Processing math: 62%
Research article

Vanishing viscosity limit to the planar rarefaction wave for the two-dimensional radiative hydrodynamics

  • Received: 14 November 2024 Revised: 12 February 2025 Accepted: 24 February 2025 Published: 06 March 2025
  • MSC : 35Q35, 76N10, 35M10

  • In this paper, we are concerned with the vanishing viscosity problem in two-dimensional radiative hydrodynamics. We prove that two-dimensional radiative hydrodynamics converge to the planar rarefaction wave solution for the corresponding two-dimensional compressible Euler equations. By introducing a different scaling and identifying cancellations within the flux terms, we establish a new convergence rate with the assistance of detailed energy estimates.

    Citation: Guangrong Ren. Vanishing viscosity limit to the planar rarefaction wave for the two-dimensional radiative hydrodynamics[J]. AIMS Mathematics, 2025, 10(3): 4860-4898. doi: 10.3934/math.2025223

    Related Papers:

    [1] Aidi Yao . Two-dimensional pseudo-steady supersonic flow around a sharp corner for the generalized Chaplygin gas. AIMS Mathematics, 2022, 7(7): 11732-11758. doi: 10.3934/math.2022654
    [2] Xiaoguang You . Vanishing viscosity limit of incompressible flow around a small obstacle: A special case. AIMS Mathematics, 2023, 8(2): 2611-2621. doi: 10.3934/math.2023135
    [3] Shaoliang Yuan, Lin Cheng, Liangyong Lin . Existence and uniqueness of solutions for the two-dimensional Euler and Navier-Stokes equations with initial data in H1. AIMS Mathematics, 2025, 10(4): 9310-9321. doi: 10.3934/math.2025428
    [4] Zhao Li, Shan Zhao . Bifurcation, chaotic behavior and solitary wave solutions for the Akbota equation. AIMS Mathematics, 2024, 9(8): 22590-22601. doi: 10.3934/math.20241100
    [5] Jianxia He, Ming Li . Existence of global solution to 3D density-dependent incompressible Navier-Stokes equations. AIMS Mathematics, 2024, 9(3): 7728-7750. doi: 10.3934/math.2024375
    [6] Dan Chen, Da Shi, Feng Chen . Qualitative analysis and new traveling wave solutions for the stochastic Biswas-Milovic equation. AIMS Mathematics, 2025, 10(2): 4092-4119. doi: 10.3934/math.2025190
    [7] Wenzhen Xiong, Yaqing Liu . Physical significance and periodic solutions of the high-order good Jaulent-Miodek model in fluid dynamics. AIMS Mathematics, 2024, 9(11): 31848-31867. doi: 10.3934/math.20241530
    [8] Chunyan Liu . The traveling wave solution and dynamics analysis of the fractional order generalized Pochhammer–Chree equation. AIMS Mathematics, 2024, 9(12): 33956-33972. doi: 10.3934/math.20241619
    [9] Kunquan Li . Analytical solutions and asymptotic behaviors to the vacuum free boundary problem for 2D Navier-Stokes equations with degenerate viscosity. AIMS Mathematics, 2024, 9(5): 12412-12432. doi: 10.3934/math.2024607
    [10] Fei Zhu . Noble-Abel gas diffusion at convex corners of the two-dimensional compressible magnetohydrodynamic system. AIMS Mathematics, 2024, 9(9): 23786-23811. doi: 10.3934/math.20241156
  • In this paper, we are concerned with the vanishing viscosity problem in two-dimensional radiative hydrodynamics. We prove that two-dimensional radiative hydrodynamics converge to the planar rarefaction wave solution for the corresponding two-dimensional compressible Euler equations. By introducing a different scaling and identifying cancellations within the flux terms, we establish a new convergence rate with the assistance of detailed energy estimates.



    The two-dimensional radiative hydrodynamics are formulated as follows:

    {ρt+div(ρu)=0,(ρu)t+div(ρuu)+p=divT,(ρE)t+div(ρEu+pu)+divq=κ1Δθ+div(uT),a1q+b1θ4=divq, (1.1)

    where ρ0,u:=(u1,u2)T, p and θ represent the fluid's density, velocity, pressure, and absolute temperature, q:=(q1,q2)T is the radiative heat flux. Moreover, E:=e+12|u|2 is the specific total energy with the internal energy e. All variables mentioned above depend on t and x, where t is time and x:=(x1,x2)Ω is the spatial variable. Here, we are concerned with the viscous fluid flow in an infinitely long flat nozzle domain Ω:=R×T with a real line R and a one-dimensional unit flat torus T:=R/Z.

    The viscous stress tensor T is given by

    T=2μ1D(u)+λ1divuI,

    where D(u)=u+(u)T2 stands for the deformation tensor, I represents the 2 × 2 identity matrix, parameters μ1 and λ1 represent the shear and bulk viscosity coefficients of the fluid, respectively, and they both are constants satisfying

    μ1>0,μ1+λ10. (1.2)

    Moreover, the constant κ1>0 denotes the heat-conductivity coefficient, and a1>0,b1>0 depend only on the fluid itself.

    Setting

    μ1=μϵ,λ1=λϵ,κ1=κϵ,a1=aϵ2,b1=bϵ1, (1.3)

    where ϵ>0 is the vanishing parameter, and constant μ,λ,κ,a,b are the prescribed uniformly in parameter ϵ. Such a setting for a1 and b1 is borrowed from [1]. Specifically, we investigate the ideal polytropic fluids such that the pressure p and the internal energy e are given by the following state equations:

    p=Rρθ=Aργexp(γ1RS),e=Rγ1θ,

    where S is the entropy, γ>1 is the adiabatic exponent, and both A and R are positive constants.

    Under the Assumption (1.3), letting ϵ tend to zero, we formally derive that the solutions to the two-dimensional compressible Navier-Stokes equations with radiation term (1.1) converge to the corresponding two-dimensional compressible Euler equations

    {ρt+div(ρu)=0,(ρu)t+div(ρuu)+p=0,(ρE)t+div(ρEu+pu)=0. (1.4)

    Literature review. The vanishing viscosity limit for the compressible Navier-Stokes equations to the Euler equations with basic wave patterns has been extensively investigated. In [2], the zero-dissipation limit problem for the compressible and isentropic Navier-Stokes equations to the corresponding Euler equations with rarefaction wave solutions was considered. The solution to the compressible isentropic Navier-Stokes equations with shock data converges to the inviscid shock as the viscosity tends to zero and was derived in [3]. Concerning the Riemann solution to the Euler equations, which consists of the superposition of basic waves, such a vanishing viscosity limit problem was also investigated. This includes the superposition of a shock wave and a rarefaction wave in [4], and the superposition of rarefaction waves and contact discontinuity in [5]. For more results on the vanishing viscosity limit problem, further references can be found in [6,7,8,9] and the references therein. Up to now, all the results mentioned above are related to one-dimensional case. However, in thr high-dimensional case, the vanishing viscosity limit of the two-dimensional compressible and isentropic Navier-Stokes equations to the Euler equations with a planar rarefaction wave solution was studied in [10]; the three-dimensional compressible Navier-Stokes-Fourier equations were further considered in [11]; and the two dimensional full compressible Navier-Stokes equations were derived in [12]. The planar rarefaction wave to the two-dimensional compressible and isentropic Navier-Stokes equations was given in [13]; subsequently, the planar rarefaction wave for the three-dimensional full, compressible Navier–Stokes equations with the heat conductivities in an infinitely long flat nozzle domain was investigated in [14]. Very recently, the vanishing viscosity limit to the planar rarefaction wave with vacuum for the three-dimensional full compressible Navier-Stokes equations with temperature-dependent transport coefficients was presented in [15]. Nowadays, the nonlinear stability for the radiative hydrodynamics has been studied very thoroughly. The composite wave of two viscous shock waves for the one-dimensional radiative Euler equations was given in [16]; then the rarefaction wave case was addressed in [17] for the inflow problem and in [18] for the outflow problem.

    We consider the two-dimensional radiative hydrodynamics (1.1) with the following initial data:

    (ρ,u,θ)(0,x1,x2)=(ρ,u1,u2,θ)(0,x1,x2)=(ρ0,u10,u20,θ0)(x1,x2) (1.5)

    and the far field conditions of the solutions in the x1-direction:

    (ρ,u1,u2,θ)(t,x1,x2)(ρ±,u1±,0,θ±),asx1± (1.6)

    where ρ±>0,u1±,θ± are the prescribed constants. The periodic boundary condition is imposed on x2T for the solution (ρ,u1,u2,θ)(t,x1,x2) to (1.1), and the end states (ρ±,u1±,θ±) are connected by the rarefaction wave solution to the Riemann problem of the corresponding one-dimensional compressible Euler system:

    {ρt+(ρu1)x1=0,(ρu1)t+(ρu21+p)x1=0,(ρE)t+(ρEu1+pu1)x1=0, (1.7)

    with the Riemann initial data

    (ρr0,ur10,θr0)(x1)={(ρ,u1,θ),x1<0,(ρ+,u1+,θ+),x1>0. (1.8)

    With the above assumptions in hand, we could expect that as ϵ0, the solutions to the compressible Navier-Stokes equations (1.1), (1.5), and (1.6) converge to the corresponding planar rarefaction wave for the two-dimensional compressible Euler equations (1.4) with the following Riemann initial data:

    (ρ,u,θ)(0,x1,x2)=(ρr0,ur10,ur20,θr0)(x1)={(ρ,u1,0,θ),x1<0,(ρ+,u1+,0,θ+),x1>0. (1.9)

    Direct calculations reveal that the solution (ρ,u1,θ) to the Euler system (1.7) has three distinct eigenvalues

    λi(ρ,u1,S)=u1+(1)i+12pρ(ρ,S),i=1,3,λ2(ρ,u1,S)=u1.

    What's more, three corresponding right eigenvectors are denoted by γi(ρ,u1,S), it has

    γi(ρ,u1,S)(ρ,u1,S)λi(ρ,u1,S)0,i=1,3,

    and

    γ2(ρ,u1,S)(ρ,u1,S)λ2(ρ,u1,S)0.

    Furthermore, the two i-Riemann invariants Σji(ρ,u1,S)(i=1,3,j=1,2) to the Euler system (1.7) can be given by

    Σ(1)i=u1+(1)i12ρpz(z,S)zdz,Σ(2)i=S, (1.10)

    satisfying (ρ,u1,S)Σji(ρ,u1,S)γi(ρ,u1,S)0(i=1,3,j=1,2) for all ρ>0,u1 and S.

    In this paper, we mainly consider the 3-rarefaction wave to the Euler systems (1.7) and (1.8). Actually, we also can manage the 1-rarefaction wave similarly without any substantial difference. For the given right state (ρ+,u1+,θ+) with ρ+>0,θ+>0, we know that when (ρ,u1,θ)R3(ρ+,u1+,θ+), where

    R3(ρ+,u1+,θ+):={(ρ,u1,θ)|λ3x1(ρ,u1,S)>0,Σj3=Σ(j)3(ρ+,u1+,S+),j=1,2},

    the Euler systems (1.7) and (1.8) admit a 3-rarefaction wave (ρr,ur1,θr)(x1t). For more details about basic waves, interested readers can refer to[19,20]. Subsequently, the above analysis allows us to define the planar rarefaction wave solution to the two-dimensional compressible Euler equations (1.4) with initial data (1.5) and (1.6) as (ρr,ur,θr)(x1t)=(ρr,ur1,0,θr)(x1t).

    Our main result is given as follows:

    Theorem 1.1. Let (ρr,ur,θr)(x1t) be the planar 3-rarefaction wave to the two-dimensional compressible Euler system (1.4) with Riemann initial data (1.5). Then there exists a constant ϵ0>0 such that for any ϵ(0,ϵ0), we are able to construct smooth solutions (ρϵ,uϵ,θϵ) up to any arbitrarily large but fixed time T for the system (1.1) satisfying

    {(ρϵρr,uϵ1ur1,uϵ2,θϵθr)C0(0,T;L2(Ω)),(ρϵ,uϵ,θϵ)C0(0,T;H1(Ω)),qϵH2(Ω),divqϵH2(Ω),(3uϵ,3θϵ)L2(0,T;L2(Ω)).

    In addition, for each small constant T_>0, there is an independent constant CT_,T>0 of ϵ, such that

    supT_tT(ρϵ,uϵ,θϵ)(t,x1,x2)(ρr,ur,θr)(x1t)L(Ω)CT_,Tϵω|lnϵ|2, (1.11)

    where ω=14.

    Moreover, letting ϵ0, it holds that the smooth solution (ρϵ,uϵ,θϵ) converges to the planar rarefaction wave fan (ρr,ur,θr)(x1t) point wisely, except for (0,0), and

    (ρϵ,uϵ,θϵ)(ρr,ur,θr)(x1t),a.e.inR+×Ω.

    We make some comments on our analysis. Based on the observations of cancellations between the flux terms and viscosity terms for full compressible Navier–Stokes equations in [12], this method can also be used in the full system of hydrodynamic equations coupled with a nonlinear elliptic equation. Moreover, we will introduce the new cancellations considering the radiative term. Our concern lies in the convergence rate from the compressible radiative hydrodynamics to the planar rarefaction wave solution for the corresponding Euler equations. Instead of specifying the order of scaling, we provide a broad range of orders. Subsequently, under our chosen scaling setting, we derive a rate in (1.11) through elaborate energy estimates. This demonstrates that our result serves as a generalization of [11,12] to radiative hydrodynamics.

    The rest of the paper is organized as follows: in section 2, we present the smooth approximate rarefaction wave to the Euler equation, along with an introduction to the hyperbolic wave and the solution profile. Section 3 focuses on reformulating the system for the perturbation of the solution to the radiative hydrodynamics around the solution profile, which consists of the approximate rarefaction wave and the hyperbolic wave. Subsequently, we provide proof of the main result.

    Notation. The notations listed below will be widely used in this paper. The standard Sobolev space with the norm k is denoted by Hk(R×T) and Hk(R×Tϵ)(k0,kZ), where Tϵ:=R/1ϵαZ is the scaled torus. We set H0(R×Tϵ)=L2(R×Tϵ), H0(R×T)=L2(R×T), and =0. We additionally choose C as a general positive constant that is independent of T,ϵ and δ, and CT as a positive constant that is independent of ϵ and δ but only relies on T.

    In this section, we construct the approximate rarefaction wave to the Euler system (1.7) through using the inviscid Burgers' equation, and then the hyperbolic wave will be constructed. We can refer to [2,14,21] for details. Last, we construct the solution profile that combines the rarefaction wave and the hyperbolic wave.

    The Riemann problem for the inviscid Burgers' equation is formulated as:

    {wt+wwx1=0,w(0,x1)=wr0(x1)={w,x1<0,w+,x1>0. (2.1)

    If w<w+, then (2.1) has a rarefaction wave wr(x1,t)=wr(x1/t) given by

    wr(t,x1)=wr(x1t)={w,x1t<w,x1t,w<x1t<w+,w+,x1t>w+. (2.2)

    Based on the fact that the rarefaction wave can only be Lipschitz continuous, we follow the method adopted in [1] to develop the approximation rarefaction wave with the smooth solution to the Burgers' equation,

    {wt+wwx1=0w(0,x1)=w0(x1)=w++w2+w+w2tanhx1δ, (2.3)

    where δ>0 is a small constant depending on the viscosity parameter ϵ. The following lemma is to show the properties of the solution w(t,x1) to (2.3), which will be frequently used in our analysis (see [2]).

    Lemma 2.1. Assume w+>w and set ˜w=w+w, then the problem (2.3) has a unique smooth global solution w(t,x1) such that

    (1) w<w(t,x1)<w+, wx1>0, for x1R and t0,δ>0;

    (2)The following estimates hold for all t0,δ>0, p[1,+], k(2)N+,

    wx1(t,)Lp(R)C˜w1/p(δ+t)1+1/p,kxk1w(t,)Lp(R)C(δ+t)1δ(k1)+1/p;

    (3)There exists a constant δ0(0,1) such that for δ(0,δ0] and t>0,

    w(t,)wr(t)L(R)Cδt1[ln(1+t)+|lnδ|].

    Denote w±=λ3(ρ±,u1±,θ±), the 3-rarefaction wave (ρr,ur1,θr)(x1,t)=(ρr,ur1,θr)(x1/t) to the Riemann problems (1.7) and (1.8) is given by

    w(x1t)=λ3(ρr,ur1,θr)(x1t),Σ(j)3(ρr,ur1,θr)(x1t)=Σ(j)3(ρ±,u1±,θ±),j=1,2,

    where Σ(j)3 is the 3-Riemann invariant defined in (1.10). According to the smooth approximate rarefaction wave (ˉρ,ˉu1,ˉθ)(t,x1) of the 3-rarefaction wave fan (ρr,ur1,θr)(x1t) can be formulated as

    w(t,x1)=λ3(ˉρ,ˉu1,ˉθ)(t,x1),Σ(j)3(ˉρ,ˉu1,ˉθ)(t,x1)=Σ(j)3(ρ±,u1±,θ±),j=1,2, (2.4)

    where w(t,x1) is the smooth solution to the Burgers' equation in (2.3). The (ˉρ,ˉu1,ˉθ) satisfy the following equations:

    {ˉρt+(ˉρˉu1)x1=0,(ˉρˉu1)t+(ˉρˉu21+ˉp)x1=0,Rγ1[(ˉρˉθ)t+(ˉρˉu1ˉθ)x1]+ˉpˉu1x1=0, (2.5)

    with the initial values (ˉρ,ˉu1,ˉθ)(0,x1):=(ˉρ0,ˉu10,ˉθ0)(x1). Furthermore, we can associate to the solution of (2.5) the following quantity (see [22])

    ˉq1=b1a1(ˉθ4)x1.

    Based on the Lemma 2.1, we utilize the results of the properties on w(t,x1), which were obtained in [21].

    Lemma 2.2. The smooth approximate 3-rarefaction wave (ˉρ,ˉu1,ˉθ) constructed in (2.4) satisfies the following properties:

    (1) ˉu1x1=2γ+1wx1>0 for all x1R and t0,

    ˉρx1=1Aγexp(γ1RS+)ˉρ3γ2ˉu1x1>0andˉθx1=γ1Rγˉθ12ˉu1x1>0.

    (2)The following estimates hold for all t0,δ>0, p[1,+], k(2)N+,

    (ˉρx1,ˉu1x1,ˉθx1)Lp(R)C˜w1/p(δ+t)1+1/p,xk1(ˉρ,ˉu,ˉθ)Lp(R)C(δ+t)1δ(k1)+1/p.

    (3)There exists a constant δ0(0,1) such that for δ(0,δ0] and t>0,

    (ˉρ,ˉu1,ˉθ)(t,)(ρr,ur1,θr)(t)L(R)Cδt1[ln(1+t)+|lnδ|].

    To compensate for the error arising from the dissipation terms, the hyperbolic wave was introduced in [11] and [12]. We also develop hyperbolic wave (d1,d2,d3)(t,x1) corresponding to the rarefaction wave (ˉρ,¯u1,ˉθ), at the same time we neglect the hyperbolic wave d4(=0) with respect to ¯q1.

    {d1t+d2x1=0,d2t+(2ˉm1ˉρd2ˉm21ˉρ2d1+ˉpˉρd1+ˉpˉm1d2+ˉpˉEd3)x1=(2μ+λ)ϵˉu1x1x1,d3t+(ˉEˉρd2+ˉm1ˉρd3ˉm1ˉEˉρ2d1+ˉm1ˉρˉpˉρd1+ˉm1ˉρˉpˉm1d2+ˉm1ˉρˉpˉEd3+ˉpˉρd2ˉm1ˉpˉρ2d1)x1=κϵˉθx1x1+(2μ+λ)ϵ(ˉu1ˉu1x1)x1,(d1,d2,d3)(0,x1)=(0,0,0), (2.6)

    where ˉm1:=ˉρˉu1, ˉE:=ˉρˉE=ˉρ(Rγ1ˉθ+12ˉu21) represent the momentum and the total energy of the approximate rarefaction wave, respectively. The first three lines of (2.6) are linear hyperbolic systems, which can be rewritten as

    [d1d2d3]t+(A[d1d2d3])x1=[0(2μ+λ)ϵˉu1x1x1κϵˉθx1x1+(2μ+λ)ϵ(ˉu1ˉu1x1)x1],

    where

    A=[010ˉm21ˉρ2+ˉpˉρ2ˉm1ˉρ+ˉpˉm1ˉpˉEˉm1ˉEˉρ2+ˉm1ˉρˉpˉρˉm1ˉpˉρ2ˉEˉρ+ˉm1ˉρˉpˉm1+ˉpˉρˉm1ˉρ+ˉm1ˉρˉpˉE]

    with three distinct eigenvalues ˉλi=ˉλi(ˉρ,ˉu1,S±)=ˉu1+(1)i+12ˉpˉρ(ˉρ,S±)(i=1,3),ˉλ2=ˉλ2(ˉρ,ˉu1,S±)=ˉu1 and the corresponding left and right eigenvectors ˉli=ˉli(ˉρ,ˉu1,S±),ˉri=ˉri(ˉρ,ˉu1,S±)(i=1,2,3) satisfying

    ˉLAˉR=diag(ˉλ1,ˉλ2,ˉλ3):=Λ,ˉLˉR=I,

    where ˉL=(ˉl1,ˉl2,ˉl3),ˉR=(ˉr1,ˉr2,ˉr3) and I is the 3 × 3 identity matrix.

    Define

    (D1,D2,D3)=ˉL(d1,d2,d3),

    then it has

    (d1,d2,d3)=ˉR(D1,D2,D3),

    and we find that (D1,D2,D3) satisfies the following system:

    [D1D2D3]t+(Λ[D1D2D3])x1=ˉL[0(2μ+λ)ϵˉu1x1x1κϵˉθx1x1+(2μ+λ)ϵ(ˉu1ˉu1x1)x1]+(ˉLtˉR+ˉLx1AˉR)[D1D2D3]. (2.7)

    Based on the fact that the 3-Riemann invariant is a constant on the 3-rarefaction wave curve, we obtain

    ˉLt=ˉλ3ˉLx1. (2.8)

    We use (2.8) to rewrite (2.7) as

    {(D1)t+(ˉλ1D1)x1=(2μ+λ)ϵˉl12ˉu1x1x1+ˉl13(κϵˉθx1x1+(2μ+λ)ϵ(ˉu1ˉu1x1)x1+(ˉλ1ˉλ3)ˉl1x1ˉr1D1+(ˉλ2ˉλ3)ˉl1x1ˉr2D2,(D2)t+(ˉλ2D2)x1=(2μ+λ)ϵˉl22ˉu1x1x1+ˉl23(κϵˉθx1x1+(2μ+λ)ϵ(ˉu1ˉu1x1)x1+(ˉλ1ˉλ3)ˉl2x1ˉr1D1+(ˉλ2ˉλ3)ˉl2x1ˉr2D2,(D3)t+(ˉλ3D3)x1=(2μ+λ)ϵˉl32ˉu1x1x1+ˉl33(κϵˉθx1x1+(2μ+λ)ϵ(ˉu1ˉu1x1)x1+(ˉλ1ˉλ3)ˉl3x1ˉr1D1+(ˉλ2ˉλ3)ˉl3x1ˉr2D2,(D1,D2,D3)(0,x1)=(0,0,0). (2.9)

    We easily find that D1 and D2 are decoupled from D3 in (2.8). This enables us to solve the linear hyperbolic system (2.9) on the finite time interval [0,T]. Furthermore, we borrow the result in [11] to get the following estimates for the hyperbolic wave (d1,d2,d3).

    Lemma 2.3. There exists a positive constant CT independent of δ and ϵ, such that

    supt[0,T]kxk1(d1,d2,d3)(t,)2L2(R)CT(ϵδk+1)2,k=0,1,2,3.

    In particular, it holds that

    supt[0,T]kxk1(d1,d2,d3)(t,)L(R)O(ϵδ32+k),k=0,1,2.

    We set the approximate solution profile (˜ρ,˜u1,˜θ) of the two-dimensional radiative hydrodynamics as

    ˜ρ=ˉρ+d1,˜m1=ˉm1+d2:=˜ρ˜u1,E=ˉE+d3:=˜ρ˜E=˜ρ(Rγ1˜θ+12˜u21), (2.10)

    then the approximate wave profile (˜ρ,˜u1,˜θ) satisfies

    {˜ρt+(˜ρ˜u1)x1=0,(˜ρ˜u1)t+(˜ρ˜u21+R˜ρ˜θ)x1=(2μ+λ)ϵˉu1x1x1+(3γ2˜ρ(ˉu1d1+d2)2)x1,Rγ1[(˜ρ˜θ)t+(˜ρ˜u1˜θ)x1]+R˜ρ˜θ˜u1x1+ˉq1x1=κϵˉθx1x1+baϵ(ˉθ4)x1x1+[ˉu1d1+d2˜ρ(γd3(γ1)ˉu1d2Rγγ1ˉθd1+γ22ˉu21d1)(γ1)˜u1(ˉu1d1+d2)22˜ρ]x1+(2μ+λ)ϵˉu21x1(2μ+λ)ϵˉu1x1x1˜u1(3γ2˜ρ(ˉu1d1+d2)2)x1,1bˉq1=1abϵ2(ˉq1)x1x11a2ϵ3(ˉθ4)x1x1x1+1aϵ(ˉθ4)x1, (2.11)

    with the initial data

    (˜ρ,˜u1,˜θ,˜q1)(0,x1)=(ˉρ0,ˉu10,ˉθ0,ˉq0)(x1). (2.12)

    We denote the perturbation around the approximate wave profile

    (˜ρ,˜u,˜θ,˜q):=(˜ρ,˜u1,0,˜θ,ˉq1,0)

    by

    ϕ(τ,y):=ρϵ(τ,y)˜ρ(τ,y),Ψ(τ,y):=(ψ1,ψ2)(τ,y):=(uϵ1,uϵ2)(τ,y)(˜u1,0)(τ,y),ζ(τ,y):=θϵ(τ,y)˜θ(τ,y),Q(τ,y):=(Q1,Q2)(τ,y):=(qϵ1,qϵ2)(τ,y)(ˉq1,0)(τ,y), (3.1)

    where

    τ=tϵα,y1=x1ϵα,y2=x2ϵα,y=(y1,y2),58<α<1, (3.2)

    and

    (ρϵ,uϵ,θϵ,qϵ)=(ρϵ,uϵ1,uϵ2,θϵ,qϵ1,qϵ2)

    is the solution to the problem (1.1) with the following initial data:

    (ρϵ,uϵ1,uϵ2,θϵ,qϵ1,qϵ2)(0,y):=(ˉρ0,ˉu10,0,ˉθ0,ˉq10,0)(y1)+(ϕ0,ψ10,ψ20,ζ0,Q10,Q20)(y). (3.3)

    For simplicity, the superscript ϵ in (ρϵ,uϵ,θϵ,qϵ) will be omitted. We use (1.1) and (2.11) to derive the equations for the perturbation (ϕ,Ψ,ζ,Q):

    {ϕτ+uϕ+ρdivΨ+˜ρy1ψ1+˜u1y1ϕ=0,ρΨt+ρuΨ+Rθϕ+Rρζ+(ρ˜u1y1ψ1,0)+(R˜ρy1(θρ˜ρ˜θ),0)=μϵ1αΔΨ+(μ+λ)ϵ1αdivΨ+((2μ+λ))ϵ1α(ˉu1d1+d2˜ρ)y1y1,0)((2μ+λ)ϵ1αˉu1y1y1˜ρϕ,0)((3γ2˜ρ(ˉu1d1+d2)2)y1ρ˜ρ,0),Rγ1(ρζτ+ρuζ)+RρθdivΨ+divQ+Rγ1ρ˜θy1ψ1+Rρ˜u1y1ζ=κϵ1αΔζ+μ2ϵ1α|Ψ+(Ψ)|2+λϵ1α(divΨ)2+2˜u1y1ϵ1α(2μψ1y1+λdivΨ)+F1+F2+F3,1bQ=1abϵ22αdivQ1aϵ1α(θ4ˉθ4)+(1a2ϵ33α(ˉθ4)y1y1y1,0), (3.4)

    with initial data

    (ϕ,Ψ,ζ,Q)(0,y)=(ϕ0,Ψ0,ζ0,Q0)(y)=(ϕ0,ψ10,ψ20,ζ0,Q10,Q20)(y), (3.5)

    where

    F1=γ1Rκϵ1α[1˜ρ((12ˉu21Rγ1ˉθ)d1ˉu1d2+d3)]y1y1γ12Rκϵ1α((ˉu1d1+d2˜ρ)2)y1y1+2(2μ+λ)ϵ1αˉu1y1(ˉu1d1+d2˜ρ)y1+(2μ+λ)ϵ1αˉu1y1y1ρ˜ρ2(ˉu1d1+d2)+(2μ+λ)ϵ1α((ˉu1d1+d2˜ρ)y1)2baϵ1αρ˜ρ(¯θ4)y1y1,F2=ρ˜ρ[ˉu1d1+d2˜ρ(γd3(γ1)ˉu1d2Rγγ1ˉθd1+γ22ˉu21d1)(γ1)˜u1(ˉu1d1+d2)22˜ρ]y1+ρ˜u1˜ρ(3γ2˜ρ(ˉu1d1+d2)2)y1,F3=κϵ1αˉθy1y1˜ρϕ(2μ+λ)ϵ1αˉu21y1˜ρϕ+baϵ1α(¯θ4)y1y1˜ρϕ,

    and the initial perturbation is chosen to satisfy

    (ϕ0,ψ10,ψ20,ζ0)H2(R×Tϵ)=O(ϵ1α|lnϵ|1),(Q10,Q20)H2(R×Tϵ)=O(ϵ22α|lnϵ|1). (3.6)

    Our aim is to find a solution (ϕ,Ψ,ζ,Q) to (3.4)–(3.6) in the space X(0,Tϵα), which is defined to be

    X(0,τ1)={(ϕ,Ψ,ζ,Q)|(ϕ,Ψ,ζ)C0(0,τ1;H2),ϕL2(0,τ1;H1),(Ψ,ζ)L2(0,τ1;H2),QL(0,τ1;H2)L2(0,τ1;H2),divQL(0,τ1;H2)L2(0,τ1;H2).}

    with 0τ1Tϵα.

    Proposition 3.1. There exists a positive constant ϵ0<1 such that if 0<ϵϵ0, then the perturbation problems (3.4)(3.6) admits a unique solution (ϕ,Ψ,ζ,Q)X(0,Tϵα) satisfying

    sup0τTϵα(ϕ,Ψ,ζ)22(τ)+Tϵα0[ˉu1/21y1(ϕ,ψ1,ζ)2+ˉu1/21y1(ϕ,2ϕ)2+ϵ1αϕ21+ϵα1Q22+ϵ1α(Ψ,ζ,divQ)22]dsCT(ϵ32αδ4+ϵ42αδ7)+CT(ϕ0,Ψ0,ζ0)22, (3.7)

    and

    sup0τTϵα(Q22+ϵ22αdivQ22)(τ)CT(ϵ32αδ4+ϵ42αδ7)ϵ22α+ϵ4δ5+ϵ4+2αδ9+CT(ϕ0,Ψ0,ζ0)22, (3.8)

    for some constant CT is independent of ϵ,δ, but may depend on T.

    According to the above estimate (3.7), we further derive that

    (ρ,u1,u2,θ)(t,x1,x2)(ρr,ur1,0,θr)(x1t)L(Ω)(ϕ,Ψ,ζ)(t,x1,x2)L(Ω)+C(d1,d2,d3)(t,x1)L(R)+(ˉρ,ˉu1,ˉθ)(t,x1)(ρr,ur1,θr)(x1t)L(R)C(ϕ,Ψ,ζ)(τ)2+CTϵδ3/2+Cδt1[ln(1+t)+|lnδ|]CT(ϵ32α2δ2+ϵ2αδ72)+CTϵδ3/2+Cδt1[ln(1+t)+|lnδ|]. (3.9)

    Under the setting δ=ϵω|lnϵ| and (3.42), we derive that the upper bound in (3.9) is CTϵω|lnϵ|2; thus, the proof of Theorem 1.1 is completed.

    In order to prove Proposition 3.1, we will perform the analysis under a priori assumption

    supτ[0,τ1(ϵ)](||(ϕ,Ψ,ζ)||2)ϵ1α,supτ[0,τ1(ϵ)]||Q||2ϵ22α. (3.10)

    Proposition 3.2. (A priori estimate). Assume that the problems (3.4)(3.6) admit a solution (ϕ,Ψ,ζ,Q)X(0,τ1(ϵ)) for some τ1(ϵ)(>0). Then there exists a positive constant ϵ1 which is independent of ϵ,δ and τ1(ϵ), such that if 0<ϵϵ1 and the a priori Assumptions (3.10), then we have the following uniform estimate:

    sup0ττ1(ϵ)(ϕ,Ψ,ζ)(τ)22+τ1(ϵ)0[ˉu1/21y1(ϕ,ψ1,ζ)2+ˉu1/21y1(ϕ,2ϕ)2+ϵ1αϕ21+ϵα1Q22+ϵ1α(Ψ,ζ,divQ)22]dτCT(ϵ32αδ4+ϵ42αδ7)+CT(ϕ0,Ψ0,ζ0)22, (3.11)

    and

    sup0τTϵα(Q22+ϵ22αdivQ22)(τ)CT(ϵ32αδ4+ϵ42αδ7)ϵ22α+ϵ4δ5+ϵ4+2αδ9+CT(ϕ0,Ψ0,ζ0)22, (3.12)

    where the constant CT is independent of ϵ,δ, but may depend on T.

    Before performing the energy estimates, we use the a priori assumption to derive that the density and temperature are uniformly bounded from below and above. Choosing ϵδ32 and ϵ small enough, then it holds

    |di|CTϵδ3214ρ,i=1,2,3,0<34ρ<˜ρ=ˉρ+d1ρ++14ρ,|˜u1|=|ˉu1+ˉu1d1+d2˜ρ|C,|˜q1|=|baϵ(ˉθ4)x1|CTϵδC,

    and

    ˜θ=ˉθ+γ1R˜ρ((12ˉu21Rγ1ˉθ)d1ˉu1d2+d3)γ12R˜ρ2(ˉu1d1+d2)2,0<34θ˜θθ++14θ.

    Moreover, we use Sobolev's inequality and a priori assumption to get

    0<12ρρρ++12ρ,0<12θθθ++12θ,|u|C,|q|C. (3.13)

    Zero-order energy estimate for the perturbation system is formulated as follows.

    Lemma 3.1. There exists a positive constant CT such that

    sup0ττ1(ϵ)(ϕ,Ψ,ζ)(τ)2+τ1(ϵ)0[ˉu1/21y1(ϕ,ψ1,ζ)2+ϵ1α(Ψ,ζ)2]dτ+τ1(ϵ)0[ϵα1Q2+ϵ1αdivQ2]dτCT(ϵ32αδ4+ϵ42αδ7)+C(ϕ0,Ψ0,ζ0)2. (3.14)

    Proof. Define V(x)=xlnx1, then the entropy and entropy flux are given by:

    {η=Rρ˜θV(˜ρρ)+Rγ1ρ˜θV(θ˜θ)+12ρ|u˜u|2,q=uη+R(u˜u)(ρθ˜ρ˜θ). (3.15)

    Under the assumption (3.13), there is a positive C such that 1C|ϕ,Ψ,ζ|2ηC|ϕ,Ψ,ζ|2. Straightforward calculations lead to

    ητ+divqdiv[Ψϵ1α(2μD(Ψ)+λdivΨI)+κϵ1αζθζ]+˜θθ(μϵ1α2|(Ψ)+(Ψ)|2+λϵ1α(divΨ)2)+κϵ1α˜θθ2|ζ|2+˜u1y1[ρψ21+R(γ1)ρ˜θV(˜ρρ)+Rρ˜θV(θ˜θ)]+˜θy1ρψ1(Rln˜ρρ+Rγ1lnθ˜θ)=2ϵ1αθ˜u1y1ζ(2μψ1y1+λdivΨ)+κϵ1αθ2˜θy1ζζy1(2μ+λ)ϵ1α˜ρˉu1y1y1ϕψ1+(2μ+λ)ϵ1α(ˉu1d1+d2˜ρ)y1y1ψ1ρ˜ρψ1(3γ2˜ρ(ˉu1d1+d2)2)y1+ρ˜ρ((γ1)V(˜ρρ)V(˜θθ))(κϵ1αˉθy1y1+(2μ+λ)ϵ1αˉu21y1(2μ+λ)ϵ1αˉu1y1y1ˉu1d1+d2˜ρ)divQζθ+F3ζθ+F1ζθF2((γ1)V(˜ρρ)V(˜θθ)ζθ). (3.16)

    Multiplying the fourth equation of (3.4) by aϵα14θ˜θ3Q, and using the notation P:=(˜θˉθ), we have

    aϵα14bθ˜θ3Q2+div(Qζθ)ϵ1α4bdiv(QdivQθ˜θ3)+ϵ1α4b|divQ|2θ˜θ3=ζθdivQQ4θ˜θ3(ζ4+4ζ3˜θ+6ζ2˜θ2)ζQζθ2˜θy1Q1ζθ2+ϵ1α4bdivQQ(1θ˜θ3)ζQ1θ˜θ3(˜θ3)y1ϵ22α4aθ˜θ3(ˉθ4)y1y1y1Q1+Q14θ˜θ3(P4+4P3ˉθ+6P2ˉθ2+4Pˉθ3)y1. (3.17)

    Actually, the term divQζθ in (3.16) cannot be estimated directly. Our strategy involves using cancellation, which combines (3.16) and (3.17) together.

    Here, we present some preparatory work before performing detailed estimates. Specifically, we use the definition of the approximate solution profile (˜ρ,˜u1,˜θ) to rewrite the last two terms on the left side of Eq (3.16). The estimation we conduct thereafter focuses on extracting the dissipation part.

    ˜u1y1[ρψ21+R(γ1)ρ˜θV(˜ρρ)+Rρ˜θV(θ˜θ)]+˜θy1ρψ1(Rln˜ρρ+Rγ1lnθ˜θ)=(ˉu1d1+d2˜ρ)y1[ρψ21+R(γ1)ρ˜θV(˜ρρ)+Rρ˜θV(θ˜θ)]+ˉu1y1[ρψ21+R(γ1)ρ˜θV(˜ρρ)+Rρ˜θV(θ˜θ)]+((12ˉu21Rγ1ˉθ)d1ˉu1d2+d3)˜ρ(ˉu1d1+d2)22˜ρ2)y1ρψ1((γ1)ln˜ρρ+lnθ˜θ)+γ1Rγˉθ12ˉu1y1ρψ1(Rln˜ρρ+Rγ1lnθ˜θ):=4i=1Di.

    Due to the positive quantity ˉu1y1, term D2 serves as the dissipation. Terms D1, D3, and D4 consist of approximated waves and their solutions. By appropriately choosing parameters ϵ and δ, we then utilize the smallness of the wave's length to bound them effectively.

    We integrate D1 over [0,τ]×R×Tϵ with ττ1(ϵ) to get that

    τ0R×TϵD1dydτCsup0tT(d1,d2,d3)L(R)τ0ˉu121y1(ϕ,ψ1,ζ)2dτ+Cτ0R×Tϵ|(d1,d2,d3)y1|(ϕ2+ψ21+ζ2)dydτCTϵδ32τ0ˉu121y1(ϕ,ψ1,ζ)2dτ+CTϵδ52sup0ττ1(ϵ)(ϕ,ψ1,ζ)2.

