In this discussion, the finite time synchronization (FTSN) of master-slave fractional-order chaotic systems (MSFOCSS) is explored. By adopting the maximum-valued method (MVM) of functions of five variables, two novel criteria on the FTSN are obtained for the MSFOCSS. So far, the studies of the FTSN of the MSFOCSS have been rare. Furthermore, the existing results on the FTSN of MSFOCSS have been achieved often by adopting the LMI method and finite time stability theorems (FTST). Thus, instead of utilizing the past research methods, adopting the MVM to study the FTSN of the MSFOCSS is an innovative study work.
Citation: Junli You, Zhengqiu Zhang. Finite-time synchronization of fractional-order chaotic systems by applying the maximum-valued method of functions of five variables[J]. AIMS Mathematics, 2025, 10(3): 7238-7255. doi: 10.3934/math.2025331
In this discussion, the finite time synchronization (FTSN) of master-slave fractional-order chaotic systems (MSFOCSS) is explored. By adopting the maximum-valued method (MVM) of functions of five variables, two novel criteria on the FTSN are obtained for the MSFOCSS. So far, the studies of the FTSN of the MSFOCSS have been rare. Furthermore, the existing results on the FTSN of MSFOCSS have been achieved often by adopting the LMI method and finite time stability theorems (FTST). Thus, instead of utilizing the past research methods, adopting the MVM to study the FTSN of the MSFOCSS is an innovative study work.
| [1] |
C. Ge, H. Wang, Y. Liu, J. H. Park, Stabilization of chaotic systems under variable sampling and state quantized controller, Fuzzy Set. Syst., 344 (2018), 129–144. https://doi.org/10.1016/j.fss.2017.11.006 doi: 10.1016/j.fss.2017.11.006
|
| [2] |
T. H. Lee, J. H. Park, New methods of fuzzy sampled-data control for stabilization of chaotic systems, IEEE T. Syst. Man Cy., 48 (2018), 2026–2034. https://doi.org/10.1109/TSMC.2017.2690803 doi: 10.1109/TSMC.2017.2690803
|
| [3] |
L. Chen, H. Yin, R. Wu, L. Yin, Y. Chen, Robust dissipativity and dissipation of a class of fractional-order uncertain linear systems, IET Control Theory A., 13 (2019), 1454–1465. https://doi.org/10.1049/iet-cta.2018.5745 doi: 10.1049/iet-cta.2018.5745
|
| [4] |
L. Zhang, Y. Yang, Lag synchronization for fractional-order memristive neural neetworks via period intermittent control, Nonlinear Dynam., 89 (2017), 367–381. https://doi.org/10.1016/j.jfranklin.2017.12.017 doi: 10.1016/j.jfranklin.2017.12.017
|
| [5] |
V. K. Yadav, V. K. Shukla, S. Das, Exponential synchronization of fractional-order complex chaotic systems and its application, Chaos Soliton. Fract., 147 (2021), 110937. https://doi.org/10.1016/j.chaos.2021.110937 doi: 10.1016/j.chaos.2021.110937
|
| [6] |
K. Mathiyalagan, J. H. Park, R. Sakthivel, Exponential synchronization for fractional-order chaotic systems with mixed uncertainties, Complexity, 21 (2015), 114–125. https://doi.org/10.1002/cplx.21547 doi: 10.1002/cplx.21547
|
| [7] |
T. Yang, Z. Wang, J. W. Xia, Sampled-dada exponential synchronization of Markovian with multiple time delays, Chaos Soliton. Fract., 160 (2022), 112252. https://doi.org/10.1016/j.chaos.2022.112252 doi: 10.1016/j.chaos.2022.112252
|
| [8] |
