Research article

Functional differential equations in the non-canonical case: New conditions for oscillation

  • Received: 25 January 2025 Revised: 14 March 2025 Accepted: 20 March 2025 Published: 28 March 2025
  • MSC : 34C10, 34K11

  • In this paper, we study the oscillation of a class of second-order nonlinear differential equations with mixed neutral terms in the non-canonical case. New criteria are derived that ensure the oscillation of the studied equation. The results obtained here greatly improve and extend some of the results reported in previous studies. To illustrate this, we present some examples.

    Citation: Abdulaziz khalid Alsharidi, Ali Muhib. Functional differential equations in the non-canonical case: New conditions for oscillation[J]. AIMS Mathematics, 2025, 10(3): 7256-7268. doi: 10.3934/math.2025332

    Related Papers:

  • In this paper, we study the oscillation of a class of second-order nonlinear differential equations with mixed neutral terms in the non-canonical case. New criteria are derived that ensure the oscillation of the studied equation. The results obtained here greatly improve and extend some of the results reported in previous studies. To illustrate this, we present some examples.



    加载中


    [1] A. Columbu, S. Frassu, G. Viglialoro, Refined criteria toward boundedness in an attraction-repulsion chemotaxis system with nonlinear productions, Appl. Anal., 103 (2023), 415–431. https://doi.org/10.1080/00036811.2023.2187789 doi: 10.1080/00036811.2023.2187789
    [2] T. X. Li, S. Frassu, G. Viglisloro, Combining effects ensuring boundedness in an attraction-repulsion chemotaxis model with production and consumption, Z. Angew. Math. Phys., 74 (2023), 109. https://doi.org/10.1007/s00033-023-01976-0 doi: 10.1007/s00033-023-01976-0
    [3] T. X. Li, D. Acosta-Soba, A. Columbu, G. Viglialoro, Dissipative gradient nonlinearities prevent $ \delta $-formations in local and nonlocal attraction-repulsion chemotaxis models, Stud. Appl. Math., 154 (2025), e70018. https://doi.org/10.1111/sapm.70018 doi: 10.1111/sapm.70018
    [4] T. X. Li, Y. V. Rogovchenko, Oscillation of second-order neutral differential equations, Math. Nachr., 288 (2015), 1150–1162. https://doi.org/10.1002/mana.201300029 doi: 10.1002/mana.201300029
    [5] I. Dassios, A. Muhib, S. A. A. El-Marouf, S. K. Elagan, Oscillation of neutral differential equations with damping terms, Mathematics, 11 (2023), 447. https://doi.org/10.3390/math11020447 doi: 10.3390/math11020447
    [6] W. Soedel, Vibrations of shells and plates, Boca Raton: CRC Press, 2004. https://doi.org/10.4324/9780203026304
    [7] O. Moaaz, R. A. El-Nabulsi, A. Muhib, S. K. Elagan, M. Zakarya, New improved results for oscillation of fourth-order neutral differential equations, Mathematics, 9 (2021), 2388. https://doi.org/10.3390/math9192388 doi: 10.3390/math9192388
    [8] C. D. Vinodbhai, S. Dubey, Numerical solution of neutral delay differential equations using orthogonal neural network, Sci. Rep., 13 (2023), 3164. https://doi.org/10.1038/s41598-023-30127-8 doi: 10.1038/s41598-023-30127-8
    [9] N. Indrajith, J. R. Graef, E. Thandapani, Kneser-type oscillation criteria for second-order half-linear advanced difference equations, Opuscula Math., 42 (2022), 55–64. https://doi.org/10.7494/OpMath.2022.42.1.55 doi: 10.7494/OpMath.2022.42.1.55
    [10] S. R. Grace, New oscillation criteria of nonlinear second order delay difference equations, Mediterr. J. Math., 19 (2022), 166. https://doi.org/10.1007/s00009-022-02072-9 doi: 10.1007/s00009-022-02072-9
    [11] O. Moaaz, H. Mahjoub, A. Muhib, On the periodicity of general class of difference equations, Axioms, 9 (2020), 75. https://doi.org/10.3390/axioms9030075 doi: 10.3390/axioms9030075