    Then, integrating D3 over [0,τ]×R×Tϵ, we can obtain

    τ0R×TϵD3dydττ0R×TϵC((12ˉu21Rγ1ˉθ)d1ˉu1d2+d3)˜ρ(ˉu1d1+d2)22˜ρ2)y1ρ(ψ21+V(˜ρρ)+V(θ˜θ))dydτCsup0tT(d1,d2,d3)L(R)τ0ˉu121y1(ϕ,ψ1,ζ)2dτ+Cτ0R×Tϵ|(d1,d2,d3)y1|(ϕ2+ψ21+ζ2)dydτCTϵδ32τ0ˉu121y1(ϕ,ψ1,ζ)2dτ+CTϵδ52sup0ττ1(ϵ)(ϕ,ψ1,ζ)2.

    For any 12<˜ι<1, and ι(12˜ι,1), z1,z21, we consider the following function

    f˜ι,ι(z1,z2)=˜ι(z1lnz11)+˜ι(γ1)(z2lnz21)14ιγ((γ1)lnz2+lnz1)2.

    It is easy to check that

    f˜ι,ι(1,1)=z1f˜ι,ι(1,1)=z2f˜ι,ι(1,1)=0,det2zf˜ι,ι(1,1)>0.

    So we obtain

    R4ιγˉθˉu1y1ρ((γ1)ln˜ρρ+lnθ˜θ)2˜ιRˉu1y1ρˉθV(θ˜θ)˜ιR(γ1)ˉu1y1ρˉθV(˜ρρ).

    Based on the above analysis, it holds that

    D4ιˉu1y1ρψ21R4ιγˉθˉu1y1ρ((γ1)ln˜ρρ+lnθ˜θ)2,

    and

    D2+D4(1ι)ˉu1y1ρψ21R4ιγˉθˉu1y1ρ((γ1)ln˜ρρ+lnθ˜θ)2+Rˉu1y1ρ˜θV(θ˜θ)+R(γ1)ˉu1y1ρ˜θV(˜ρρ)(1ι)ˉu1y1ρψ21+(1˜ι)Rˉu1y1ρˉθV(θ˜θ)+(1˜ι)R(γ1)ˉu1y1ρˉθV(˜ρρ)+(γ1)2ˉu1y1ρ[(12ˉu21Rγ1ˉθ)d1ˉu1d2+d3˜ρ(ˉu1d1+d2)22˜ρ2]V(˜ρρ)+(γ1)ˉu1y1ρ[(12ˉu21Rγ1ˉθ)d1ˉu1d2+d3)˜ρ(ˉu1d1+d2)22˜ρ2]V(θ˜θ).

    Moreover, by integrating the above inequality over the interval [0,τ]×R×Tϵ, we easily find that the last two terms on the right-hand side can be bounded by CTϵδ52sup0ττ1(ϵ)(ϕ,ζ)2.

    Collecting the above estimates together, we choose ϵδ321 to deduce that

    τ0R×Tϵ{˜u1y1[ρψ21+R(γ1)ρ˜θV(˜ρρ)+Rρ˜θV(θ˜θ)]+˜θy1ρψ1(Rln˜ρρ+Rγ1lnθ˜θ)}dydτC1τ0ˉu121y1(ϕ,ψ,ζ)2dτ+R,

    where

    \begin{align*} |\mathcal{R}|\leq C_T\frac{\epsilon}{\delta^{\frac{5}{2}}}\sup\limits_{0\leq \tau\leq \tau_1(\epsilon)}\|(\phi, \psi_1, \zeta)\|^2. \end{align*}

    Based on the above analysis, we combine (3.16) and (3.17); and then integrate the resulting equation over [0, \tau']\times \mathbb{R} \times \mathbb{T}_\epsilon to deduce that

    \begin{align} &\| (\phi , \Psi , \zeta )(\tau' )\| ^2 +\int\limits_{0}^{\tau'} \bigg[ \| \bar{u}_{1y_1}^{1/2}(\phi , \psi _1, \zeta )\|^2 +\epsilon ^{1-\alpha}\| \nabla (\Psi , \zeta) \|^2 \bigg ] \mathrm{d}\tau +\int\limits_{0}^{\tau'} \bigg[ \epsilon^{\alpha-1}\|Q\|^2+\epsilon^{1-\alpha}\|\mathrm{div}Q\|^2\bigg ] \mathrm{d}\tau\\ &\le C\|(\phi _0, \Psi_0 , \zeta_0 )\|^2+C\bigg| \int\limits_{0}^{\tau'}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon } \frac{(2\mu +\lambda )\epsilon ^{1-\alpha}}{\tilde \rho }\bar{u}_{1y_1y_1} \phi \psi _1\mathrm{d}y\mathrm{d}\tau \bigg| \\ &+C \bigg| \int\limits_{0}^{\tau'}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon } \left[\frac{2\epsilon ^{1-\alpha}}{\theta }\tilde u_{1y_1} \zeta (2\mu \psi _{1y_1}+\lambda \mathrm{div}\Psi ) +\frac{\kappa \epsilon ^{1-\alpha}}{\theta ^2}\tilde\theta _{y_1} \zeta \zeta _{y_1}\right ]\mathrm{d}y\mathrm{d}\tau \bigg|\\ &+C\bigg | \int\limits_{0}^{\tau'}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon } \bigg [ (2\mu +\lambda ) \epsilon ^{1-\alpha}\left(\frac{-\bar{u}_1 d_1+d_2 }{\tilde \rho } \right)_{y_1y_1}\psi _1 -\frac{\rho }{\tilde \rho }\psi _1\left(\frac{3-\gamma }{2\tilde \rho }(-\bar{u}_1d_1+d_2 )^2 \right)_{y_1} \bigg]\mathrm{d}y\mathrm{d}\tau\bigg|\\ &+C\bigg|\int\limits_{0}^{\tau'}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon } \frac{\rho }{\tilde \rho }\left ( (\gamma -1)V\left(\frac{\tilde \rho }{\rho } \right)-V\left(\frac{\tilde \theta }{\theta } \right) \right ) \Bigg ( \kappa \epsilon ^{1-\alpha}\bar{\theta }_{y_1y_1}+(2\mu +\lambda )\epsilon ^{1-\alpha}\bar{u}_{1y_1}^2\\ &-(2\mu +\lambda )\epsilon ^{1-\alpha}\bar{u}_{1y_1y_1}\frac{-\bar{u}_1 d_1+d_2}{\tilde \rho } \Bigg) \mathrm{d}y\mathrm{d}\tau\bigg |\\ &+C\bigg|\int\limits_{0}^{\tau'}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon } \left[F_3\frac{\zeta }{\theta }+F_1\frac{\zeta }{\theta }-F_2\left ((\gamma -1)V\left(\frac{\tilde \rho }{\rho } \right)-V\left(\frac{\tilde \theta }{\theta } \right)-\frac{\zeta }{\theta } \right )\right ]\mathrm{d}y\mathrm{d}\tau \bigg|\\ &+C\bigg|\int\limits_{0}^{\tau'}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }\frac{ Q}{4\theta \tilde {\theta}^{3}} \nabla\left(\zeta^{4}+4 \zeta^{3} \tilde {\theta}+6 \zeta^{2} \tilde {\theta}^{2}\right)\mathrm{d}y\mathrm{d}\tau\bigg|+C\bigg|\int\limits_{0}^{\tau}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }\frac{\zeta Q\cdot \nabla \zeta }{\theta ^2} \mathrm{d}y\mathrm{d}\tau\bigg|\\ &+C\bigg|\int\limits_{0}^{\tau'}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }\frac{\tilde \theta _{y_1}Q_1\zeta }{\theta ^2}\mathrm{d}y\mathrm{d}\tau\bigg |+C\bigg|\int\limits_{0}^{\tau'}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }\frac{\epsilon ^{1-\alpha }}{4 b }\mathrm {div} Q Q \cdot \nabla\left(\frac{1}{\theta \tilde {\theta}^{3}}\right)\mathrm{d}y\mathrm{d}\tau\bigg |\\ &+C\bigg|\int\limits_{0}^{\tau'}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }\frac{ \zeta Q_1}{\theta \tilde {\theta}^{3}}(\tilde \theta ^3)_{y_1}\mathrm{d}y\mathrm{d}\tau\bigg |+C\bigg|\int\limits_{0}^{\tau}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }\frac{\epsilon ^{2-2\alpha }}{4a\theta\tilde {\theta }^3}(\bar{\theta}^4)_{y_1y_1y_1}Q_1\mathrm{d}y\mathrm{d}\tau\bigg |\\ &+C\bigg|\int\limits_{0}^{\tau'}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }\frac{ Q_1}{4\theta \tilde {\theta}^{3}}\left ( \mathcal{P}^4+4\mathcal{P}^3\bar{\theta }+6\mathcal{P}^2\bar{\theta }^2+4\mathcal{P}\bar{\theta }^3 \right )_{y_1}\mathrm{d}y\mathrm{d}\tau\bigg | +C\mathcal{R} \\ &: = C\|(\phi _0, \Psi_0 , \zeta_0 )\|^2+\sum\limits_{i = 1}^{12}\mathcal{I}_i+C\mathcal{R}. \end{align} (3.18)

    According to the scaling argument in (3.2), we use Lemmas 2.2 and 2.3 to deduce that

    \mathcal{I}_1\le C_T\epsilon \underset{0\le t\le T}{\mathrm{sup} } \|\bar{u}_{1x_1x_1} \|_{L^\infty(\mathbb{R})} \underset{0\le \tau \le \tau_1(\epsilon )}{\mathrm{sup}}\|(\phi , \psi _1)\|^2 \le C_T\frac{\epsilon }{\delta ^2 } \underset{0\le \tau \le \tau_1(\epsilon )}{\mathrm{sup}}\|(\phi , \psi _1)\|^2,

    and

    \begin{align*} \mathcal{I}_2&\le \frac{\epsilon^{1-\alpha } }{13}\int\limits_{0}^{\tau'}\|(\nabla \Psi , \nabla \zeta )\|^2\mathrm{d}\tau +C\epsilon^{1-\alpha}\int\limits_{0}^{\tau'}\|(\tilde{u}_{1y_1}, \tilde {\theta }_{y_1} )\zeta \| ^2\mathrm{d}\tau\\ &\le \frac{\epsilon^{1-\alpha } }{13} \int\limits_{0}^{\tau'}\|(\nabla \Psi , \nabla \zeta )\|^2\mathrm{d}\tau +C \epsilon^{1-\alpha}\underset{0\le \tau \le \tau_1(\epsilon )}{\sup}\|\bar{u} _{1y_1}\|_{L^\infty (\mathbb{R})}\int\limits_{0}^{\tau'} \|\bar{u}_{1y_1}^{1/2}\zeta \|^2\mathrm{d}\tau\\ & \quad {+C_T\epsilon^{1-2\alpha} \sup\limits_{0\leq \tau\leq \tau(\epsilon)}\left\|\left(\frac{-\bar{u}_{1}d_1+d_2}{\tilde{\rho}}\right)_{y_1}\right\|_{L^\infty(\mathbb{R})}^2}\sup\limits_{0\leq \tau\leq \tau(\epsilon)}\|\zeta \|^2\\ &\le \frac{\epsilon^{1-\alpha } }{13}\int\limits_{0}^{\tau'}\|(\nabla \Psi , \nabla \zeta )\|^2\mathrm{d}\tau +C_T\frac{\epsilon }{\delta } \int\limits_{0}^{\tau'}\|\bar{u}_{1y_1}^{1/2}\zeta \|^2\mathrm{d}\tau +C_T{\frac{\epsilon ^{3}}{\delta ^5}}\underset{0\le \tau \le \tau_1(\epsilon )}{\mathrm{sup}}\|\zeta \|^2. \end{align*}

    For any fixed time T , it follows from the Holder's inequality and Lemmas 2.2 and 2.3 that

    \begin{align*} \mathcal{I}_3&\le \frac{\epsilon ^{\alpha }}{13T}\int\limits_{0}^{\tau'}\|\psi _1\|^2\mathrm{d}\tau +{C_T\epsilon ^{2-3\alpha }}\int\limits_{0}^{\tau'}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon } \left|\left(\frac{-\bar{u}_1 d_1+d_2 }{\tilde \rho } \right)_{y_1y_1}\right|^2\mathrm{d}y\mathrm{d}\tau\\ & \quad +C_T\epsilon ^{-\alpha }\int\limits_{0}^{\tau'}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon } \left|\left(\frac{(\bar{u}_1d_1-d_2 )^2 }{\tilde \rho } \right)_{y_1}\right|^2 \mathrm{d}y\mathrm{d}\tau\\ & \le \frac{1}{3} \underset{0\le \tau \le \tau_1(\epsilon )}{\mathrm{sup}}\|\psi _1\|^2+{ C_T\epsilon ^{2-2\alpha }\int\limits_{0}^{t}\int\limits_{\mathbb{R} } \left|\left(\frac{-\bar{u}_1 d_1+d_2 }{\tilde \rho } \right)_{x_1x_1}\right|^2\mathrm{d}x_1\mathrm{d}s}\\ &{ \quad +C_T\epsilon ^{-2\alpha }\int\limits_{0}^{t}\int\limits_{\mathbb{R} } \left|\left(\frac{(\bar{u}_1d_1-d_2 )^2 }{\tilde \rho } \right)_{x_1}\right|^2 \mathrm{d}x_1\mathrm{d}s}\\ &\le \frac{1}{3} \underset{0\le \tau \le \tau_1(\epsilon )}{\mathrm{sup}}\|\psi _1\|^2+{C_T\frac{\epsilon^{4-2\alpha } }{\delta ^6}+C_T\frac{\epsilon^{4-2\alpha } }{\delta ^7}}. \end{align*}

    Moreover, we use Lemmas 2.2 and 2.3 to obtain that

    \begin{align*} \mathcal{I}_4&\le C\int\limits_{0}^{\tau' }\bigg(\epsilon^{1-\alpha}\|(\bar{\theta}_{y_1y_1}, \bar{u}_{1y_1}^2)\|_{L^\infty (\mathbb{R})}{+\epsilon ^{1-\alpha}\bigg\|\bar{u}_{1y_1y_1}\bigg(\frac{-\bar{u}_1 d_1+d_2}{\tilde \rho } \bigg)\bigg\|_{L^\infty (\mathbb{R})}}\bigg) \|(\phi , \zeta )\|^2\mathrm{d}\tau\\ &\le C_T\bigg({\frac{\epsilon}{\delta ^2}+\frac{\epsilon^{2 } }{\delta ^{7/2}}}{+\frac{\epsilon^3}{\delta ^4}\bigg)} \underset{0\le \tau \le \tau_1(\epsilon )}{\mathrm{sup}}\|(\phi , \zeta )\|^2. \end{align*}

    As for the term \mathcal{I}_5 , it contains similar terms as \mathcal{I}_{i} with 1\leq i\leq 4 . Therefore, it satisfies similar estimates, and for the sake of simplicity, we omit the details.

    By using the definition of \tilde{\theta } , a priori Assumption (3.10), and (3.13), we have

    \begin{align*} \mathcal{I}_6+\mathcal{I}_7 &\le C \int\limits_{0}^{\tau'}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }\bigg(|Q||\nabla \zeta |(|\zeta |+|\zeta|^3+|\zeta|^2)+|Q||\zeta ^2||\tilde \theta _{y_1}|\bigg)\mathrm{d}y\mathrm{d}\tau\\ &\le C \epsilon^{1-\alpha }\int\limits_{0}^{\tau'}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon } (|Q||\nabla \zeta |+|Q||\zeta ||\tilde \theta _{y_1}|)\mathrm{d}y\mathrm{d}\tau\\ &\le \frac{\epsilon ^{1-\alpha }}{13} \int\limits_{0}^{\tau'}\|\nabla \zeta \|^2\mathrm{d}s+C\epsilon ^{1-\alpha}\int\limits_{0}^{\tau'}\|Q\|^2\mathrm{d}s+ C\epsilon ^{1-\alpha }\int\limits_{0}^{\tau'}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }|\zeta|^2|\tilde \theta_{y_1} |^2\mathrm{d}y\mathrm{d}\tau\\ &\le \frac{\epsilon ^{1-\alpha }}{13} \int\limits_{0}^{\tau'}\|\nabla \zeta \|^2\mathrm{d}s+C\epsilon ^{1-\alpha}\int\limits_{0}^{\tau'}\|Q\|^2\mathrm{d}s +C\epsilon ^{1-\alpha}\sup\limits_{0\leq \tau \leq \tau_1(\epsilon)}\|\bar{u }_{1y_1} \|_{L^\infty(\mathbb{R}) }\int\limits_{0}^{\tau'}\|\bar{u }_{1y_1}^{1/2}\zeta \|^2\mathrm{d}\tau\\ &+C\epsilon ^{1-\alpha }\sup\limits_{0\leq \tau \leq \tau_1(\epsilon)}\left \|\mathcal{P}_{y_1}\right \|^2_{L^\infty(\mathbb{R}) }\int\limits_{0}^{\tau'}\|\zeta \|^2\mathrm{d}\tau\\ & \le \frac{\epsilon ^{1-\alpha }}{13} \int\limits_{0}^{\tau'}\|\nabla \zeta \|^2\mathrm{d}s+C\epsilon ^{1-\alpha}\int\limits_{0}^{\tau'}\|Q\|^2\mathrm{d}\tau +C_T\frac{\epsilon }{\delta }\int\limits_{0}^{\tau'}\|\bar{u }_{1y_1}^{1/2}\zeta \|^2\mathrm{d}\tau +C_T\frac{\epsilon ^{3-\alpha }}{\delta ^5}\sup\limits_{0\leq \tau \leq \tau_1(\epsilon)}\|\zeta \|^2, \end{align*}

    where we used Sobolev's inequality and a priori assumption \|\zeta\|_{L^\infty}\leq C\|\zeta\|_{2}\leq C\epsilon^{1-\alpha} in the second line. Moreover, in the last line of the preceding estimate, we employed the expression

    \mathcal{P} = \frac{\gamma -1}{R\tilde {\rho}}\left(\bigg(\frac{1}{2}\bar{u}_1^2-\frac{R}{\gamma -1}\bar{\theta}\bigg)d_1 -\bar{u}_1d_2+d_3\right)-\frac{\gamma -1}{2R\tilde{\rho }^2}(-\bar{u}_1d_1+d_2 )^2

    which consist of different waves.

    Similarly, it holds that

    \begin{align*} \mathcal{I}_8+\mathcal{I}_{10} &\le C\int\limits_{0}^{\tau'}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }|\tilde \theta _{y_1}||Q||\zeta |\mathrm{d}y\mathrm{d}\tau\\ &\le \frac{\epsilon^{\alpha-1}}{3} \int\limits_{0}^{\tau'}\|Q\|^2\mathrm{d}y\mathrm{d}\tau+C\epsilon ^{1-\alpha }\sup\limits_{0\leq \tau \leq \tau_1(\epsilon)}\bigg(\|\bar{\theta } _{y_1}\|^2_{L^\infty(\mathbb{R}) }+\|\mathcal{P}_{y_1} \|_{L^\infty(\mathbb{R}) }^2\bigg)\int\limits_{0}^{\tau'}\|\zeta \|^2\mathrm{d}\tau\\ &\le\frac{\epsilon^{\alpha-1}}{3} \int\limits_{0}^{\tau'}\|Q\|^2\mathrm{d}y\mathrm{d}\tau+C_T\bigg (\frac{\epsilon}{\delta^2 }+\frac{\epsilon^3}{\delta^5 } \bigg)\sup\limits_{0\leq \tau \leq \tau_1(\epsilon)}\|\zeta \|^2. \end{align*}

    By using Holder's inequality, Sobolev's inequality, Young's inequality and a priori Assumption (3.10), we have

    \begin{align*} \mathcal{I}_9&\leq \left |\int\limits_{0}^{\tau'}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }\epsilon ^{1-\alpha }\mathrm {div} Q Q \cdot \nabla\left(\frac{1}{4 b \theta \tilde {\theta}^{3}}\right)\mathrm{d}y\mathrm{d}\tau\right |\\ &\le C\epsilon ^{1-\alpha } \int\limits_{0}^{\tau'}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }(| Q||\nabla \zeta || \mathrm{div}Q|+|Q_{1}||\tilde \theta _{y_1}||\mathrm{div}Q |)\mathrm{d}y\mathrm{d}\tau\\ &\le C \epsilon ^{1-\alpha }\int\limits_{0}^{\tau'}\| \mathrm{div}Q\| \|\nabla \zeta\|\| Q\|_{L^\infty(\mathbb{R}\times\mathbb{T}_\epsilon)}\mathrm{d}s+\frac{\epsilon ^{\alpha -1}}{3} \int\limits_{0}^{\tau'}\| Q\|^2 \mathrm{d}s+C\epsilon ^{2-2\alpha }\int\limits_{0}^{\tau'}\|\mathrm{div} Q\|^2\|\tilde \theta _{y_1} \|^2 \mathrm{d}\tau\\ &\le C \epsilon ^{1-\alpha }\int\limits_{0}^{\tau'}\| \mathrm{div}Q\| \|\nabla \zeta\|\| Q\|_{2}\mathrm{d}\tau+\frac{\epsilon ^{\alpha -1}}{3} \int\limits_{0}^{\tau'}\| Q\|^2 \mathrm{d}\tau \\& \quad +C \epsilon^{2-2\alpha}\underset{0\le \tau \le \tau_1(\epsilon )}{\sup}\|\bar{\theta }_{y_1}\|^2_{L^\infty (\mathbb{R})}\int\limits_{0}^{\tau'}\|\mathrm{div} Q\|^2\mathrm{d}\tau +C\epsilon ^{2-2\alpha}\underset{0\le \tau \le \tau_1(\epsilon )}{\sup}\|\mathcal{P} _{y_1}\|^2_{L^\infty (\mathbb{R})}\int\limits_{0}^{\tau'}\|\mathrm{div} Q\|^2\mathrm{d}\tau\\ &\le C\epsilon ^{3-3\alpha } \int\limits_{0}^{\tau'}\| \mathrm{div}Q\|^2\mathrm{d} \tau +C \epsilon ^{3-3\alpha }\int\limits_{0}^{\tau'} \| \nabla\zeta\|^2\mathrm{d}\tau+\frac{\epsilon ^{\alpha -1}}{3} \int\limits_{0}^{\tau'}\| Q\|^2 \mathrm{d}\tau+C_T\bigg(\frac{\epsilon ^{2}}{\delta ^2} +\frac{\epsilon ^{4}}{\delta ^5}\bigg)\int\limits_{0}^{\tau'}\| \mathrm{div}Q\|^2\mathrm{d}\tau, \end{align*}

    and

    \begin{align*} \mathcal{I}_{11}+\mathcal{I}_{12}&\leq C \int\limits_{0}^{\tau'}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon } \bigg(\epsilon^{2-2\alpha}|Q||(\bar{\theta}^4)_{y_1y_1y_1}|+|Q||\mathcal{P}_{y_1}|+|Q||\mathcal{P}||\bar{\theta}_{y_1}|\bigg) \mathrm{d}y\mathrm{d}\tau\\ &\le \frac{\epsilon ^{\alpha -1}}{3} \int\limits_{0}^{\tau'}\|Q\|^2\mathrm{d}\tau+C\epsilon^{5(1-\alpha)}\int_0^{\tau'}\|(\bar{\theta}^4)_{y_1y_1y_1}\|^2\mathrm{d}\tau\\ & \quad +C\epsilon ^{1-\alpha }\int\limits_{0}^{\tau'}\|\mathcal{P}_{y_1}\|^2\mathrm{d}\tau +C\epsilon ^{1-\alpha }\sup\limits_{0\leq t\leq T}\|\mathcal{P}\|_{L^\infty(\mathbb{R})}^2\int\limits_{0}^{\tau'}\|\bar{\theta }_{y_1} \|^2\mathrm{d}\tau\\ & \le \frac{\epsilon ^{\alpha -1}}{3} \int\limits_{0}^{\tau'}\|Q\|^2\mathrm{d}\tau+C_T\frac{\epsilon^{5-2\alpha}}{\delta^5}+C_T\frac{\epsilon ^{3-2\alpha }}{\delta ^4}. \end{align*}

    Substituting the above estimates into (3.18) and taking \epsilon and \frac{\epsilon }{\delta ^{5/2}} ( \ll1 ) suitably small, we can complete the proof of the (3.14) in Lemma 3.1.

    Lemma 3.2. There exists a positive constant C_T such that

    \begin{align} &\underset{0\le \tau \le \tau_1(\epsilon) }{\mathrm{sup}}\| (\nabla\phi , \nabla\Psi , \nabla\zeta )(\tau )\| ^2 +\int\limits_{0}^{\tau_1(\epsilon) } \bigg( \| \bar{u}_{1y_1}^{1/2} \nabla\phi \|^2 +\epsilon ^{1-\alpha}\| (\nabla^2 \Psi , \nabla^2\zeta) \|^2 \bigg ) \mathrm{d}\tau\\ &{+\int\limits_0^{\tau_1(\epsilon)}\bigg[\epsilon^{\alpha-1}\|\nabla Q\|^2+\epsilon^{1-\alpha}\|\nabla \mathrm{div}Q\|^2\bigg]\mathrm{d}\tau} \le C\|(\phi _0, \Psi_0 , \zeta_0 )\|^2_1+C_T\bigg(\frac{\epsilon^{3-2\alpha }}{\delta^4 }+\frac{\epsilon^{4-2\alpha }}{\delta^7 }\bigg). \end{align} (3.19)

    Proof. Applying the operator \nabla to the first equation of (3.4) and then multiplying the resulting equation by \frac{R\theta }{\rho }\nabla \phi yields

    \begin{align} &\bigg(R\frac{\theta }{\rho }\frac{|\nabla \phi |^2}{2} \bigg)_\tau +\mathrm{div} \bigg(R\frac{\theta }{\rho } {\boldsymbol{u}}\frac{|\nabla \phi |^2}{2}-R\theta \phi _{y_i}\nabla \psi _i\bigg)+(R\theta \nabla \phi \cdot \nabla \psi _i)_{y_i}\\ &+\frac{R(\gamma -1)\theta }{\rho }\bar{u}_{1y_1} \frac{|\nabla \phi |^2}{2}+R\frac{\theta }{\rho }\bar{u}_{1y_1} \phi _{y_1}^2+R\theta \nabla \phi \cdot\Delta \Psi \\ & = -\frac{R(\gamma -1)\theta }{\rho }\mathrm{div}\Psi \frac{|\nabla \phi |^2}{2}-\frac{R\theta }{\rho }\phi _{y_i}\nabla \phi \cdot \nabla \psi _i+R\zeta _{y_i}\phi \cdot \nabla \psi _i-R\phi _{y_i}\nabla \zeta \cdot \nabla \psi _i\\ &+\frac{\gamma -1 }{\rho^2 }\frac{|\nabla \phi |^2}{2} \epsilon ^{1-\alpha}\bigg[\kappa \Delta \zeta+\kappa \tilde \theta _{y_1y_1} +\frac{\mu }{2} | \nabla \Psi +(\nabla \Psi )^{\top} |^2+2\tilde u_{1y_1} (2\mu \psi _{1y_1}+\lambda \mathrm{div}\Psi )\\ &+\lambda (\mathrm{div\Psi } )^2+(2\mu +\lambda )(\tilde u_1\tilde u_{1y_1})_{y_1}\bigg]-\frac{R(\gamma -1)\theta }{\rho } \bigg(\frac{-\bar{u}_1d_1+d_2 }{\tilde \rho }\bigg)_{y_1} \frac{|\nabla \phi |^2}{2}\\ &-\frac{R\theta }{\rho } \bigg(\frac{-\bar{u}_1d_1+d_2 }{\tilde \rho }\bigg)_{y_1}\phi _{y_1}^2+R\tilde \theta _{y_1}\nabla\phi \cdot\nabla\psi_1-R\tilde \theta _{y_1}\nabla\phi \cdot\Psi_{y_1}-\frac{R\theta }{\rho }\tilde \rho _{y_1}\phi _{y_1}\mathrm{div}\Psi\\ &-\frac{R\theta }{\rho }\tilde \rho _{y_1y_1}\psi_1\phi _{y_1}-\frac{R\theta }{\rho }\tilde \rho _{y_1}\nabla\phi \cdot\nabla\psi_1-\frac{R\theta }{\rho }\tilde u _{1y_1y_1}\phi \phi _{y_1}\\ &-\frac{\gamma -1 }{\rho^2 }\frac{|\nabla \phi |^2}{2}\mathrm{divQ} -\frac{\gamma -1 }{\rho^2 }\frac{|\nabla \phi |^2}{2}\bar q _{y_1}\\ &: = \mathcal{J}_1(\tau, y). \end{align} (3.20)

    Multiplying the second equation of (3.4) by -\Delta \Psi results in

    \begin{align} &\bigg(\rho\frac{|\nabla \Psi|^2}{2} \bigg)_\tau-\mathrm{div}\bigg(\rho \psi _{i\tau }\nabla \psi _i+\rho u_i\psi _{jy_i }\nabla \psi _j-\rho {\boldsymbol{u}} \frac{|\nabla \Psi|^2}{2}\\ &+(\mu +\lambda )\epsilon ^{1-\alpha}\mathrm{div}\Psi\nabla \mathrm{div}\Psi-(\mu +\lambda )\epsilon ^{1-\alpha}\mathrm{div}\Psi\Delta \Psi\bigg)\\ &+\mu\epsilon ^{1-\alpha}|\Delta \Psi|^2+(\mu +\lambda )\epsilon ^{1-\alpha}|\nabla \mathrm{div}\Psi |^2-R\theta \nabla \phi \cdot \Delta \Psi-R\rho\nabla \zeta \cdot\Delta \Psi \\ & = -\phi _{y_i}\Psi_{y_i}\cdot \Psi_\tau-\tilde \rho _{y_1}\Psi_{y_1}\cdot \Psi_\tau-u_i\psi_{jy_i}\nabla \rho \cdot \nabla \psi _j-\rho \psi_{jy_i}\nabla \psi _i \cdot \nabla \psi _j-\rho \tilde u_{1y_1}|\Psi_{y_1}|^2 \end{align} (3.21)
    \begin{align} &+\rho \tilde u_{1y_1}\psi _1\Delta\psi _1+R\tilde \rho _{y_1}\bigg(\theta -\frac{\rho }{\tilde \rho }\tilde \theta \bigg)\Delta \psi _1-(2\mu +\lambda )\epsilon ^{1-\alpha }\bigg(\frac{-\bar{u}_1d_1+d_2 }{\tilde \rho } \bigg)_{y_1y_1}\Delta \psi _1\\ &+(2\mu+\lambda )\epsilon ^{1-\alpha } \frac{\bar{u }_{1y_1y_1} }{\tilde \rho }\phi\Delta\psi _1+\bigg(\frac{3-\gamma }{2\tilde{\rho}}(-\bar{u}_1d_1+d_2)^2 \bigg)_{y_1}\frac{\rho }{\tilde \rho }\Delta \psi _1\\ &: = \mathcal{J}_2(\tau, y) .\notag \end{align} (3.22)

    We multiply the third equation of (3.4) by -\frac{1}{\theta }\Delta \zeta to get

    \begin{align} &\bigg(\frac{R}{\gamma -1}\frac{\rho }{\theta }\frac{|\nabla \zeta |^2}{2}\bigg)_\tau-\mathrm{div}\bigg(\frac{R}{\gamma -1}\frac{\rho }{\theta }\zeta _\tau \nabla \zeta + \frac{R}{\gamma -1}\frac{\rho }{\theta }u_i\zeta _{y_i}\nabla \zeta -\frac{R}{\gamma -1}\frac{\rho }{\theta } {\boldsymbol{u}}\frac{|\nabla \zeta |^2}{2}\\ &+R\rho \mathrm{div}\Psi \nabla \zeta +R\rho \nabla \psi _i\zeta _{y_i} +\frac{1}{\theta }\mathrm{div} Q\nabla \zeta\bigg)+(R\rho \nabla \psi _i\cdot \nabla \zeta )_{y_i}+\frac{\kappa \epsilon ^{1-\alpha }}{\theta }|\Delta \zeta |^2+R\rho \nabla \zeta \cdot \Delta \Psi\\ & = \sum\limits_{i = 1}^{4}\mathcal{J}_{3, i}(\tau, y), \end{align} (3.23)

    where

    \begin{align*} \mathcal{J}_{3, 1}(\tau, y): = &-\frac{R}{\gamma -1}\bigg (\frac{1}{\theta }\nabla \phi \cdot \nabla \zeta \zeta _\tau+\frac{1}{\theta }\tilde \rho _{y_1} \nabla \zeta _{y_1}\zeta _\tau-\frac{\rho }{\theta^2 }| \nabla \zeta|^2 \zeta _\tau-\frac{\rho }{\theta^2 }\tilde \theta _{y_1}\zeta _{y_1}\zeta _\tau\\ &+\frac{1}{\theta }u_i\zeta _{y_i}\nabla \rho \cdot \nabla \zeta -\frac{\rho }{\theta^2 }u_i\zeta _{y_i}\nabla \theta \cdot \nabla \zeta+\frac{\rho }{\theta }\zeta _{y_i}\nabla \psi_i \cdot \nabla \zeta +\frac{\rho }{\theta }\tilde u_{1y_1}|\zeta _{y_1}|^2\bigg) , \end{align*}
    \begin{align*} \mathcal{J}_{3, 2} (\tau, y): = &R\frac{\rho }{\theta }\mathrm{div}\Psi\frac{|\nabla \zeta |^2}{2}+R\frac{\rho }{\theta }\tilde u_{1y_1}\frac{|\nabla \zeta |^2}{2} -R\mathrm{div}\Psi\nabla \phi \cdot \nabla \zeta -R\tilde \rho _{y_1}\zeta _{y_1}\mathrm{div}\Psi\\ &+R\phi _{y_i}\nabla \psi _i\cdot \nabla \zeta +R\tilde \rho _{y_1}\nabla \psi _1\cdot \nabla \zeta -R\nabla \phi \cdot \nabla \psi _i\zeta _{y_i}-R\tilde \rho _{y_1}\psi _{iy_1}\zeta _{y_i} \\ &+\frac{R}{\gamma -1}\frac{\rho }{\theta }\tilde \theta _{y_1}\psi _1\Delta \zeta +\frac{R\rho }{\theta }\tilde u_{1y_1}\zeta \Delta \zeta +\frac{3}{2}\frac{|\nabla \zeta |^2}{\theta ^2}\mathrm{div}Q+\frac{\tilde \theta _{y_1}}{\theta ^2}\mathrm{div}Q\nabla\zeta \\ &+\frac{|\nabla \zeta |^2}{2\theta ^2}\bar q_{y_1}-\frac{1}{\theta }\nabla \mathrm{div}Q\cdot\nabla \zeta, \end{align*}
    \begin{align*} \mathcal{J}_{3, 3} (\tau, y): = &-\epsilon ^{1-\alpha }\bigg [\frac{1}{\theta ^2}\frac{|\nabla \zeta |^2}{2}\bigg(\kappa \Delta \zeta+\kappa \tilde \theta _{y_1y_1} +\frac{\mu }{2} | \nabla \Psi +(\nabla \Psi )^{\top} |^2+\lambda (\mathrm{div\Psi } )^2\\ +&2\tilde u_{1y_1} (2\mu \psi _{1y_1}+\lambda \mathrm{div}\Psi)+(2\mu +\lambda )(\tilde u_1\tilde u_{1y_1})_{y_1}\bigg) +\frac{\mu}{2\theta } | \nabla \Psi +(\nabla \Psi )^{\top} |^2\Delta \zeta \\ +&\frac{\lambda }{\theta }(\mathrm{div\Psi } )^2\Delta\zeta +\frac{2\tilde u_{1y_1}}{\theta } (2\mu \psi _{1y_1}+\lambda \mathrm{div}\Psi)\Delta \zeta \bigg ], \end{align*}
    \mathcal{J}_{3, 4}(\tau , y): = -(F_1+F_2+F_3)\frac{\Delta \zeta }{\theta } .

    Applying the operator \nabla to the fourth equation of (3.4) and then multiplying the resulting equation by \frac{a\epsilon ^{1-\alpha } }{4 \theta \tilde {\theta}^{3}}\nabla Q we obtain

    \begin{align} &\frac{a\epsilon ^{\alpha -1} }{4 b \theta \tilde {\theta}^{3}}|\nabla Q|^{2} +\mathrm{div}\left (\frac{\nabla Q\cdot \nabla \zeta }{\theta }\right )-\frac{\epsilon ^{1-\alpha }}{4b}\mathrm{div}\left(\frac{\nabla Q \cdot\nabla\mathrm{div} Q}{ \theta \tilde {\theta}^{3}}\right) +\frac{\epsilon ^{1-\alpha }}{4 b}\frac{|\nabla\mathrm{div} Q|^{2}}{ \theta \tilde {\theta}^{3}} \\ & = \frac{1 }{\theta }\nabla\mathrm{div}Q \cdot\nabla\zeta-\frac{ \nabla Q_i}{4\theta \tilde {\theta}^{3}} \cdot\nabla\left(\zeta^{4}+4 \zeta^{3} \tilde {\theta}+6 \zeta^{2} \tilde {\theta}^{2}\right)_{y_i} -\frac{ \nabla Q_i \cdot\nabla \zeta\zeta_{yi} }{\theta ^2}\\ & \quad -\frac{Q_{1y_1}\zeta_{y_1} }{\theta ^2}\tilde\theta _{y_1} +\epsilon ^{1-\alpha }\mathrm {div} Q_{y_i}\nabla Q \cdot \nabla\left(\frac{1}{4 b \theta \tilde {\theta}^{3}}\right) -\frac{ 6 \zeta_{y_1} Q_{1y_1}}{\theta \tilde {\theta}}\tilde \theta _{y_1}\\ & \quad -\frac{ 3\zeta Q_{1y_1}}{\theta \tilde {\theta}}\tilde \theta _{y_1y_1} - \frac{ 6\zeta Q_{1y_1}}{\theta \tilde {\theta}^2}\tilde \theta _{y_1}^2+\frac{\epsilon ^{2-2\alpha }}{4a\theta\tilde {\theta }^3}(\bar{\theta}^4)_{y_1y_1y_1y_1}Q_{1y_1} \\ & \quad -\frac{ Q_{1y_1}}{4\theta \tilde {\theta}^{3}} \left (\mathcal{P}^4+4\mathcal{P}^3\bar{\theta }+6\mathcal{P}^2\bar{\theta }^2+4\mathcal{P}\bar{\theta }^3 \right )_{y_1y_1}\\ &: = \mathcal{J}_4(\tau, y). \end{align} (3.24)

    Now, we add Eqs (3.20)–(3.24) together. Then, we integrate the resulting equation over the domain [0, \tau']\times \mathbb{R}\times \mathbb{T}_\epsilon to obtain

    \begin{align} &\| (\nabla\phi , \nabla\Psi , \nabla\zeta )(\tau' )\| ^2 +\int\limits_{0}^{\tau' } \bigg[ \| \bar{u}_{1y_1}^{1/2}(\nabla\phi )\|^2\\ &+\epsilon ^{1-\alpha}\| (\nabla^2 \Psi , \nabla^2\zeta) \|^2 \bigg ] \mathrm{d}\tau+\int_0^{\tau'}\bigg[\epsilon^{\alpha-1}\|\nabla Q\|^2+\epsilon^{1-\alpha}\|\nabla\mathrm{div}Q\|^2\bigg]\mathrm{d}\tau\\ &\le C\|(\nabla \phi _0, \nabla \Psi_0 , \nabla \zeta_0 )\|^2 +C\bigg|\int\limits_{0}^{\tau' }\int\limits_{\mathbb{R}\times\mathbb{T}_\epsilon }^{ } \Big[\mathcal{J}_1(\tau , y)+\mathcal{J}_2(\tau , y)+\sum\limits_{i = 1}^{4} \mathcal{J}_{3, i}(\tau , y)+\mathcal{J}_{4}(\tau , y)\Big]\mathrm{d}y\mathrm{d}\tau \bigg|, \end{align} (3.25)

    where we used the cancellations in the flux terms.

    Now we are in a position to estimate the right-hand terms in Eq (3.25). For simplicity, we will focus on estimating some typical terms, while others can be treated similarly.

    Straightforward calculations give that

    \begin{align*} &C\bigg|\int\limits_{0}^{\tau'} \int\limits_{\mathbb{R\times T_\epsilon }}^{} \frac{(\gamma -1)\lambda \epsilon ^{1-\alpha} }{\rho^2 }\frac{|\nabla \phi |^2}{2}(\mathrm{div}\Psi )^2\mathrm{d}y\mathrm{d}\tau \bigg|\\ &\leq C\epsilon ^{1+\alpha} \int\limits_{0}^{\tau' }\left \| \nabla \phi \right \|_{L^2(\mathbb{R}\times \mathbb{T})} \left \| \nabla \phi \right \|_{L^4(\mathbb{R}\times \mathbb{T})} \left \| \nabla \Psi \right \|^2_{L^8(\mathbb{R}\times \mathbb{T})}\mathrm{d}\tau \\ &\leq C\epsilon ^{1+\alpha} \int\limits_{0}^{\tau' }\left \| \nabla \phi \right \|_{L^2(\mathbb{R}\times \mathbb{T})}^\frac{3}{2} \left \| \nabla \phi \right \|_{H^1(\mathbb{R}\times \mathbb{T})}^\frac{1}{2} \left \| \nabla \Psi \right \|^2_{H^1(\mathbb{R}\times \mathbb{T})}\mathrm{d}\tau\\ &\leq C\epsilon ^{1-\alpha} \int\limits_{0}^{\tau' }\left \| \nabla \phi \right \|_{L^2(\mathbb{R}\times \mathbb{T}_\epsilon)}^\frac{3}{2} \left \| \nabla \phi \right \|_{H^1(\mathbb{R}\times \mathbb{T}_\epsilon)}^\frac{1}{2} \left \| \nabla \Psi \right \|^2_{H^1(\mathbb{R}\times \mathbb{T}_\epsilon)}\mathrm{d}\tau\\ &\leq C\epsilon ^{3-3\alpha} \int\limits_{0}^{\tau' }\left \| \nabla \Psi \right \|^2_1\mathrm{d}\tau. \end{align*}

    Using the definition of \bar q , and Lemmas 2.2 and 2.3, it holds that

    \begin{align*} &C\bigg|\int\limits_{0}^{\tau' } \int\limits_{\mathbb{R\times T_\epsilon }} \bigg(\frac{\gamma -1 }{\rho^2 }\frac{|\nabla \phi |^2}{2}\mathrm{divQ} - \frac{\gamma -1 }{\rho^2 }\frac{|\nabla \phi |^2}{2}\bar q _{y_1}\bigg)\mathrm{d}y\mathrm{d}\tau \bigg|\\ \le& \frac{\epsilon^{\alpha-1}}{13} \int\limits_{0}^{\tau' }\|\nabla Q \|^2\mathrm{d}\tau +C\epsilon^{1-\alpha}\int\limits_{0}^{\tau' }\|\nabla \phi \|^4_{L^4(\mathbb{R}\times \mathbb{T}_\epsilon)}\mathrm{d}\tau \\ &+ C\underset{0\le \tau\le \tau_1(\epsilon )}{\mathrm{sup}}\|(\bar{\theta }^4 )_{y_1y_1}\|_{L^\infty(\mathbb{R}) } \int\limits_{0}^{\tau' }\|\nabla \phi \|^2\mathrm{d}\tau\\ \le& \frac{\epsilon^{\alpha-1}}{13} \int\limits_{0}^{\tau' }\|\nabla Q \|^2\mathrm{d}\tau +C_T\bigg(\frac{\epsilon^{2\alpha}}{\delta^2}+\epsilon^{3-3\alpha}\bigg) \int\limits_{0}^{\tau' }\|\nabla \phi \|^2\mathrm{d}\tau, \end{align*}

    where we used Sobolev inequalities

    \|\nabla \phi \|_{L^4(\mathbb{R}\times\mathbb{T}_\epsilon)} = \epsilon^{\frac{\alpha}{2}}\|\nabla \phi \|_{L^4(\mathbb{R}\times\mathbb{T})}\le C\epsilon^{\frac{\alpha}{2}}\|\nabla \phi \|_{L^2(\mathbb{R}\times\mathbb{T})}^{1/2} \|\nabla \phi \|^{1/2} _{H^1(\mathbb{R}\times\mathbb{T})} = C\|\nabla \phi \|_{L^2(\mathbb{R}\times\mathbb{T}_\epsilon)}^{1/2} \|\nabla \phi \|^{1/2} _{H^1(\mathbb{R}\times\mathbb{T}_\epsilon)},

    and

    \|\nabla \Psi\|_{L^8(\mathbb{R}\times\mathbb{T}_\epsilon)} = \epsilon^{\frac{3}{4}\alpha}\|\nabla \Psi\|_{L^8(\mathbb{R}\times\mathbb{T})}\le C \epsilon^{\frac{3}{4}\alpha}\|\nabla\Psi\|^{3/4}_{H^1(\mathbb{R}\times\mathbb{T})}\|\nabla \Psi\|^{1/4}_{L^2(\mathbb{R}\times\mathbb{T})} = C\|\nabla \Psi\|_{H^1(\mathbb{R}\times\mathbb{T}\epsilon)}^{3/4}\|\nabla \Psi\|^{1/4}_{L^2(\mathbb{R}\times\mathbb{T_\epsilon})}.

    We use the definition of \tilde{u}_1 and Lemmas 2.2 and 2.3 to get that

    \begin{align*} C\bigg|\int\limits_{0}^{\tau' } \int\limits_{\mathbb{R\times T_\epsilon }}^{}\rho \tilde u_{1y_1}\psi _1\Delta \psi _1\mathrm{d}y\mathrm{d}\tau \bigg| &\le \frac{\epsilon ^{1-\alpha} }{150}\int\limits_{0}^{\tau' }\|\nabla ^2\psi _1\|^2\mathrm{d}\tau +C\epsilon ^{\alpha-1} \int\limits_{0}^{\tau' } \int\limits_{\mathbb{R\times T_\epsilon }}\bigg[ |\bar{u}_{1y_1}\psi _1 |^2+\bigg|\bigg(\frac{-\bar{u}_1d_1+d_2 }{\tilde \rho } \bigg)_{y_1}\psi _1\bigg|^2\bigg]\mathrm{d}y\mathrm{d}\tau \\ &\le \frac{\epsilon ^{1-\alpha} }{150}\int\limits_{0}^{\tau' }\|\nabla ^2\psi _1\|^2\mathrm{d}\tau + C\epsilon^{\alpha-1}\sup\limits_{0\leq \tau\leq \tau_1(\epsilon)}\|\psi _1\|^2\int\limits_{0}^{\tau' }\|\bar{u}_{1y_1}\|_{L^\infty(\mathbb{R})}^2\mathrm{d}\tau \\ & \quad +C{\epsilon ^{3\alpha-1}} \underset{0\le t\le T}{\mathrm{sup}}\left\|\bigg(\frac{-\bar{u}_1d_1+d_2 }{\tilde \rho } \bigg)_{x_1}\right\|^2_{L^\infty(\mathbb{R})} \int\limits_{0}^{\tau' }\|\psi _1\|^2\mathrm{d}\tau \\ &\leq \frac{\epsilon ^{1-\alpha} }{150}\int\limits_{0}^{\tau' }\|\nabla ^2\psi _1\|^2\mathrm{d}\tau +C_T\left(\frac{\epsilon^{2\alpha-1}}{\delta} +\frac{\epsilon^{1+2\alpha} }{\delta ^5}\right)\underset{0\le \tau \le \tau_1(\epsilon )}{\mathrm{sup}} \|\psi _1\|^2. \end{align*}

    Similarly, it holds that

    \begin{align*} &C\bigg|\int\limits_{0}^{\tau' } \int\limits_{\mathbb{R\times T_\epsilon }}\bigg(\frac{3-\gamma }{2\tilde{\rho}} (-\bar{u}_1d_1+d_2)^2 \bigg)_{y_1}\frac{\rho }{\tilde \rho }\Delta \psi _1\mathrm{d}y\mathrm{d}\tau\bigg|\\ &\le \frac{\epsilon ^{1-\alpha} }{160}\int\limits_{0}^{\tau' }\|\nabla ^2\psi _1\|^2\mathrm{d}\tau +C\epsilon ^{-1} \int\limits_{0}^{\tau'} \int\limits_{\mathbb{R }}^{}\bigg|\bigg(\frac{(-\bar{u}_1d_1+d_2)^2 }{\tilde \rho }\bigg)_{x_1}\bigg|^2\mathrm{d}x_1\mathrm{d}s\\ &\le \frac{\epsilon ^{1-\alpha} }{150}\int\limits_{0}^{\tau'}\|\nabla ^2\psi _1\|^2\mathrm{d}\tau +C_T\frac{\epsilon ^3}{\delta ^7} . \end{align*}

    Using the definition of \tilde \theta , it holds that

    \begin{align*} &C\bigg|\int\limits_{0}^{\tau' } \int\limits_{\mathbb{R\times T_\epsilon }}^{}R \tilde \theta _{1y_1}\nabla \phi \cdot \nabla \psi _1\mathrm{d}y\mathrm{d}\tau \bigg| \le C\int\limits_{0}^{\tau' } \int\limits_{\mathbb{R\times T_\epsilon }}^{}\bigg(|\bar\theta _{y_1}+\mathcal{P}_{y_1} ||\nabla \phi ||\nabla \psi_1|\bigg)\mathrm{d}y\mathrm{d}\tau \\ &\le \frac{1}{150}\int\limits_{0}^{\tau' }\|\bar{u}_{1y_1}^{1/2}\nabla \phi \|^2\mathrm{d}\tau + C \int\limits_{0}^{\tau' }\|\bar{\theta } _{y_1}\|_{L^\infty(\mathbb{R}) }\|\nabla \psi _{1}\|^2\mathrm{d}\tau +C_T\frac{\epsilon ^{1+\alpha }}{\delta^{5/2}}\int\limits_{0}^{\tau'}(\|\nabla\phi \|^2+\|\nabla \psi_1 \|^2)\mathrm{d}\tau \\ &\le \frac{1}{150}\int\limits_{0}^{\tau' }\|\bar{u}_{1y_1}^{1/2}\nabla \phi \|^2\mathrm{d}\tau + C_T\bigg(\frac{\epsilon ^\alpha }{\delta }+\frac{\epsilon ^{1+\alpha }}{\delta ^{5/2}} \bigg) \int\limits_{0}^{\tau' }\|\nabla \psi _{1}\|^2\mathrm{d}\tau +C_T\frac{\epsilon ^{1+\alpha }}{\delta ^{5/2}} \int\limits_{0}^{\tau' }\|\nabla \phi _{1}\|^2\mathrm{d}\tau. \end{align*}

    When it comes to the estimate for J_4(\tau, y) , we just focus on the following two terms, and others can be well controlled. Specifically, we have

    \begin{align*} &C\left |\int\limits_{0}^{\tau'}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }\frac{ \nabla Q_i}{4\theta \tilde {\theta}^{3}} \cdot\nabla\left(\zeta^{4}+4 \zeta^{3} \tilde {\theta}+6 \zeta^{2} \tilde {\theta}^{2}\right)_{y_i} -\frac{ \nabla Q_i \cdot\nabla \zeta\zeta_{yi} }{\theta ^2}\mathrm{d}y\mathrm{d}\tau\right |\\ &\le C \int\limits_{0}^{\tau'}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }|\nabla Q ||\zeta |\left(|\nabla \zeta |^2+|\nabla ^2\zeta |+|\nabla \zeta ||\tilde \theta _{y_1}|+|\zeta ||\tilde \theta _{y_1y_1}|+|\zeta ||\tilde \theta^2 _{y_1}|\right)\mathrm{d}y\mathrm{d}\tau\\ &\le C \epsilon^{1-\alpha }\int\limits_{0}^{\tau'}\|\nabla \zeta\|_{L^4}^2\|\nabla Q\|\mathrm{d}\tau+\epsilon ^{1-\alpha }\int\limits_{0}^{\tau'}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }|\nabla Q||\nabla ^2\zeta |\mathrm{d}y\mathrm{d}\tau \\ & \quad +\epsilon ^{2-2\alpha }\int\limits_{0}^{\tau'}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }|Q_{1y_1}\tilde \theta _{y_1y_1}|\mathrm{d}y\mathrm{d}\tau+ C\epsilon ^{1-\alpha}\int\limits_{0}^{\tau'}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }| Q_{1y_1} \zeta_{y_1}\bar \theta _{y_1}|\mathrm{d}y\mathrm{d}\tau\\ & \quad +C\epsilon ^{1-\alpha}\int\limits_{0}^{\tau'}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }| Q_{1y_1} \zeta_{y_1}\mathcal{P} _{y_1}|\mathrm{d}y\mathrm{d}\tau+C\epsilon ^{2-2\alpha}\int\limits_{0}^{\tau'}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }| Q_{1y_1} \bar \theta^2 _{y_1}|\mathrm{d}y\mathrm{d}\tau +C\epsilon ^{2-2\alpha}\int\limits_{0}^{\tau'}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }| Q_{1y_1}\mathcal{P} ^2_{y_1}|\mathrm{d}y\mathrm{d}\tau\\ &\le C\epsilon^{2-2\alpha} \int\limits_{0}^{\tau'}\|\nabla \zeta\|^2 \|\nabla \zeta\|^2_1\mathrm{d}\tau+C\epsilon ^{2-2\alpha} \int\limits_{0}^{\tau'}\|\nabla^2 \zeta\|^2\mathrm{d}\tau+\frac{\epsilon^{\alpha-1}}{16}\int\limits_{0}^{\tau'}\|\nabla Q\|^2\mathrm{d}\tau\\ & \quad +C \epsilon^{1-\alpha}\underset{0\le \tau \le \tau_1(\epsilon )}{\sup}\|\bar{\theta }_{y_1}\|_{L^\infty{(\mathbb{R})}}\int\limits_{0}^{\tau'}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }| Q_{1y_1} \zeta_{y_1}|\mathrm{d}y\mathrm{d}\tau+C\epsilon ^{1-\alpha}\underset{0\le \tau \le \tau_1(\epsilon )}{\sup}\|\mathcal{P} _{y_1}\|_{L^\infty (\mathbb{R})}\int\limits_{0}^{\tau'}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }| Q_{1y_1} \zeta_{y_1}|\mathrm{d}y\mathrm{d}\tau\\ & \quad +C\epsilon ^{3-3\alpha }\int\limits_{0}^{\tau'}\bigg(\|\mathcal{P}_{y_1y_1} \|^2+\|\bar{\theta }_{y_1y_1} \|^2+\|\bar{\theta }_{y_1}\|^4+\|\mathcal{P} _{y_1}\|^4\bigg)\mathrm{d}\tau\\ &\le C\epsilon ^{4-4\alpha } \int\limits_{0}^{\tau'}\|\nabla \zeta \|^2\mathrm{d}\tau+ C\epsilon ^{2-2\alpha } \int\limits_{0}^{\tau'}\|\nabla^2 \zeta \|^2\mathrm{d}\tau+\frac{\epsilon^{\alpha-1}}{13}\int\limits_{0}^{\tau'}\|\nabla Q\|^2\mathrm{d}\tau\\ & \quad +C_T\bigg(\frac{\epsilon^{3-\alpha} }{\delta^2 }+\frac{\epsilon ^{5-\alpha}}{\delta ^5} \bigg)\int\limits_{0}^{\tau'}\|\nabla \zeta \|^2\mathrm{d}\tau+C_T\bigg(\frac{\epsilon^{5-2\alpha } }{\delta^6 }+\frac{\epsilon ^{3-2\alpha }}{\delta ^{3}}+\frac{\epsilon ^{3-2\alpha }}{\delta^2 } +\frac{\epsilon ^{7-2\alpha }}{\delta ^{8}} \bigg), \end{align*}

    where we have used the facts \|\nabla\zeta\|\le\|\nabla\zeta\|^{1/2}\|\nabla\zeta\|_1^{1/2} and the a priori Assumption (3.10).

    Moreover, the standard calculations give that

    \begin{align*} &C\left |\int\limits_{0}^{\tau'}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }\epsilon ^{1-\alpha }\mathrm {div} Q_{y_i} \nabla Q \cdot \nabla\left(\frac{1}{4 b \theta \tilde {\theta}^{3}}\right)\mathrm{d}y\mathrm{d}\tau\right |\\ &\le C\epsilon ^{1-\alpha } \int\limits_{0}^{\tau'}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }(|\nabla Q||\nabla \zeta ||\nabla \mathrm{div}Q|+|Q_{1y_1}||\tilde \theta _{y_1}||\nabla \mathrm{div}Q |)\mathrm{d}y\mathrm{d}\tau\\ &\le C \epsilon ^{1-\alpha }\int\limits_{0}^{\tau'}\|\nabla \mathrm{div}Q\| \|\nabla \zeta\|_{L^4(\mathbb{R}\times\mathbb{T}_\epsilon)}\|\nabla Q\|_{L^4(\mathbb{R}\times\mathbb{T}_\epsilon)}\mathrm{d}\tau+\frac{\epsilon ^{\alpha -1}}{13} \int\limits_{0}^{\tau'}\|\nabla Q\|^2 \mathrm{d}\tau+C\epsilon ^{2-2\alpha }\int\limits_{0}^{\tau'}\|\nabla\mathrm{div} Q\|^2\|\tilde \theta _{y_1} \|^2 \mathrm{d}\tau\\ &\le C \epsilon ^{1-\alpha }\int\limits_{0}^{\tau'}\|\nabla \mathrm{div}Q\| \|\nabla \zeta\|_{1}\|\nabla Q\|_{1}\mathrm{d}\tau+\frac{\epsilon ^{\alpha -1}}{13} \int\limits_{0}^{\tau'}\|\nabla Q\|^2 \mathrm{d}\tau \\& \quad +C \epsilon^{2-2\alpha}\underset{0\le \tau \le \tau_1(\epsilon )}{\sup}\|\bar{\theta }_{y_1}\|^2_{L^\infty (\mathbb{R})}\int\limits_{0}^{\tau'}\|\nabla\mathrm{div} Q\|^2\mathrm{d}\tau +C\epsilon ^{2-2\alpha}\underset{0\le \tau \le \tau_1(\epsilon )}{\sup}\|\mathcal{P} _{y_1}\|^2_{L^\infty (\mathbb{R})}\int\limits_{0}^{\tau'}\|\nabla\mathrm{div} Q\|^2\mathrm{d}\tau\\ &\le \frac{\epsilon ^{1-\alpha }}{16} \int\limits_{0}^{\tau'}\|\nabla \mathrm{div}Q\|^2\mathrm{d}\tau +\frac{\epsilon ^{\alpha -1}}{13} \int\limits_{0}^{\tau'}\|\nabla Q\|^2 \mathrm{d}\tau +C \epsilon ^{5-5\alpha }\int\limits_{0}^{\tau'} \|\nabla\zeta\|^2_{1}\mathrm{d}\tau+C_T\bigg(\frac{\epsilon ^{2}}{\delta ^2} +\frac{\epsilon ^{4}}{\delta ^5}\bigg)\int\limits_{0}^{\tau'}\|\nabla \mathrm{div}Q\|^2\mathrm{d}\tau. \end{align*}

    Furthermore, the remaining terms in Eq (3.25) can be estimated in a similar manner, and we will omit the details for the sake of simplicity.

    To close the estimate of (3.25), we need to have the estimate of \int\limits_{0}^{\tau'}\|\nabla \phi \|^2\mathrm{d}\tau . Following similar procedures in Lemma 3.2 [12], and keeping in mind the different scalings, we have

    \begin{align} \int\limits_{0}^{\tau_1(\epsilon) }\|\nabla \phi \|^2\mathrm{d}\tau &\le C_T\bigg(\frac{\epsilon^{3-2\alpha }}{\delta^4 }+\frac{\epsilon^{4-2\alpha }}{\delta^7 }\bigg)\cdot\epsilon^{\alpha-1} +\epsilon ^{\alpha} \int\limits_{0}^{\tau_1(\epsilon) } \| \nabla^2\Psi \|^2 \mathrm{d}\tau \\ &+ C\underset{0\le \tau \le \tau_1(\epsilon) }{\mathrm{sup}}\| \nabla \phi \| ^2+ C_T\epsilon ^{\alpha-1 }\|(\phi _0, \Psi_0 , \zeta_0 )\|^2+C\|\nabla \phi _0\|^2. \end{align} (3.26)

    Thus, plugging the above estimates into (3.25) and taking \frac{\epsilon^{2\alpha-1}}{\delta}, \frac{\epsilon^\alpha}{\delta^2} and \epsilon suitably small, we can complete the proof of (3.19).

    Lemma 3.3. There exists a positive constant C_T such that

    \begin{align} &\underset{0\le \tau \le \tau_1(\epsilon) }{\mathrm{sup}}\| (\nabla^2\phi , \nabla^2\Psi , \nabla^2\zeta )(\tau )\| ^2 +\int\limits_{0}^{\tau_1(\epsilon) } \bigg[ \| \bar{u}_{1y_1}^{1/2}(\nabla^2\phi )\|^2 +\epsilon ^{1-\alpha}\| (\nabla^3 \Psi , \nabla^3\zeta) \|^2 \bigg ] \mathrm{d}\tau \\ & \quad {+\int\limits_0^{\tau_1(\epsilon)}\bigg[\epsilon^{\alpha-1}\|\nabla^2 Q\|^2+\epsilon^{1-\alpha}\|\nabla^2 \mathrm{div}Q\|^2\bigg]\mathrm{d}\tau} \le C_T\bigg(\frac{\epsilon^{3-2\alpha }}{\delta^4 }+\frac{\epsilon^{4-2\alpha }}{\delta^7 }\bigg)+C\|(\phi _0, \Psi_0 , \zeta_0 )\|^2_2. \end{align} (3.27)

    Proof. We apply the operator \nabla^2 to the first equation of (3.4), then multiply it by R\nabla^2\psi to obtain

    \begin{align} &\bigg(R \frac{\left|\nabla^{2} \phi\right|^{2}}{2}\bigg)_{\tau}+\mathrm{div}\bigg(R {\boldsymbol{u}} \frac{\left|\nabla^{2} \phi\right|^{2}}{2}-R \rho \phi_{y_{i} y_{j}} \nabla \psi_{i y_{j}}\bigg)+\left(R \rho \nabla^{2} \phi \cdot \nabla^{2} \psi_{i}\right)_{y_{i}}+R \bar{u}_{1 y_{1}} \frac{\left|\nabla^{2} \phi\right|^{2}}{2} \\ &+2 R \bar{u}_{1 y_{1}}\left|\nabla \phi_{y_{1}}\right|^{2}+R \rho \nabla^{2} \phi \cdot \nabla \Delta \Psi\\ & = -R \mathrm{div} \Psi \frac{\left|\nabla^{2} \phi\right|^{2}}{2}-R\bigg(\frac{-\bar{u}_{1} d_{1}+d_{2}}{\tilde{\rho}}\bigg)_{y_{1}} \frac{\left|\nabla^{2} \phi\right|^{2}}{2}-2 R \psi_{i y_{j}} \nabla \phi_{y_{i}} \cdot \nabla \phi_{y_{j}} \\ & -2 R\bigg(\frac{-\bar{u}_{1} d_{1}+d_{2}}{\tilde{\rho}}\bigg)_{y_{1}}\left|\nabla \phi_{y_{1}}\right|^{2}-R \tilde{u}_{1 y_{1} y_{1}} \phi_{y_{1}} \phi_{y_{1} y_{1}}-R \tilde{\rho}_{y_{1} y_{1}} \mathrm{div} \Psi \phi_{y_{1} y_{1}} \\ & -2 R \phi_{y_{i}} \nabla \phi_{y_{i}} \cdot \nabla \mathrm{div} \Psi-2 R \tilde{\rho}_{y_{1}} \nabla \phi_{y_{1}} \cdot \nabla \mathrm{div} \Psi-R \nabla \phi \cdot \nabla \psi_{i y_{j}} \phi_{y_{i} y_{j}} -R \tilde{\rho}_{y_{1}} \nabla{ }^{2} \phi \cdot \nabla \Psi_{y_{1}}\\ & -R \tilde{\rho}_{y_{1} y_{1} y_{1}} \psi_{1} \phi_{y_{1} y_{1}}-2 R \tilde{\rho}_{y_{1} y_{1}} \nabla \psi_{1} \cdot \nabla \phi_{y_{1}}-R \tilde{u}_{1 y_{1} y_{1} y_{1}} \phi \phi_{y_{1} y_{1}} -2 R \tilde{u}_{1 y_{1} y_{1}} \nabla \phi \cdot \nabla \phi_{y_{1}}\\ &: = \mathcal{H}(\tau, y). \end{align} (3.28)

    Next, we are dividing the second equation of (3.4) by \rho , applying the operator \nabla and then multiplying the resulting equation by -\frac{\rho ^2}{\theta }\nabla \Delta \Psi to obtain

    \begin{align} &\bigg(\frac{\rho^{2}}{\theta} \frac{\left|\nabla^{2} \Psi\right|^{2}}{2}\bigg)_{\tau}-\bigg(\frac{\rho^{2}}{\theta} \nabla \Psi_{\tau} \cdot \nabla \Psi_{y_{i}}\bigg)_{y_{i}}-\bigg(\frac{\rho^{2}}{\theta} u_{i} \nabla \Psi_{y_{i}} \cdot \nabla \Psi_{y_{j}}\bigg)_{y_{j}}+\mathrm{div}\bigg(\frac{\rho^{2}}{\theta} u \frac{\left|\nabla^{2} \Psi\right|^{2}}{2}\bigg) \\ &-(\mu+\lambda) \epsilon^{1-\alpha} \mathrm{div}\bigg(\frac{\rho}{\theta} \mathrm{div} \Psi_{y_{j}} \nabla \mathrm{div} \Psi_{y_{j}}\bigg)+(\mu+\lambda) \epsilon^{1-\alpha} \bigg(\frac{\rho}{\theta} \mathrm{div} \Psi_{y_{j}} \Delta \psi_{i y_{j}}\bigg)_{y_{i}}+\mu \epsilon^{{1-\alpha}} \frac{\rho}{\theta}|\nabla \Delta \Psi|^{2} \\ &+(\mu+\lambda) \epsilon^{1-\alpha} \frac{\rho}{\theta}|\nabla^{2} \mathrm{div} \Psi|^{2}-R \rho \nabla^{2} \phi \cdot \nabla \Delta \Psi-R \frac{\rho^{2}}{\theta} \nabla^{2} \zeta \cdot \nabla \Delta\Psi: = \sum\limits_{i = 1}^{4} \mathcal{L}_{i}(\tau, y), \end{align} (3.29)

    where

    \begin{align*} \mathcal{L}_{1}(\tau, y) = &-\frac{2 \rho}{\theta} \phi_{y_{i}} \nabla \Psi_{y_{i}} \cdot \nabla \Psi_{\tau}-\frac{2 \rho}{\theta} \tilde{\rho}_{y_{1}} \nabla \Psi_{y_{1}} \cdot \nabla \Psi_{\tau}+\frac{\rho^{2}}{\theta^{2}} \zeta_{y_{i}} \nabla \Psi_{y_{i}} \cdot \nabla \Psi_{\tau} +\frac{\rho^{2}}{\theta^{2}} \tilde{\theta}_{y_{1}} \nabla \Psi_{y_{1}} \cdot \nabla \Psi_{\tau}\\ &-\frac{2 \rho}{\theta} \rho_{y_{j}} u_{i} \nabla \Psi_{y_{i}} \cdot \nabla \Psi_{y_{j}}+\frac{\rho^{2}}{\theta^{2}} \theta_{y_{j}} u_{i} \nabla \Psi_{y_{i}} \cdot \nabla \Psi_{y_{j}} -\frac{\rho^{2}}{\theta} \psi_{i y_{j}} \nabla \Psi_{y_{i}} \cdot \nabla \Psi_{y_{j}}\\ &-\frac{\rho^{2}}{\theta} \tilde{u}_{1 y_{1}}\left|\nabla \Psi_{y_{1}}\right|^{2}+(\gamma -2)\frac{\rho^{2}}{\theta} \tilde{u}_{1 y_{1}}\frac{|\nabla ^2\Psi|^2}{2}+ (\gamma -2)\frac{\rho^{2}}{\theta} \mathrm{div}\Psi \frac{|\nabla ^2\Psi|^2}{2}, \end{align*}
    \begin{align*} \mathcal{L}_{2}(\tau, y) = &-\frac{(\gamma-1)}{R} \frac{\rho}{\theta^{2}} \frac{|\nabla^{2} \Psi|^{2}}{2} \epsilon^{1-\alpha}[\kappa \Delta \zeta+\kappa \tilde{\theta}_{y_{1} y_{1}}+\frac{\mu}{2}|\nabla \Psi+(\nabla \Psi)^{\top}|^{2}+(2 \mu+\lambda)\left(\tilde{u}_{1} \tilde{u}_{1 y_{1}}\right)_{y_{1}}\\ &+\lambda(\mathrm{div} \Psi)^{2}+2 \tilde{u}_{1 y_{1}}(2 \mu \psi_{1 y_{1}}+\lambda \mathrm{div} \Psi)]+\frac{\rho^{2}}{\theta} \psi_{j y_{i}} \nabla \psi_{i} \cdot \nabla \Delta \psi_{j}+\frac{\rho^{2}}{\theta} \tilde{u}_{1 y_{1}} \Psi_{y_{1}} \cdot \Delta \Psi_{y_{1}} \\ &+\frac{R \rho}{\theta} \phi_{y_{i}} \nabla \zeta \cdot \nabla \Delta \psi_{i}+\frac{R \rho}{\theta} \tilde{\theta}_{y_{1}} \nabla \phi \cdot \Delta \Psi_{y_{1}}-R \phi_{y_{i}} \nabla \phi \cdot \nabla \Delta \psi_{i}-R \tilde{\rho}_{y_{1}} \nabla \phi \cdot \Delta \Psi_{y_{1}} \\ &+\frac{\rho^{2}}{\theta} \tilde{u}_{1 y_{1} y_{1}} \psi_{1} \Delta \psi_{1 y_{1}}+\frac{\rho^{2}}{\theta} \tilde{u}_{1 y_{1}} \nabla \psi_{1} \cdot \nabla \Delta \psi_{1}+\frac{R \rho^{2}}{\theta} \tilde{\rho}_{y_{1} y_{1}}(\frac{\theta}{\rho}-\frac{\tilde{\theta}}{\tilde{\rho}}) \Delta \psi_{1 y_{1}} \\ &+\frac{R \rho}{\theta} \tilde{\rho}_{y_{1}} \nabla \zeta \cdot \nabla \Delta \psi_{1}-\frac{R \rho}{\theta \tilde{\rho}} \tilde{\rho}_{y_{1}} \tilde{\theta}_{y_{1}} \phi \Delta \psi_{1 y_{1}}-R \tilde{\rho}_{y_{1}} \nabla \phi \cdot \nabla \Delta \psi_{1}-\frac{R \rho^{2}}{\theta} \tilde{\rho}_{y_{1}}^{2}(\frac{\theta}{\rho^{2}}-\frac{\tilde{\theta}}{\tilde{\rho}^{2}}) \Delta \psi_{1 y_{1}}\\ &-\frac{(\gamma-1)}{R}\frac{\rho}{\theta^2}|\nabla^2\Psi|^2\mathrm{div}Q-\frac{(\gamma-1)}{R}\frac{\rho}{\theta^2}|\nabla^2\Psi|^2\bar q_{y_1}, \end{align*}
    \begin{align*} \mathcal{L}_{3}(\tau, y) = &\frac{\mu \epsilon^{1-\alpha}}{\theta}(\Delta \psi_{i} \nabla \phi \cdot \nabla \Delta \psi_{i}+\tilde{\rho}_{y_{1}} \Delta \Psi \cdot \Delta \Psi_{y_{1}})+\frac{(\mu+\lambda) \epsilon^{1-\alpha}}{\theta} \phi_{y_{i}} \mathrm{div} \Psi_{y_{j}} \Delta \psi_{i y_{j}} \\ &+\frac{(\mu+\lambda) \epsilon^{1-\alpha}}{\theta} \tilde{\rho}_{y_{1}} \mathrm{div} \Psi_{y_{j}} \Delta \psi_{1 y_{j}}-(\mu+\lambda) \epsilon^{1-\alpha} \frac{\rho}{\theta^{2}} \zeta_{y_{i}} \mathrm{div} \Psi_{y_{j}} \Delta \psi_{i y_{j}} \\ &-(\mu+\lambda) \epsilon^{1-\alpha} \frac{\rho}{\theta^{2}} \tilde{\theta}_{y_{1}} \mathrm{div} \Psi_{y_{j}} \Delta\psi_{1 y_{j}}-\frac{(\mu+\lambda) \epsilon^{\alpha}}{\theta} \mathrm{div} \Psi_{y_{j}} \nabla \phi \cdot \nabla \mathrm{div} \Psi_{y_{j}} \\ &-\frac{(\mu+\lambda) \epsilon^{1-\alpha}}{\theta} \tilde{\rho}_{y_{1}} \mathrm{div} \Psi_{y_{j}} \mathrm{div} \Psi_{y_{1} y_{j}}+(\mu+\lambda) \epsilon^{\alpha} \frac{\rho}{\theta^{2}} \mathrm{div} \Psi_{y_{j}} \nabla \zeta \cdot \nabla \mathrm{div} \Psi_{y_{j}} \\ &+(\mu+\lambda) \epsilon^{1-\alpha} \frac{\rho}{\theta^{2}} \tilde{\theta}_{y_{1}} \mathrm{div} \Psi_{y_{j}} \mathrm{div} \Psi_{y_{1} y_{j}}+\frac{(\mu+\lambda) \epsilon^\alpha}{\theta} \mathrm{div} \Psi_{y_{i}} \nabla \phi \cdot \nabla \Delta \psi_{i} \\ &+\frac{(\mu+\lambda) \epsilon^{1-\alpha}}{\theta} \tilde{\rho}_{y_{1}} \nabla \mathrm{div} \Psi \cdot \Delta \Psi_{y_{1}}, \end{align*}
    \begin{align*} \mathcal{L}_{4}(\tau, y) = & -(2 \mu+\lambda) \epsilon^{1-\alpha} \frac{\rho}{\theta}\bigg(\frac{-\bar{u}_{1} d_{1}+d_{2}}{\tilde{\rho}}\bigg)_{y_{1} y_{1} y_{1}} \Delta \psi_{1 y_{1}} +\frac{(2 \mu+\lambda) \epsilon^{1-\alpha}}{\theta}\bigg(\frac{-\bar{u}_{1} d_{1}+d_{2}}{\tilde{\rho}}\bigg)_{y_{1} y_{1}} \nabla \phi \cdot \nabla \Delta \psi_{1} \\ & +\frac{(2 \mu+\lambda) \epsilon^{1-\alpha}}{\theta}\bigg(\frac{-\bar{u}_{1} d_{1}+d_{2}}{\tilde{\rho}}\bigg)_{y_{1} y_{1}} \tilde{\rho}_{y_{1}} \Delta \psi_{1 y_{1}} +\frac{(2 \mu+\lambda) \epsilon^{1-\alpha} \rho}{\tilde{\rho} \theta} \bar{u}_{1 y_{1} y_{1} y_{1}} \phi \Delta \psi_{1 y_{1}}\\&+\frac{(2 \mu+\lambda) \epsilon^{\alpha}}{\theta} \bar{u}_{1 y_{1} y_{1}} \nabla \phi \cdot \nabla \Delta \psi_{1} -\frac{(2 \mu+\lambda) \epsilon^{1-\alpha}}{\tilde{\rho}^{2} \theta}(\tilde{\rho}+\rho) \tilde{\rho}_{y_{1}} \bar{u}_{1 y_{1} y_{1}} \phi \Delta \psi_{1 y_{1}}\\ &+\frac{\rho^{2}}{\theta}\bigg[\frac{1}{\tilde{\rho}}\bigg(\frac{3-\gamma} {2 \tilde{\rho}}\left(-\bar{u}_{1} d_{1}+d_{2}\right)^{2}\bigg)_{y_{1}}\bigg]_{y_{1}} \Delta \psi_{1y_{1}} . \end{align*}

    We divide the third equation of (3.4) by \rho , and apply the operator \nabla to the resulting equation, then multiply it by -\frac{\rho ^2}{\theta ^2}\nabla \Delta \zeta to deduce that

    \begin{align} &\bigg(\frac{R}{\gamma-1} \frac{\rho^{2}}{\theta^{2}} \frac{\left|\nabla^{2} \zeta\right|^{2}}{2}\bigg)_{\tau}-\bigg(\frac{R}{\gamma-1} \frac{\rho^{2}}{\theta^{2}} \nabla \zeta_{\tau} \cdot \nabla \zeta_{y_{i}}\bigg)_{y_{i}}-\bigg(\frac{R}{\gamma-1} \frac{\rho^{2}}{\theta^{2}} u_{i} \nabla \zeta_{y_{i}} \cdot \nabla \zeta_{y_{j}}\bigg)_{y_{j}} \\ &+\mathrm{div}\bigg(\frac{R}{\gamma-1} \frac{\rho^{2}}{\theta^{2}} \boldsymbol{u} \frac{\left|\nabla^{2} \zeta\right|^{2}}{2}-R \frac{\rho^{2}}{\theta} \nabla \psi_{j y_{i}} \zeta_{y_{i} y_{j}}\bigg)-\bigg(R \frac{\rho^{2}}{\theta} \nabla \mathrm{div} \Psi \cdot \nabla \zeta_{y_{i}}\bigg)_{y_{i}} \\ &+\bigg(R \frac{\rho^{2}}{\theta} \nabla \psi_{j y_{i}} \cdot \nabla \zeta_{y_{i}}\bigg)_{y_{j}}-\bigg(\frac{\rho}{\theta^{2}} \nabla \mathrm{div} Q\cdot \nabla \zeta_{y_i} \bigg)_{y_i} +\frac{\kappa \epsilon^{1-\alpha} \rho}{\theta^{2}}|\nabla \Delta \zeta|^{2}+R \frac{\rho^{2}}{\theta} \nabla^{2} \zeta \cdot \nabla \Delta \Psi\\ &: = \sum\limits_{i = 1}^{4} \mathcal{N}_{i}(\tau, y), \end{align} (3.30)

    where

    \begin{align*} \mathcal{N}_{1}(\tau, y) = &-\frac{R}{\gamma-1} \frac{2 \rho}{\theta^{2}} \phi_{y_{i}} \nabla \zeta_{y_{i}} \cdot \nabla \zeta_{\tau}-\frac{R}{\gamma-1} \frac{2 \rho}{\theta^{2}} \tilde{\rho}_{y_{1}} \nabla \zeta_{y_{1}} \cdot \nabla \zeta_{\tau}+\frac{R}{\gamma-1} \frac{2 \rho^{2}}{\theta^{3}} \zeta_{y_{i}} \nabla \zeta_{y_{i}} \cdot \nabla \zeta_{\tau} \\ &+\frac{R}{\gamma-1} \frac{2 \rho^{2}}{\theta^{3}} \tilde{\theta}_{y_{1}} \nabla \zeta_{y_{1}} \cdot \nabla \zeta_{\tau}-\frac{R}{\gamma-1} \frac{2 \rho}{\theta^{2}} \rho_{y_{j}} u_{i} \nabla \zeta_{y_{i}} \cdot \nabla \zeta_{y_{j}}+\frac{R}{\gamma-1} \frac{2 \rho^{2}}{\theta^{3}} \theta_{y_{j}} u_{i} \nabla \zeta_{y_{i}} \cdot \nabla \zeta_{y_{j}} \\ &-R \frac{2 \rho}{\theta} \rho_{y_{i}} \nabla \mathrm{div} \Psi \cdot \nabla \zeta_{y_{i}}+R \frac{\rho^{2}}{\theta^{2}} \theta_{y_{i}} \nabla \mathrm{div} \Psi \cdot \nabla \zeta_{y_{i}}-\frac{1}{\theta^2}\rho _{y_i}\nabla \mathrm{div}Q\cdot\nabla \zeta _{y_i}\\ &+\frac{2\rho }{\theta ^3}\theta _{y_i}\nabla \mathrm{div}Q\cdot\nabla \zeta _{y_i} -\frac{\rho }{\theta ^2}\nabla \mathrm{div}Q_{y_i}\cdot\nabla \zeta _{y_i}-\frac{R}{\gamma-1} \frac{\rho^{2}}{\theta^{2}} \psi_{i y_{j}} \nabla \zeta_{y_{i}} \cdot \nabla \zeta_{y_{j}}\\ &-\frac{R}{\gamma-1} \frac{\rho^{2}}{\theta^{2}} \tilde{u}_{1 y_{1}}|\nabla \zeta_{y_{1}}|^{2}+\frac{(2 \gamma-3) R}{\gamma-1} \frac{\rho^{2}}{\theta^{2}} \mathrm{div} \Psi \frac{\left|\nabla^{2} \zeta\right|^{2}}{2}+\frac{(2 \gamma-3) R}{\gamma-1} \frac{\rho^{2}}{\theta^{2}} \tilde{u}_{1 y_{1}} \frac{\left|\nabla^{2} \zeta\right|^{2}}{2}, \end{align*}
    \begin{align*} \mathcal{N}_{2}(\tau, y) = &-\frac{\rho}{\theta^{3}} \frac{\left|\nabla^{2} \zeta\right|^{2}}{2} \epsilon^{1-\alpha}[\kappa \Delta \zeta+\kappa \tilde{\theta}_{y_{1} y_{1}}+\frac{\mu}{2}|\nabla \Psi+(\nabla \Psi)^{\top}|^{2}+\lambda(\mathrm{div} \Psi)^{2} \\ &+2 \tilde{u}_{1 y_{1}}(2 \mu \psi_{1 y_{1}}+\lambda \mathrm{div} \Psi)+(2 \mu+\lambda)\left(\tilde{u}_{1} \tilde{u}_{1 y_{1}}\right)_{y_{1}}]+R \frac{2 \rho}{\theta} \phi_{y_{j}} \nabla \psi_{j y_{i}} \cdot \nabla \zeta_{y_{i}} \\ &+R \frac{2 \rho}{\theta} \tilde{\rho}_{y_{1}} \nabla \psi_{1 y_{i}} \cdot \nabla \zeta_{y_{i}}-R \frac{\rho^{2}}{\theta^{2}} \zeta_{y_{j}} \nabla \psi_{j y_{i}} \cdot \nabla \zeta_{y_{i}}-R \frac{\rho^{2}}{\theta^{2}} \tilde{\theta}_{y_{1}} \nabla \psi_{1 y_{i}} \cdot \nabla \zeta_{y_{i}} \\ &-R \frac{2 \rho}{\theta} \nabla \phi \cdot \nabla \psi_{j y_{i}} \zeta_{y_{i} y_{j}}-R \frac{2 \rho}{\theta} \tilde{\rho}_{y_{1}} \nabla \Psi_{y_{1}} \cdot \nabla^{2} \zeta+R \frac{\rho^{2}}{\theta^{2}} \nabla \zeta \cdot \nabla \psi_{j y_{i}} \zeta_{y_{i} y_{j}} \\ &+R \frac{\rho^{2}}{\theta^{2}} \tilde{\theta}_{y_{1}} \nabla \Psi_{y_{1}} \cdot \nabla^{2} \zeta+\frac{R}{\gamma-1} \frac{\rho^{2}}{\theta^{2}} \zeta_{y_{i}} \nabla \psi_{i} \cdot \nabla \Delta \zeta+\frac{R}{\gamma-1} \frac{\rho^{2}}{\theta^{2}} \tilde{u}_{1 y_{1}} \zeta_{y_{1}} \Delta \zeta_{y_{1}} \\ &+\frac{R \rho^{2}}{\theta^{2}} \mathrm{div} \Psi \nabla \zeta \cdot \nabla \Delta \zeta+\frac{R \rho^{2}}{\theta^{2}} \tilde{\theta}_{y_{1}} \mathrm{div} \Psi \Delta \zeta_{y_{1}}+\frac{R}{\gamma-1} \frac{\rho^{2}}{\theta^{2}} \tilde{\theta}_{y_{1} y_{1}} \psi_{1} \Delta \zeta_{y_{1}} \\ &+\frac{R}{\gamma-1} \frac{\rho^{2}}{\theta^{2}} \tilde{\theta}_{y_{1}} \nabla \psi_{1} \cdot \nabla \Delta \zeta+\frac{R \rho^{2}}{\theta^{2}} \tilde{u}_{1 y_{1} y_{1}} \zeta \Delta \zeta_{y_{1}}+\frac{R \rho^{2}}{\theta^{2}} \tilde{u}_{1 y_{1}} \nabla \zeta \cdot \nabla \Delta \zeta\\ &+\frac{\rho }{\theta ^3} |\nabla^{2} \zeta |^{2}\mathrm{div} Q+\frac{\rho }{\theta ^3} |\nabla^{2} \zeta |^{2}\bar{q}_{y_{1}} -\frac{1}{\theta^{2}} \mathrm{div} Q\nabla\phi\cdot\nabla \Delta\zeta -\frac{1}{\theta^{2}}\tilde {\rho }_{y_1} \mathrm{div} Q \Delta\zeta _{y_1}, \end{align*}
    \begin{align*} \mathcal{N}_{3}(\tau, y) = &-\frac{\kappa \epsilon^{1-\alpha}}{\theta^{2}} \Delta \zeta \nabla \phi \cdot \nabla \Delta \zeta+\frac{\kappa \epsilon^{1-\alpha}}{\theta^{2}} \tilde{\rho}_{y_{1}} \Delta \zeta \cdot \Delta \zeta_{y_{1}}-\frac{\mu \epsilon^{1-\alpha} \rho}{2 \theta^{2}} \nabla(|\nabla \Psi+(\nabla \Psi)^{\top}|^{2}) \cdot \nabla \Delta \zeta \\ &+\frac{\mu \epsilon^{1-\alpha}}{2 \theta^{2}}|\nabla \Psi+(\nabla \Psi)^{\top}|^{2} \nabla \phi \cdot \nabla \Delta \zeta+\frac{\mu \epsilon^{1-\alpha}}{2 \theta^{2}} \tilde{\rho}_{y_{1}}|\nabla \Psi+(\nabla \Psi)^{\top}|^{2} \Delta \zeta_{y_{1}} \\ &-\frac{\lambda \epsilon^{1-\alpha} \rho}{\theta^{2}} \nabla(\mathrm{div} \Psi)^{2} \cdot \nabla \Delta \zeta+\frac{\lambda \epsilon^{1-\alpha}}{\theta^{2}}(\mathrm{div} \Psi)^{2} \nabla \phi \cdot \nabla \Delta \zeta+\frac{\lambda \epsilon^{1-\alpha}}{\theta^{2}} \tilde{\rho}_{y_{1}}(\mathrm{div} \Psi)^{2} \Delta \zeta_{y_{1}} \\ &-\frac{2 \rho}{\theta^{2}} \tilde{u}_{1 y_{1} y_{1}} \epsilon^{1-\alpha}(2 \mu \psi_{1 y_{1}}+\lambda \mathrm{div} \Psi) \Delta \zeta_{y_{1}}-\frac{2 \rho}{\theta^{2}} \tilde{u}_{1 y_{1}} \epsilon^{\alpha-1}(2 \mu \nabla \psi_{1 y_{1}}+\lambda \nabla \mathrm{div} \Psi) \cdot \nabla \Delta \zeta \\ &+\frac{2 \tilde{u}_{1 y_{1}}}{\theta^{2}} \epsilon^{1-\alpha}(2 \mu \psi_{1 y_{1}}+\lambda \mathrm{div} \Psi) \nabla \phi \cdot \nabla \Delta \zeta+\frac{2 \tilde{u}_{1 y_{1}} \tilde{\rho}_{y_{1}}}{\theta^{2}} \epsilon^{1-\alpha}\left(2 \mu \psi_{1 y_{1}}+\lambda \mathrm{div} \Psi\right) \Delta \zeta_{y_{1}}, \end{align*}

    and

    \begin{align*} \mathcal{N}_{4} (\tau, y) = &-\frac{\rho}{\theta^{2}} \nabla F_{1} \cdot \nabla \Delta \zeta+\frac{F_{1}}{\theta^{2}} \nabla \phi \cdot \nabla \Delta \zeta+\frac{F_{1}}{\theta^{2}} \tilde{\rho}_{y_{1}} \Delta \zeta_{y_{1}}-\frac{\rho}{\theta^{2}} \nabla F_{2} \cdot \nabla \Delta \zeta\\ &+\frac{F_{2}}{\theta^{2}} \nabla \phi \cdot \nabla \Delta \zeta+\frac{F_{2}}{\theta^{2}} \tilde{\rho}_{y_{1}} \Delta \zeta_{y_{1}}-\frac{\rho}{\theta^{2}} \nabla F_{3} \cdot \nabla \Delta \zeta+\frac{F_{3}}{\theta^{2}} \nabla \phi \cdot \nabla \Delta \zeta+\frac{F_{3}}{\theta^{2}} \tilde{\rho}_{y_{1}} \Delta \zeta_{y_{1}}. \end{align*}

    Applying the operator \nabla^2 to the fourth equation of (3.4) and then multiplying the resulting equation by \frac{a\rho\epsilon ^{\alpha-1 } }{4 \theta^2 \tilde {\theta}^{3}}\nabla Q , we have

    \begin{align} &\frac{\rho a\epsilon ^{\alpha -1} }{4 b \theta^2 \tilde {\theta}^{3}}|\nabla^2 Q|^{2}+\mathrm{div}\left (\frac{ \rho \nabla Q_{iy_j}\cdot \nabla \zeta_{y_j} }{\theta }\right )+\epsilon ^{1-\alpha }\mathrm{div}\left(\frac{\rho\nabla^2 Q \cdot\nabla^2\mathrm{div} Q}{4 b \theta^2 \tilde {\theta}^{3}}\right)-\epsilon ^{1-\alpha }\frac{\rho |\nabla^2\mathrm{div} Q|^{2}}{4 b \theta^2 \tilde {\theta}^{3}}\\ & = \frac{\rho}{\theta^2 }\nabla\mathrm{div}Q_{y_i} \cdot\nabla\zeta_{y_i}+\frac{ \zeta_{y_iy_j} }{\theta ^2}\nabla \phi \cdot \nabla Q_{iy_j} +\frac{ \tilde \rho _{y_1} }{\theta ^2}\nabla^2 \zeta \cdot \nabla Q_{y_1} -\frac{ 2\rho \zeta_{y_iy_j} }{\theta ^4}\nabla \zeta \cdot \nabla Q_{iy_j} \\ &-\frac{2\rho \tilde \theta _{y_1}}{\theta ^4}\nabla^2 \zeta \cdot \nabla Q_{y_1} +\epsilon ^{1-\alpha }\mathrm {div} Q_{y_iy_j}\nabla Q_{iy_j} \cdot \nabla\left(\frac{\rho }{4 b \theta^2 \tilde {\theta}^{3}}\right) -\frac{ 3\rho }{\theta^2 \tilde {\theta}^{3}} \nabla Q_{iy_j}\cdot\nabla(\zeta \tilde \theta ^2\tilde \theta_{y_1})_{y_j}\\ &-\frac{ 3\rho }{\theta^2 \tilde {\theta}^{3}} \nabla Q_{y_i}\cdot\nabla(\nabla\zeta \tilde \theta ^2\tilde \theta_{y_1})-\frac{ 3\rho \tilde \theta_{y_1}}{\theta^2 \tilde {\theta}} \nabla Q_{y_1}\cdot\nabla^2\zeta +\frac{\rho \epsilon ^{2-2\alpha }}{4a\theta^2\tilde {\theta }^3}(\bar{\theta}^4)_{y_1y_1y_1y_1y_1}Q_{1y_1y_1} \\ & -\frac{ \rho Q_{1y_1y_1}}{4\theta^2 \tilde {\theta}^{3}} \left (\mathcal{P}^4+4\mathcal{P}^3\bar{\theta }+6\mathcal{P}^2\bar{\theta }^2+4\mathcal{P}\bar{\theta }^3 \right )_{y_1y_1y_1}\\ &-\frac{ \rho }{4\theta^2 \tilde {\theta}^{3}} \nabla Q_{iy_j}\cdot\nabla\left(\zeta^{4}+4 \zeta^{3} \tilde {\theta}+6 \zeta^{2} \tilde {\theta}^{2}\right)_{y_iy_j}\\ &: = \mathcal{M}(\tau, y). \end{align} (3.31)

    Now we add (3.28)–(3.31) together and integrate the resulting equation over [0, \tau']\times \mathbb{R}\times \mathbb{T}_\epsilon to obtain

    \begin{align} &\left\| \left(\nabla^{2} \phi, \nabla^{2} \Psi, \nabla^{2} \zeta\right)(\tau')\right\|^{2}+\int\limits_{0}^{\tau' } \bigg [\left\|\bar{u}_{1 y_{1}}^{1 / 2} \nabla^{2} \phi\right\|^{2}+\epsilon^{1-\alpha}\left\|\left(\nabla^{3} \Psi, \nabla^{3} \zeta\right)\right\|^{2}\bigg ] \mathrm{d}\tau\\ & \quad +\int_0^{\tau'}\bigg[\epsilon^{\alpha-1}\|\nabla^2 Q\|^2+\epsilon^{1-\alpha}\|\nabla^2\mathrm{div}Q\|^2\bigg]\mathrm{d}\tau\\ &\le C\left\|\left(\nabla^{2} \phi_{0}, \nabla^{2} \Psi_{0}, \nabla^{2} \zeta_{0}\right)\right\|^{2}+ C\bigg |\int\limits _{0}^{\tau'} \int\limits_{\mathbb{R} \times \mathbb{T}_{\epsilon}}[\mathcal{H}(\tau, y)+\sum\limits_{i = 1}^{4} \mathcal{L}_{i}(\tau, y)+\sum\limits_{i = 1}^{4} \mathcal{N}_{i}(\tau, y) +\mathcal{M}(\tau, y)] \mathrm{d}y \mathrm{d} \tau \bigg|. \end{align} (3.32)

    Now, we focus on estimating the terms on the right-hand side of Eq (3.32). We will begin by estimating some typical terms, and we anticipate that the remaining terms can be treated similarly. We use the a priori Assumption (3.10) and Sobolev's inequality to obtain

    \begin{align*} &C\bigg|\int\limits _{0}^{\tau'} \int\limits_{\mathbb{R} \times \mathbb{T}_{\epsilon}} R \mathrm{div} \Psi \frac{\left|\nabla^{2} \phi\right|^{2}}{2} \mathrm{d} y \mathrm{d} \tau\bigg | \le C \int\limits_{0}^{\tau'}\|\nabla \Psi\|_{L^{\infty}(\mathbb{R}\times\mathbb{T}_\epsilon)}\left\|\nabla^{2} \phi\right\|^{2} \mathrm{d} \tau \\ &\leq C \int\limits_{0}^{\tau'}\|\nabla \Psi\|_{2}\left\|\nabla^{2} \phi\right\|^{2} \mathrm{d} \tau \le \frac{\epsilon^{1-\alpha}}{150} \int\limits_{0}^{\tau'}\|\nabla \Psi\|_{2}^{2} \mathrm{d}\tau+C \epsilon^{\alpha-1} \int\limits_{0}^{\tau'}\left\|\nabla^{2} \phi\right\|^{4} \mathrm{d} \tau \\ &\le \frac{\epsilon^{1-\alpha}}{150} \int\limits_{0}^{\tau'}\|\nabla \Psi\|_{2}^{2} \mathrm{d} \tau+C \epsilon^{1-\alpha} \int\limits_{0}^{\tau'}\left\|\nabla^{2} \phi\right\|^{2} \mathrm{d} \tau. \end{align*}

    Similarly, using Hölder's inequality, Sobolev's inequality, and Young's inequality, we obtain

    \begin{align*} &C\bigg|\int\limits _{0}^{\tau'} \int\limits_{\mathbb{R} \times \mathbb{T}_{\epsilon}} 2 R \phi_{y_{i}} \nabla \phi_{y_{i}} \cdot \nabla \mathrm{div} \Psi \mathrm{d} y \mathrm{d} \tau\bigg|\leq C \int\limits_{0}^{\tau'}\left\|\nabla^{2} \phi\right\|\|\nabla \phi\|_{L^{4}(\mathbb{R}\times\mathbb{T}_\epsilon)}\left\|\nabla^{2} \Psi\right\|_{L^{4}(\mathbb{R}\times\mathbb{T}_\epsilon)} \mathrm{d} \tau \\ &\leq C \int\limits_{0}^{\tau'}\left\|\nabla^{2} \phi\right\|\|\nabla \phi\|^{1 / 2}\|\nabla \phi\|_{1}^{1 / 2}\left\|\nabla^{2} \Psi\right\|^{1 / 2}\left\|\nabla^{2} \Psi\right\|_{1}^{1 / 2} \mathrm{d} \tau \\ &\leq \frac{\epsilon^{1-\alpha}}{150} \int\limits_{0}^{\tau'}\left\|\nabla^{2} \Psi\right\|_{1}^{2} \mathrm{d}\tau+C {\epsilon^{(\alpha-1)/3} }\int\limits _{0}^{\tau'}\|\nabla \phi\|_{1}^{2}\|\nabla \phi\|^{2 / 3}\left\|\nabla^{2} \Psi\right\|^{2 / 3} \mathrm{d}\tau \\ &\leq \frac{\epsilon^{1-\alpha}}{150} \int\limits_{0}^{\tau'}\left\|\nabla^{2} \Psi\right\|_{1}^{2} \mathrm{d}\tau+C \epsilon^{1-\alpha} \int\limits _{0}^{\tau'}\|\nabla \phi\|_{1}^{2} \mathrm{d} \tau . \end{align*}