D. Q. Zeng, K. T. Wu, Y. J. Liu, R. M. Zhang, S. M. Zhong, Event-triggered sampling control for exponential synchronization of chaotic Lur'e systems with time-varying communication delays, Nonlinear Dynam., 91 (2018), 905–921. https://doi.org/10.1007/s11071-017-3918-y doi: 10.1007/s11071-017-3918-y
|
| [9] |
C. G. Wei, Y. He, X. C. Shangguan, Y. L. Fan, Master-slave synchronization for time-varying delay chaotic Lur'e systems based on the integral-term-related free-weighting-matrices technique, J. Franklin I., 359 (2022), 9079–9093. https://doi.org/10.1016/j.jfranklin.2022.08.027 doi: 10.1016/j.jfranklin.2022.08.027
|
| [10] |
Y. C. Chen, C. M. Tang, M. Roohi, Design of a model-free adaptive sliding mode control to synchronize chaotic fractional-order systems with input saturation: An application in secure communications, J. Franklin I., 358 (2021), 8109–8137. https://doi.org/10.1016/j.jfranklin.2021.08.007 doi: 10.1016/j.jfranklin.2021.08.007
|
| [11] |
W. W. Zhang, J. D. Cao, R. C. Wu, F. E. Alsandj, A. Alsaedi, Lag projective synchronization of fractional-order delayed chaotic systems, J. Franklin I., 356 (2019), 1522–1534. https://doi.org/10.1016/j.jfranklin.2018.10.024 doi: 10.1016/j.jfranklin.2018.10.024
|
| [12] |
S. Zheng, Synchronization analysis of time delay complex-variable chaotic systems with discontinuous coupling, J. Franklin I., 353 (2016), 1460–1477. https://doi.org/10.1016/j.jfranklin.2016.02.006 doi: 10.1016/j.jfranklin.2016.02.006
|
| [13] |
T. Wu, J. H. Park, L. L. Xiong, X. Q. Xie, H. Y. Zhang, A novel approach to synchronization conditions for delayed chaotic Lur'e systems with state sampled-data quantized controller, J. Franklin I., 357 (2020), 9811-9833. https://doi.org/10.1016/j.jfranklin.2019.11.083 doi: 10.1016/j.jfranklin.2019.11.083
|
| [14] |
S. Q. Pang, Y. Feng, Y. J. Liu, Finite-time synchronization of chaotic systems with different dimension and secure communication, Math. Probl. Eng., 2016 (2016), 1–14. http://dx.doi.org/10.1155/2016/7693547 doi: 10.1155/2016/7693547
|
| [15] |
J. Li, J. M. Zheng, Finite-time synchronization of different dimensional chaotic systems with uncertain parameters and external disturbances, Sci. Rep., 12 (2022), 15407. https://doi.org/10.1038/s41598-022-19659-7 doi: 10.1038/s41598-022-19659-7
|
| [16] |
Y. G. Wang, D. Li, Adaptive synchronization of chaotic systems with time-varying delay via aperiodcally intermittent control, Soft Comput., 24 (2020), 12773–12780. https://doi.org/10.1007/s00500-020-05161-7 doi: 10.1007/s00500-020-05161-7
|
| [17] |
C. D. C. Ancon, R. M. Guerra, Fractional dynamical controllers for generalized multi-synchronization of commensurate fractional order Liouvillian chaotic systems, J. Franklin I., 354 (2017), 3054–3096. https://doi.org/10.1016/j.jfranklin.2017.02.013 doi: 10.1016/j.jfranklin.2017.02.013
|
| [18] |
D. L. Su, W. M. Bao, J. Liu, C. V. Gong, An efficient simulation of the fractional chaotic systems and its synchronization, J. Franklin I., 355 (2018), 9072–9084. https://doi.org/10.1016/j.jfranklin.2016.10.045 doi: 10.1016/j.jfranklin.2016.10.045
|
| [19] |
A. Soleimanizadeh, M. A. Nekoui, M. A. Shoorehdeli, LMI based synchronization control of nonlinear affine fractional order chaotic systems considering input constraint, J. Syst. Sci. Syst. Eng., 32 (2023), 643–655. https://doi.org/10.1007/s11518-023-5577-5 doi: 10.1007/s11518-023-5577-5
|
| [20] |
K. S. Ojo, S. T. Ogunjo, I. A. Fuwape, Modified hybrid combination synchronization of chaotic fractional order systems, Soft Comput., 26 (2022), 11865–11872. https://doi.org/10.1007/s00500-022-06987-z doi: 10.1007/s00500-022-06987-z
|
| [21] |
J. L. Chen, X. S. Zhao, Synchronization control of multiple drive and response fractional order chaotic systems under uncertainties and external disturbances and its application, Int. J. Dynam. Control, 11 (2023), 1297–1309. https://doi.org/10.1007/s40435-022-01049-6 doi: 10.1007/s40435-022-01049-6
|
| [22] |
T. M. A. Elhameed, T. Aboelenen, Mittag-Leffler stability, control, and synchronization for chaotic generalized fractional order systems, Adv. Contin. Discret. M., 2022 (2022), 50. https://doi.org/10.1186/s13662-022-03721-9 doi: 10.1186/s13662-022-03721-9
|
| [23] |
W. Q. Pan, T. Z. Li, Finite-time synchronization of fractional-order chaotic systems with different structures under stochastic disturbances, J. Comput. Commun., 9 (2021), 120–137. https://doi.org/10.4236/jcc.2021.96007 doi: 10.4236/jcc.2021.96007
|
| [24] |
L. I. Huang, W. Y. Li, J. H. Xiang, G. L. Zhu, Adaptive finite-time synchronization of fractional order memristor chaotic system based on sliding-mode control, Eur. Phys. J.-Spec. Top., 231 (2022), 3109–3118. https://doi.org/10.1140/epjs/s11734-022-00564-z doi: 10.1140/epjs/s11734-022-00564-z
|
| [25] | R. Surendar, M. Muthtamilselvan, Sliding mode control on finite-time synchronization of nonlinear hyper mechanical fractional systems, Arab. J. Sci. Eng., 2024 (2024). https://doi.org/10.1007/s13369-024-08858-1 |
| [26] |
A. A. K. Javan, A. Zare, Images encryption based on robust multi-mode finite time synchronization of fractional order hyper-chaotic Rikitake systems, Multimed. Tools Appl., 83 (2024), 1103–1123. https://doi.org/10.1007/s11042-023-15783-2 doi: 10.1007/s11042-023-15783-2
|
| [27] |
S. Sweetha, R. Sakthivel, S. Harshavarthini, Finite-time synchronization of nonlinear fractional chaotic systems with stochastic actuator faults, Chaos Soliton. Fract., 142 (2021), 110312. https://doi.org/10.1016/j.chaos.2020.110312 doi: 10.1016/j.chaos.2020.110312
|
| [28] |
X. Meng, C. C. Gao, B. P. Jiang, Z. T. Wu, Finite-time synchronization of variable-order fractional uncertain coupled systems via adaptive sliding mode control, Int. J. Control Autom., 20 (2022), 1535–1543. https://doi.org/10.1007/s12555-021-0051-y doi: 10.1007/s12555-021-0051-y
|
| [29] |
F. N. Lin, G. M. Xue, B. Qin, S. G. Li, H. Liu, Event-triggered finite-time fuzzy control approach for fractional-order nonlinear chaotic systems with input delay, Chaos Soliton. Fract., 175 (2023), 114036. https://doi.org/10.1016/j.chaos.2023.114036 doi: 10.1016/j.chaos.2023.114036
|
| [30] |
R. Kengne, R. Tehitnga, A. Mezatio, A. Fomethe, G. Litak, Finite-time synchronization of fractional order simplest two-component chaotic oscillators, Eur. Phys. J. B., 90 (2017), 88. https://doi.org/10.1140/epjb/e2017-70470-8 doi: 10.1140/epjb/e2017-70470-8
|
| [31] | A. Kilbas, H. Srivastava, J. Trujillo, Theory and application of fractional differential equations, 2 Eds., New York: Academic Press, 2006. http://dx.doi.org/10.1016/S0304-0208(06)80001-0 |