    [12] E. Thandapani, K. Ravi, J. R. Graef, Oscillation and comparison theorems for half-linear second-order difference equations, Comput. Math. Appl., 42 (2001), 953–960. https://doi.org/10.1016/S0898-1221(01)00211-5 doi: 10.1016/S0898-1221(01)00211-5
    [13] S. S. Santra, K. M. Khedher, O. Moaaz, A. Muhib, S.-W. Yao, Second-order impulsive delay differential systems: necessary and sufficient conditions for oscillatory or asymptotic behavior, Symmetry, 13 (2021), 722. https://doi.org/10.3390/sym13040722 doi: 10.3390/sym13040722
    [14] R. P. Agarwal, C. H. Zhang, T. X. Li, Some remarks on oscillation of second order neutral differential equations, Appl. Math. Comput., 274 (2016), 178–181. https://doi.org/10.1016/j.amc.2015.10.089 doi: 10.1016/j.amc.2015.10.089
    [15] E. Thandapani, S. Selvarangam, M. Vijaya, R. Rama, Oscillation results for second order nonlinear differential equation with delay and advanced arguments, Kyungpook Math. J., 56 (2016), 137–146. https://doi.org/10.5666/KMJ.2016.56.1.137 doi: 10.5666/KMJ.2016.56.1.137
    [16] O. Moaaz, A. Muhib, S. Owyed, E. E. Mahmoud, A. Abdelnaser, Second-order neutral differential equations: improved criteria for testing the oscillation, J. Math., 2021 (2021), 6665103. https://doi.org/10.1155/2021/6665103 doi: 10.1155/2021/6665103
    [17] S. R. Grace, J. Dzurina, I. Jadlovska, T. X. Li, An improved approach for studying oscillation of second-order neutral delay differential equations, J. Inequal. Appl., 2018 (2018), 193. https://doi.org/10.1186/s13660-018-1767-y doi: 10.1186/s13660-018-1767-y
    [18] J. R. Graef, S. R. Grace, E. Tunc, Oscillation of second-order nonlinear noncanonical dynamic equations with deviating arguments, Acta Math. Univ. Comen., 91 (2022), 113–120.
    [19] M. Bohner, A. Peterson, Advances in dynamic equations on time scales, MA: Birkhäuser Boston, 2003. https://doi.org/10.1007/978-0-8176-8230-9
    [20] J. Dzurina, S. R. Grace, I. Jadlovska, T. X. Li, Oscillation criteria for second-order Emden–Fowler delay differential equations with a sublinear neutral term, Math. Nachr., 293 (2020), 910–922. https://doi.org/10.1002/mana.201800196 doi: 10.1002/mana.201800196
    [21] S. Shi, Z. L. Han, Oscillation of second-order half-linear neutral advanced diferential equations, Commun. Appl. Math. Comput., 3 (2021), 497–508. https://doi.org/10.1007/s42967-020-00092-4 doi: 10.1007/s42967-020-00092-4
    [22] S. R. Grace, J. R. Graef, I. Jadlovska, Oscillatory behavior of second order nonlinear delay differential equations with positive and negative nonlinear neutral terms, Differ. Equat. Appl., 12 (2020), 201–211. https://doi.org/10.7153/dea-2020-12-13 doi: 10.7153/dea-2020-12-13
    [23] O. Moaaz, A. Muhib, S. S. Santra, An oscillation test for solutions of second-order neutral differential equations of mixed type, Mathematics, 9 (2021), 1634. https://doi.org/10.3390/math9141634 doi: 10.3390/math9141634
    [24] Y. Z. Wu, Y. H. Yu, J. S. Xiao, Z. Jiao, Oscillatory behaviour of a class of second order Emden-Fowler differential equations with a sublinear neutral term, Appl. Math. Sci. Eng., 31 (2023), 2246098. https://doi.org/10.1080/27690911.2023.2246098 doi: 10.1080/27690911.2023.2246098
    [25] X. H. Tang, Oscillation for first order superlinear delay differential equations, J. Lond. Math. Soc., 65 (2002), 115–122. https://doi.org/10.1112/S0024610701002678 doi: 10.1112/S0024610701002678
    [26] L. Erbe, Oscilation theory for functional differential equations, New York: Routledge, 1995. https://doi.org/10.1201/9780203744727
    [27] G. S. Ladde, V. Lakshmikantham, B. G. Zhang, Oscillation theory of differential equations with deviating arguments, New York: Marcel Dekker, 1987.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(831) PDF downloads(56) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog