Research article Special Issues

Estimates of coefficients for bi-univalent Ma-Minda-type functions associated with $ \mathfrak{q} $-Srivastava-Attiya operator

  • Received: 19 August 2024 Revised: 29 October 2024 Accepted: 04 November 2024 Published: 28 March 2025
  • MSC : 30C45

  • In this article, we consider new subclasses of analytic and bi-univalent functions associated with the q-Srivastava-Attiya operator in the open unit disk. We obtain coefficient bounds for the Taylor-Maclaurin coefficients $ |a_2| $ and $ |a_3| $ of the functions of these new subclasses. Furthermore, we establish the Fekete-Szegö inequality for functions in the classes $ \mathcal{T}^{\epsilon}_{\tau, \mathfrak{q}, \alpha}(\psi), \; \mathcal{KH}^{\epsilon}_{\tau, \mathfrak{q}, \alpha}(\delta, \psi), \text{and}\; \mathcal{A}^{\epsilon}_{\tau, \mathfrak{q}, \alpha}(\delta, \psi) $.

    Citation: Norah Saud Almutairi, Adarey Saud Almutairi, Awatef Shahen, Hanan Darwish. Estimates of coefficients for bi-univalent Ma-Minda-type functions associated with $ \mathfrak{q} $-Srivastava-Attiya operator[J]. AIMS Mathematics, 2025, 10(3): 7269-7289. doi: 10.3934/math.2025333

    Related Papers:

  • In this article, we consider new subclasses of analytic and bi-univalent functions associated with the q-Srivastava-Attiya operator in the open unit disk. We obtain coefficient bounds for the Taylor-Maclaurin coefficients $ |a_2| $ and $ |a_3| $ of the functions of these new subclasses. Furthermore, we establish the Fekete-Szegö inequality for functions in the classes $ \mathcal{T}^{\epsilon}_{\tau, \mathfrak{q}, \alpha}(\psi), \; \mathcal{KH}^{\epsilon}_{\tau, \mathfrak{q}, \alpha}(\delta, \psi), \text{and}\; \mathcal{A}^{\epsilon}_{\tau, \mathfrak{q}, \alpha}(\delta, \psi) $.



    加载中


    [1] P. L. Duren, Univalent functions, Springer Science & Business Media, 2001.
    [2] L. de-Branges, A proof of the Bieberbach conjecture, Acta Math., 154 (1985), 137–152.
    [3] S. Sivasubramanian, R. Sivakumar, S. Kanas, S. Kim, Verification of Brannan and Clunie's conjecture for certain subclasses of bi-univalent functions, Ann. Pol. Math., 113 (2015), 295–304. https://doi.org/10.4064/ap113-3-6 doi: 10.4064/ap113-3-6
    [4] D. A. Brannan, T. S. Taha, On some classes of bi-univalent functions, Math. Anal. Appl., 1988, 53–60. https://doi.org/10.1016/B978-0-08-031636-9.50012-7 doi: 10.1016/B978-0-08-031636-9.50012-7
    [5] T. S. Taha, Topics in univalent function theory, Ph.D. Thesis, University of London, 1981.
    [6] S. S. Miller, P. T. Mocanu, Differential subordinations: Theory and applications, 1st Eds., Boca Raton: CRC Press, 2000. https://doi.org/10.1201/9781482289817
    [7] H. M. Srivastava, A. A. Attiya, An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination, Integral Transforms Spec. Funct., 18 (2007), 207–216. https://doi.org/10.1080/10652460701208577 doi: 10.1080/10652460701208577
    [8] H. M. Srivastava, The Zeta and related functions: Recent developments, J. Adv. Eng. Comput., 3 (2019), 329–354. http://dx.doi.org/10.25073/jaec.201931.229 doi: 10.25073/jaec.201931.229
    [9] F. Ghanim, B. Batiha, A. H. Ali, M. Darus, Geometric properties of a linear complex operator on a subclass of meromorphic functions: An analysis of Hurwitz-Lerch-Zeta functions, Appl. Math. Nonlinear Sci., 8 (2023), 2229–2240. https://doi.org/10.2478/amns.2023.1.00407 doi: 10.2478/amns.2023.1.00407
    [10] H. Bateman, Higher transcendental functions, New York: McGraw-Hill Book Company, Ⅰ-Ⅲ (1953).
    [11] S. A. Shah, K. I. Noor, Study on the q-analogue of a certain family of linear operators, Turkish J. Math., 43 (2019), 2707–2714. https://doi.org/10.3906/mat-1907-41 doi: 10.3906/mat-1907-41
    [12] E. Deniz, M. Kamali, S. Korkmaz, A certain subclass of bi-univalent functions associated with Bell numbers and q-Srivastava-Attiya operator, AIMS Mathematics, 5 (2020), 7259–7271. https://doi.org/10.3934/math.2020464 doi: 10.3934/math.2020464
    [13] H. M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. Sci., 44 (2020), 327–344. https://doi.org/10.1007/s40995-019-00815-0 doi: 10.1007/s40995-019-00815-0
    [14] V. Kac, P. Cheung, Symmetric quantum calculus, In: Quantum calculus, New York: Springer, 2002, 99–104. https://doi.org/10.1007/978-1-4613-0071-7_26
    [15] H. M. Srivastava, A. R. S. Juma, H. M. Zayed, Univalence conditions for an integral operator defined by a generalization of the Srivastava-Attiya operator, Filomat, 32 (2018), 2101–2114. https://doi.org/10.2298/FIL1806101S doi: 10.2298/FIL1806101S
    [16] Y. J. Sim, O. S. Kwon, N. E. Cho, H. M. Srivastava, Bounds for the real parts and arguments of normalized analytic functions defined by the Srivastava-Attiya operator, J. Comput. Anal. Appl., 28 (2020), 628–645.
    [17] H. M. Srivastava, A. Prajapati, P. Gochhayat, Third-order differential subordination and differential superordination results for analytic functions involving the Srivastava-Attiya operator, Appl. Math. Inform. Sci., 12 (2018), 469–481. http://dx.doi.org/10.18576/amis/120301 doi: 10.18576/amis/120301
    [18] K. I. Noor, S. Riaz, M. A. Noor, On q-Bernardi integral operator, TWMS J. Pure Appl. Math., 8 (2017), 3–11.
    [19] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135 (1969), 429–446. https://doi.org/10.2307/1995025 doi: 10.2307/1995025
    [20] J. W. Alexander, Functions which map the interior of the unit circle upon simple region, Ann. Math., 17 (1915), 12–22. https://doi.org/10.2307/2007212 doi: 10.2307/2007212
    [21] R. H. Nevanlinna, Über die konforme abbildung von sterngebieten, Översikt av Finska Vetens. Soc. Förh., Avd., 63 (1921), 1–21.
    [22] E. Study, Vorlesungen über ausgewählte gegenstände der geometrie, zweites heft; konforme abbildung einfach-zusammenhängender bereiche, 1913.
    [23] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J., 1 (1952), 169–185. https://doi.org/10.1307/mmj/1028988895 doi: 10.1307/mmj/1028988895
    [24] C. Pommerenke, Univalent functions, Vandenhoeck and Ruprecht, 1975.
    [25] R. M. Ali, S. K. Lee, V. Ravichandran, S. Supramaniam, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett., 25 (2012), 344–351. https://doi.org/10.1016/j.aml.2011.09.012 doi: 10.1016/j.aml.2011.09.012
    [26] W. C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Proceedings of the conference on complex analysis, 1992,157–169.
    [27] M. Fekete, G. Szegö, Eine Bemerkung über ungerade schlichte Funktionen, J. Lond. Math. Soc., s1-8 (1933), 85–89. https://doi.org/10.1112/jlms/s1-8.2.85 doi: 10.1112/jlms/s1-8.2.85
    [28] A. Cătaş, On the Fekete-Szegö problem for certain classes of meromorphic functions using a p, q-derivative operator and a p, q-wright type hypergeometric function, Symmetry, 13 (2021), 2143.
    [29] N. S. Almutairi, A. Shahen, A. Cătaş, H. Darwish, On the Fekete–Szegö problem for certain classes of $(\gamma, \delta)$-starlike and $(\gamma, \delta)$-convex functions related to quasi-subordinations, Symmetry, 16 (2024), 1043. https://doi.org/10.3390/sym16081043 doi: 10.3390/sym16081043
    [30] G. Murugusundaramoorthy, L. Cotîrla, Bi-univalent functions of complex order defined by Hohlov operator associated with legendrae polynomial, AIMS Mathematics, 7 (2022), 8733–8750. https://doi.org/10.3934/math.2022488 doi: 10.3934/math.2022488
    [31] P. Zaprawa, On the Fekete-Szegö problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin, 21 (2014), 169–178. https://doi.org/10.36045/bbms/1394544302 doi: 10.36045/bbms/1394544302
    [32] H. M. Srivastava, M. Kamali, A. Urdaletova, A study of the Fekete-Szegö functional and coefficient estimates for subclasses of analytic functions satisfying a certain subordination condition and associated with the Gegenbauer polynomials, AIMS Mathematics, 7 (2022), 2568–2584. https://doi.org/10.3934/math.2022144 doi: 10.3934/math.2022144
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(813) PDF downloads(45) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog