Anwend., 39 (2020), 289–314. http://dx.doi.org/10.4171/ZAA/1661 doi: 10.4171/ZAA/1661
|
| [8] |
B. T. Cheng, X. H. Tang, New existence of solutions for the fractional $p$-Laplacian equations with sign-changing potential and nonlinearity, Mediterr. J. Math., 13 (2016), 3373–3387. http://dx.doi.org/10.1007/s00009-016-0691-y doi: 10.1007/s00009-016-0691-y
|
| [9] |
C. E. Torres, Existence and symmetry result for fractional $p$-Laplacian in $\mathbb{R}^N$, Commun. Pure Appl. Anal., 16 (2017), 99–114. http://dx.doi.org/10.3934/cpaa.2017004 doi: 10.3934/cpaa.2017004
|
| [10] |
M. de Souza, On a class of nonhomogeneous fractional quasilinear equations in $\mathbb{R}^N$ with exponential growth, Nonlinear Differ. Equ. Appl., 22 (2015), 499–511. http://dx.doi.org/10.1007/s00030-014-0293-y doi: 10.1007/s00030-014-0293-y
|
| [11] |
J. F. Xu, Z. L. We, W. Dong, Weak solutions for a fractional $p$-Laplacian equation with sign-changing potential, Complex Var. Elliptic Equ., 61 (2016), 284–296. http://dx.doi.org/10.1080/17476933.2015.1076808 doi: 10.1080/17476933.2015.1076808
|
| [12] |
M. Q. Xiang, B. L. Zhang, V. D. Radulescu, Existence of solutions for perturbed fractional $p$-Laplacian equations, J. Differ. Equations, 260 (2016), 1392–1413. http://dx.doi.org/10.1016/j.jde.2015.09.028 doi: 10.1016/j.jde.2015.09.028
|
| [13] |
N. S. Papageorgiou, V. D. Radulescu, W. Zhang, Global existence and multiplicity for nonlinear Robin eigenvalue problems, Results Math., 78 (2023), 133. https://dx.doi.org/10.1007/s00025-023-01912-8 doi: 10.1007/s00025-023-01912-8
|
| [14] |
N. S. Papageorgiou, V. D. Radulescu, W. Zhang, Multiple solutions with signinformation for double-phase problems with unbalanced growth, Bull. London Math. Soc., 57 (2025), 638–656. https://dx.doi.org/10.1112/blms.13218 doi: 10.1112/blms.13218
|
| [15] | N. S. Papageorgiou, J. Zhang, W. Zhang, Global existence and multiplicity of solutions for nonlinear singular eigenvalue problems, Discrete Cont. Dyn. Syst.-Ser. S, 18 (2025), 1440–1456. https://dx.doi.org/10.3934/dcdss.2024018 |
| [16] |
J. Zhang, Y. Zhang, An infinite sequence of localized semiclassical states for nonlinear Maxwell-Dirac system, J. Geom. Anal., 34 (2024), 277. https://dx.doi.org/10.1007/s12220-024-01724-4 doi: 10.1007/s12220-024-01724-4
|
| [17] |
V. Ambrosio, Fractional $(p, q)$-Schrodinger equations with critical and supercritical growth, Appl. Math. Optim., 86 (2022), 31. http://dx.doi.org/10.1007/s00245-022-09893-w doi: 10.1007/s00245-022-09893-w
|
| [18] |
L. Y. Wang, K. Chi, J. H. Shen, B. Ge, Infinitely many solutions for the fractional $ p&q $-Laplacian problems in $\mathbb{R}^N$, Symmetry, 14 (2022), 2486. https://dx.doi.org/10.3390/sym14122486 doi: 10.3390/sym14122486
|
| [19] |
J. Zhang, W Zhang, V. D. Radulescu, Double phase problems with competing potentials: concentration and multiplication of ground states, Math. Z., 301 (2022), 4037–4078. http://dx.doi.org/10.1007/s00209-022-03052-1 doi: 10.1007/s00209-022-03052-1
|
| [20] |
C. O. Alves, V. Ambrosio, T. Isernia, Existence, multiplicity and concentration for a class of fractional $ p&q $ Laplacian problems in $\mathbb{R}^N$, Commun. Pure Appl. Anal., 18 (2019), 2009–2045. http://dx.doi.org/10.3934/cpaa.2019091 doi: 10.3934/cpaa.2019091
|
| [21] | M. Willem, Minimax theorems, Basel: Birkhauser, 1996. https://dx.doi.org/10.1007/978-1-4612-4146-1 |
| [22] | E. H. Lieb, M. P. Loss, Analysis, 2 Eds., Providence: American Mathematical Society, 2001. https://dx.doi.org/10.1090/gsm/014 |