| [32] | I. Podiubny, Fractional differential equations, Technical University of Kosice, Slovak Republic: Academic Press, 1999. |
| [33] |
N. A. Camacho, M. A. D. Duarte, J. A. Gallegos, Lyapunov functions for fractional order systems, Commun. Nonlinear Sci., 19 (2014), 2951–2957. https://doi.org/10.1016/j.cnsns.2014.01.022 doi: 10.1016/j.cnsns.2014.01.022
|
| [34] |
X. Chen, T. Jia, Z. Wang, X. Xie, J. Qiu, Practical fixed-time bipartite synchronization of uncertain coupled neural networks subject to deception attacks via dual-channel event-triggered control, IEEE T. Cybernetics, 54 (2024), 3615–3625. https://doi.org/10.1109/TCYB.2023.3338165 doi: 10.1109/TCYB.2023.3338165
|
| [35] | D. H. Cao, Y. M. Meng, University mathematics series textbooks (Second Edition) University Mathematics 2, National Planning Textbook for General Higher Education during the Eleventh Five-Year Plan Period, 2 Eds., Beijing: Higher Education Press, 2008. |
| [36] |
S. F. A. Azzawi, A. S. A. Obeidi, Dynamical analysis and anti-synchronization of a new 6D model with self-excited attractors, Appl. Math. J. Chin. Univ., 38 (2023), 27–43. https://doi.org/10.1007/s11766-023-3960-0 doi: 10.1007/s11766-023-3960-0
|
| [37] |
A. B. Saad, O. Boubaker, Bifurctions, chaos and synchronization of a predator-prey system with Allee effect and seasonally forcing in preys growth rate, Eur. Phys. J.-Spec. Top., 227 (2018), 971–981. https://doi.org/10.1140/epjst/e2018-800022-0 doi: 10.1140/epjst/e2018-800022-0
|
| [38] |
H. Tang, K. Y. Liu, Z. Q. Zhang, Finite-time anti-synchronization of a 6D Lorenz systems, AIMS Math., 9 (2024), 35931–35948. https://doi.org/10.3934/math.20241703 doi: 10.3934/math.20241703
|
| [39] |
L. Wang, Y. P. Dong, D. Xie, H. Zhang, Synchronization control of stochastic delayed Lotka-Volterra systems with hardware simulation, Adv. Differ. Equ., 7 (2020), 1–13. https://doi.org/10.1186/s13662-019-2474-9 doi: 10.1186/s13662-019-2474-9
|
| [40] |
I. Ahmad, M. Shafiq, Suppression and synchronization of chaos in uncertain time-delay physical system, Appl. Math. J. Chin. Univ., 39 (2024), 416–437. https://doi.org/10.1007/s11766-024-3821-5 doi: 10.1007/s11766-024-3821-5
|
| [41] |
Z. Q. Zhang, J. D. Cao, Novel finite-time synchronization criteria for inertial neural networks with time delays via integral inequality method, IEEE T. Neur. Net. Lear., 30 (2019), 1476–1485. https://doi.org/10.1109/TNNLS.2018.2868800 doi: 10.1109/TNNLS.2018.2868800
|
| [42] | P. Xiao, Y. M. Meng, Z. Y. Quan, University mathematics series textbooks (Third Edition), University Mathematics 2, National Planning undergraduate Textbook for General Higher Education during the Eleventh Five-Year Plan Period, 3 Eds., Beijing: Higher Education Press, 2014. |
| [43] |
X. F. Hu, L. M. Wang, C. K. Zhang, Y. He, Fixed-time synchronization of fuzzy complex dynamical networks with reaction-diffusion terms via intermittent pinning control, IEEE T. Fuzzy Syst., 32 (2024), 2307–2317. https://doi.org/10.1109/TFUZZ.2024.3349599 doi: 10.1109/TFUZZ.2024.3349599
|
| [44] |
Q. M. Wang, L. M. Wang, W. D. Wen, Y. Li, G. D. Zhang, Dynamical analysis and preassigned-time intermittent control of memristive chaotic system via T-S fuzzy method, Chaos, 35 (2025), 023102. https://doi.org/10.1063/5.0221159 doi: 10.1063/5.0221159
|