    It follows from Lemmas 2.2 and 2.3 that

    \begin{align*} &C\bigg |\int\limits _{0}^{\tau'} \int\limits_{\mathbb{R} \times \mathbb{T}_{\epsilon}} R \tilde{u}_{1y_{1} y_{1} y_{1} }\phi \phi_{y_{1} y_{1}} \mathrm{d} y \mathrm{d} \tau\bigg | \leq C \epsilon^{1-\alpha} \int\limits_{0}^{\tau'}\left\|\nabla^{2} \phi\right\|^{2} \mathrm{d} \tau+C \epsilon^{\alpha-1} \int\limits_{0}^{\tau'}\left\|\tilde{u}_{1 y_{1} y_{1} y_{1}}\right\|_{L^{\infty}{(\mathbb{R})}}^{2}\|\phi\|^{2} \mathrm{d} \tau \\ &\leq C \epsilon^{1-\alpha} \int\limits_{0}^{\tau'}\left\|\nabla^{2} \phi\right\|^{2} \mathrm{d} \tau+C \epsilon^{6\alpha-1}\underset{0\le t\le T }{\mathrm{sup}}\left\|\tilde{u}_{1 x_{1} x_{1} x_{1}}\right\|_{L^{\infty}(\mathbb{R})}^{2} \underset{0\le \tau \le \tau_1(\epsilon) }{\mathrm{sup}}\|\phi\|^{2} \\ &\leq C \epsilon^{1-\alpha} \int\limits_{0}^{\tau'}\left\|\nabla^{2} \phi\right\|^{2} \mathrm{d} \tau+C_{T} \epsilon^{6\alpha-1}\left(\frac{1}{\delta^{6}}+\frac{\epsilon^{2}}{\delta^{9}}\right) \underset{0\le \tau \le \tau_1(\epsilon) }{\mathrm{sup}}\|\phi\|^{2} . \end{align*}

    Using a priori Assumption (3.10) and Sobolev's inequality, we have

    \begin{align*} &C\bigg |\int\limits_{0}^{\tau'} \int\limits_{\mathbb{R} \times \mathbb{T}_{\epsilon}}(\gamma-2) \frac{\rho^{2}}{\theta} \mathrm{div} \Psi \frac{\left|\nabla^{2} \Psi\right|^{2}}{2}\mathrm{d}y \mathrm{d}\tau\bigg | \leq C \int\limits _{0}^{\tau'}\|\nabla \Psi\|\left\|\nabla^{2} \Psi\right\|_{L^{4}(\mathbb{R}\times\mathbb{T}_\epsilon)}^{2} \mathrm{d} \tau \\ &\leq C \int\limits _{0}^{\tau'}\|\nabla \Psi\|\left\|\nabla^{2} \Psi\right\|\left\|\nabla^{2} \Psi\right\|_{1} \mathrm{d} \tau \leq C \epsilon^{1-\alpha} \int\limits_{0}^{\tau'}\|\nabla \Psi\|\left\|\nabla^{2} \Psi\right\|_{1} \mathrm{d} \tau \\ &\leq \frac{\epsilon^{1-\alpha}}{150} \int\limits _{0}^{\tau'}\left\|\nabla^{2} \Psi\right\|_{1}^{2} \mathrm{d} \tau+C \epsilon^{1-\alpha} \int\limits_{0}^{\tau'}\|\nabla \Psi\|^{2} \mathrm{d} \tau, \end{align*}

    and

    \begin{align*} &C\bigg |\int\limits _{0}^{\tau'} \int\limits_{\mathbb{R} \times \mathbb{T}_{\epsilon}} \frac{\gamma-1}{R} \kappa \epsilon^{1-\alpha} \frac{\rho}{\theta^{2}} \frac{\left|\nabla^{2} \Psi\right|^{2}}{2} \Delta \zeta \mathrm{d} y \mathrm{d} \tau\bigg | \leq C \epsilon^{1-\alpha} \int\limits_{0}^{\tau'}\left\|\nabla^{2} \zeta\right\|\left\|\nabla^{2} \Psi\right\|_{L^{4}(\mathbb{R}\times\mathbb{T}_\epsilon)}^{2} \mathrm{d} \tau \\ &\leq C \epsilon^{1-\alpha} \int\limits_{0}^{\tau'}\left\|\nabla^{2} \zeta\right\|\left\|\nabla^{2} \Psi\right\|_{1}^{2} \mathrm{d} \tau \leq C \epsilon^{2-2\alpha} \int\limits_{0}^{\tau'}\left\|\nabla^{2} \Psi\right\|_{1}^{2} \mathrm{d} \tau . \end{align*}

    Based on Young's inequality, Lemma 2.2, Lemma 2.3, and a priori Assumption (3.10), it holds that

    \begin{align*} &C\bigg |\int\limits _{0}^{\tau'} \int\limits_{\mathbb{R} \times \mathbb{T}_{\epsilon}}(2 \mu+\lambda) \epsilon^{1-\alpha}\left(\frac{-\bar{u}_{1} d_{1}+d_{2}}{\tilde{\rho}}\right)_{y_{1} y_{1} y_{1}} \Delta \psi_{1 y_{1}} \mathrm{d} y \mathrm{d} \tau\bigg | \\ &\le \frac{\epsilon^{1-\alpha}}{150} \int\limits_{0}^{\tau'}\left\|\nabla^{2} \psi_{1 y_{1}}\right\|^{2} d \tau+C \epsilon^{2\alpha+1} \int\limits_{0}^{\tau'} \int\limits_{\mathbb{R}}\bigg|\bigg(\frac{-\bar{u}_{1} d_{1}+d_{2}}{\tilde{\rho}}\bigg)_{x_{1} x_{1} x_{1}}\bigg|^{2} \mathrm{d} x_{1} \mathrm{d}\tau \\ &\le \frac{\epsilon^{1-\alpha}}{150} \int\limits_{0}^{\tau'}\left\|\nabla^{2} \psi_{1 y_{1}}\right\|^{2} \mathrm{d} \tau+C_{T} \frac{\epsilon^{3+2\alpha}}{\delta^{8}}, \end{align*}

    and

    \begin{align*} &C\bigg |\int\limits _{0}^{\tau'} \int\limits_{\mathbb{R} \times \mathbb{T}_{\epsilon}} \frac{\lambda \epsilon^{1-\alpha}}{\theta^{2}}(\operatorname{div} \Psi)^{2} \nabla \phi \cdot \nabla \Delta \zeta \mathrm{d}y \mathrm{d} \tau\bigg |\leq C \epsilon^{1-\alpha} \int\limits_{0}^{\tau'}\|\nabla \Psi\|_{L^{8}(\mathbb{R}\times\mathbb{T}_\epsilon)}^{2}\|\nabla \phi\|_{L^{4}(\mathbb{R}\times\mathbb{T}_\epsilon)}\left\|\nabla^{3} \zeta\right\| \mathrm{d} \tau \\ &\leq C \epsilon^{1-\alpha} \int\limits_{0}^{\tau'}\|\nabla \Psi\|_{1}^{2}\|\nabla \phi\|_{1}\left\|\nabla^{3} \zeta\right\| \mathrm{d} \tau \leq \frac{\epsilon^{1-\alpha}}{150} \int\limits_{0}^{\tau'}\left\|\nabla^{3} \zeta\right\|^{2} \mathrm{d} \tau+C \epsilon^{1-\alpha} \int\limits_{0}^{\tau'}\|\nabla \Psi\|_{1}^{4}\|\nabla \phi\|_{1}^{2} \mathrm{d} \tau \\ &\leq \frac{\epsilon^{1-\alpha}}{150} \int\limits_{0}^{\tau'}\left\|\nabla^{3} \zeta\right\|^{2} \mathrm{d} \tau+C \epsilon^{5-5\alpha} \int\limits_{0}^{\tau'}\|\nabla \phi\|_{1}^{2} \mathrm{d}\tau . \end{align*}

    For \mathcal{M}(\tau, y) , we will focus on several terms that may cause difficulties.

    Integration by parts gives that

    \begin{align*} &\epsilon ^{1-\alpha }\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }\mathrm {div} Q_{y_iy_j}\nabla Q_{iy_j} \cdot \nabla\left(\frac{\rho }{4 b \theta^2 \tilde {\theta}^{3}}\right)\mathrm{d}y = -\epsilon ^{1-\alpha }\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }\mathrm {div} Q_{y_i}\nabla(\mathrm{div} Q)_{y_j} \cdot \nabla\left(\frac{\rho }{4 b \theta^2 \tilde {\theta}^{3}}\right)\mathrm{d}y\\ & \quad -\epsilon ^{1-\alpha }\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }\mathrm {div} Q_{y_i}\nabla Q_{iy_j} \cdot \nabla\left(\frac{\rho }{4 b \theta^2 \tilde {\theta}^{3}}\right)_{y_i}\mathrm{d}y, \end{align*}

    then, we obtain that

    \begin{align*} &C\left |\int\limits_{0}^{\tau'}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }\epsilon ^{1-\alpha }\mathrm {div} Q_{y_i}\nabla(\mathrm{div} Q)_{y_j} \cdot \nabla\left(\frac{\rho }{4 b \theta^2 \tilde {\theta}^{3}}\right)\mathrm{d}y\mathrm{d}\tau\right |\\ &\le C\epsilon ^{1-\alpha } \int\limits_{0}^{\tau'}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }(|\nabla\mathrm{div} Q||\nabla \zeta ||\nabla^2 \mathrm{div}Q|+|\nabla \mathrm{div} Q||\tilde \theta _{y_1}||\nabla^2 \mathrm{div}Q |)\mathrm{d}y\mathrm{d}\tau\\ & \quad +C\epsilon ^{1-\alpha } \int\limits_{0}^{\tau'}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }(|\nabla\mathrm{div} Q||\nabla \phi ||\nabla^2 \mathrm{div}Q|+|\nabla \mathrm{div} Q||\tilde \rho _{y_1}||\nabla^2 \mathrm{div}Q |)\mathrm{d}y\mathrm{d}\tau\\ &\le C \epsilon ^{1-\alpha }\int\limits_{0}^{\tau'}\|\nabla^2 \mathrm{div}Q\| \|\nabla \zeta\|_{L^4(\mathbb{R}\times\mathbb{T}_\epsilon)}\|\nabla\mathrm{div} Q\|_{L^4(\mathbb{R}\times\mathbb{T}_\epsilon)}\mathrm{d}\tau +\frac{\epsilon ^{\alpha -1}}{13} \int\limits_{0}^{\tau'}\|\nabla^2 Q\|^2 \mathrm{d}\tau\\ & \quad +C \epsilon ^{1-\alpha }\int\limits_{0}^{\tau'}\|\nabla^2 \mathrm{div}Q\| \|\nabla \phi \|_{L^4(\mathbb{R}\times\mathbb{T}_\epsilon)}\|\nabla\mathrm{div} Q\|_{L^4(\mathbb{R}\times\mathbb{T}_\epsilon)}\mathrm{d}\tau\\ & \quad +C\epsilon ^{2-2\alpha }\int\limits_{0}^{\tau'}\|\nabla^2\mathrm{div} Q\|^2\|\tilde \theta _{y_1} \|^2 \mathrm{d}\tau +C\epsilon ^{2-2\alpha }\int\limits_{0}^{\tau'}\|\nabla^2\mathrm{div} Q\|^2\|\tilde \rho _{y_1} \|^2 \mathrm{d}\tau\\ &\le C \epsilon ^{1-\alpha }\int\limits_{0}^{\tau'}\|\nabla^2 \mathrm{div}Q\| \|\nabla \zeta\|_{1}\|\nabla\mathrm{div} Q\|_{1}\mathrm{d}\tau+\frac{\epsilon ^{\alpha -1}}{13} \int\limits_{0}^{\tau'}\|\nabla^2 Q\|^2 \mathrm{d}\tau\\ & \quad +C \epsilon ^{1-\alpha }\int\limits_{0}^{\tau'}\|\nabla^2 \mathrm{div}Q\| \|\nabla \phi\|_{1}\|\nabla\mathrm{div} Q\|_{1}\mathrm{d}\tau\\ & \quad +C \epsilon^{2-2\alpha}\underset{0\le \tau \le \tau_1(\epsilon )}{\sup}\left(\|\bar{\theta }_{y_1}\|^2_{L^\infty (\mathbb{R})}+\|\bar{\rho }_{y_1}\|^2_{L^\infty (\mathbb{R})}\right)\int\limits_{0}^{\tau'}\|\nabla^2\mathrm{div} Q\|^2\mathrm{d}\tau\\ & \quad +C\epsilon ^{2-2\alpha}\underset{0\le \tau \le \tau_1(\epsilon )}{\sup}\left(\|\mathcal{P} _{y_1}\|^2_{L^\infty (\mathbb{R})}+\|d _{1y_1}\|^2_{L^\infty (\mathbb{R})}\right)\int\limits_{0}^{\tau'}\|\nabla\mathrm{div} Q\|^2\mathrm{d}\tau\\ &\le \frac{\epsilon ^{1-\alpha }}{16} \int\limits_{0}^{\tau'}\|\nabla^2 \mathrm{div}Q\|^2\mathrm{d}\tau +\frac{\epsilon ^{\alpha -1}}{13} \int\limits_{0}^{\tau'}\|\nabla^2 Q\|^2 \mathrm{d}\tau +C \epsilon ^{3-3\alpha }\int\limits_{0}^{\tau'} \|\nabla\mathrm{div}Q\|^2_{1}\mathrm{d}\tau\\ & \quad +C_T\bigg(\frac{\epsilon ^{2}}{\delta ^2} +\frac{\epsilon ^{4}}{\delta ^5}\bigg)\int\limits_{0}^{\tau'}\|\nabla^2 \mathrm{div}Q\|^2\mathrm{d}\tau. \end{align*}

    Direct calculations give that

    \begin{align*} &C\left |\int\limits_{0}^{\tau'}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }\epsilon ^{1-\alpha }\mathrm {div} Q_{y_i}\nabla Q_{iy_j} \cdot \nabla\left(\frac{\rho }{4 b \theta^2 \tilde {\theta}^{3}}\right)_{y_i}\mathrm{d}y\mathrm{d}\tau\right |\\ &\le C\epsilon ^{1-\alpha } \int\limits_{0}^{\tau'}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }(|\nabla\mathrm{div} Q||\nabla^2 Q|\left (|\nabla \zeta |^2+|\nabla ^2\zeta |+|\nabla \phi |^2+|\nabla ^2\phi |+|\nabla \zeta ||\nabla \phi |\right )\mathrm{d}y\mathrm{d}\tau\\ & \quad +C\epsilon ^{1-\alpha } \int\limits_{0}^{\tau'}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }(|\nabla\mathrm{div} Q||\nabla^2 Q|\left (|\tilde \theta _{y_1}|^2+|\tilde \theta _{y_1y_1} |+|\tilde \rho _{y_1} |^2+| \tilde \rho _{y_1y_1}|+|\tilde \rho _{y_1}\tilde\theta _{y_1} |\right )\mathrm{d}y\mathrm{d}\tau, \end{align*}

    Then, we will only present estimates for the first two terms, while the remaining terms are treated in the same fashion.

    By Sobolev's inequality and the a priori Assumption (3.10), we obtain

    \begin{align*} &C\epsilon ^{1-\alpha } \int\limits_{0}^{\tau'}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }(|\nabla\mathrm{div} Q||\nabla^2 Q||\nabla \zeta |^2)\mathrm{d}\tau \le C \epsilon ^{1-\alpha }\int\limits_{0}^{\tau'}\|\nabla^2 Q\| \|\nabla \zeta\|^2_{L^8(\mathbb{R}\times\mathbb{T}_\epsilon)}\|\nabla\mathrm{div} Q\|_{L^4(\mathbb{R}\times\mathbb{T}_\epsilon)}\mathrm{d}\tau\\ & \le C \epsilon ^{1-\alpha }\int\limits_{0}^{\tau'}\|\nabla^2 Q\| \|\nabla \zeta\|^2_1\|\nabla\mathrm{div} Q\|_1\mathrm{d}\tau \le \frac{\epsilon ^{\alpha -1 }}{16} \int\limits_{0}^{\tau'}\|\nabla^2 Q\|\mathrm{d}\tau+C \epsilon ^{3-3\alpha }\int\limits_{0}^{\tau'} \|\nabla \zeta\|^4_1\|\nabla\mathrm{div} Q\|^2_1\mathrm{d}\tau\\ &\le \frac{\epsilon ^{\alpha -1 }}{16} \int\limits_{0}^{\tau'}\|\nabla^2 Q\|\mathrm{d}\tau+C \epsilon ^{7-7\alpha }\int\limits_{0}^{\tau'} \|\nabla\mathrm{div} Q\|^2_1\mathrm{d}\tau, \end{align*}

    and

    \begin{align*} &C\epsilon ^{1-\alpha } \int\limits_{0}^{\tau'}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }(|\nabla\mathrm{div} Q||\nabla^2 Q||\nabla^2 \zeta |)\mathrm{d}\tau \le C \epsilon ^{1-\alpha }\int\limits_{0}^{\tau'}\|\nabla^2 Q\| \|\nabla \zeta\|_{L^4(\mathbb{R}\times\mathbb{T}_\epsilon)}\|\nabla\mathrm{div} Q\|_{L^4(\mathbb{R}\times\mathbb{T}_\epsilon)}\mathrm{d}\tau\\ & \le C \epsilon ^{1-\alpha }\int\limits_{0}^{\tau'}\|\nabla^2 Q\| \|\nabla \zeta\|_1\|\nabla\mathrm{div} Q\|_1\mathrm{d}\tau \le \frac{\epsilon ^{\alpha -1 }}{16} \int\limits_{0}^{\tau'}\|\nabla^2 Q\|\mathrm{d}\tau+C \epsilon ^{3-3\alpha }\int\limits_{0}^{\tau'} \|\nabla\zeta\|^2_1\|\nabla\mathrm{div} Q\|^2_1\mathrm{d}\tau\\ &\le \frac{\epsilon ^{\alpha -1 }}{16} \int\limits_{0}^{\tau'}\|\nabla^2 Q\|\mathrm{d}\tau+C_T \epsilon ^{5-5\alpha }\int\limits_{0}^{\tau'} \|\nabla\mathrm{div}Q\|^2_1\mathrm{d}\tau. \end{align*}

    By Lemmas 2.2 and 2.3, it holds that

    \begin{align*} &C\bigg |\int\limits _{0}^{\tau'} \int\limits_{\mathbb{R} \times \mathbb{T}_{\epsilon}} \frac{1}{\theta ^2} \tilde{\rho}_{y_{1}} \Delta \zeta _{y_{1}} \mathrm{div} Q_{y_1} \mathrm{d} y \mathrm{d}\tau\bigg | \leq \frac{\epsilon ^{1-\alpha }}{150} \int\limits_{0}^{\tau'}\|\nabla ^3\zeta \|^2\mathrm{d}\tau +C\epsilon ^{\alpha -1}\int\limits_{0}^{\tau' } (\|\bar{\rho }_{y_1}\nabla \mathrm{div}Q \|^2+\|d_{1y_1}\nabla \mathrm{div}Q \|^2) \mathrm{d}\tau \\ &\leq \frac{\epsilon ^{1-\alpha }}{150} \int\limits_{0}^{\tau'}\|\nabla ^3\zeta \|^2\mathrm{d}\tau +C_T\bigg(\frac{\epsilon ^{3\alpha -1}}{\delta^2 }+\frac{\epsilon ^{3\alpha +1}}{\delta ^5}\bigg)\int\limits_{0}^{\tau' } \|\nabla \mathrm{div}Q \|^2\mathrm{d}\tau. \end{align*}

    In order to close the estimate of (3.32), we also introduce the estimate of \int\limits_{0}^{\tau'}\|\nabla^2 \phi \|^2\mathrm{d}\tau . Following the same procedures as in Lemma 3.4 of [12], and considering the new scaling argument introduced here, we finally derive that

    \begin{align} \int\limits _{0}^{\tau_{1}(\epsilon)}\left\|\nabla^{2} \phi\right\|^{2} \mathrm{d} \tau \le& C_T\bigg(\frac{\epsilon^{3-2\alpha }}{\delta^4 }+\frac{\epsilon^{4-2\alpha }}{\delta^7 }\bigg)\cdot\epsilon^{\alpha-1}+C \underset{0\le \tau \le \tau_1(\epsilon) }{\mathrm{sup}}\left\|\nabla^{2} \phi\right\|^{2}+C \epsilon^{\alpha} \int\limits _{0}^{\tau_{1}(\epsilon)}\left\|\nabla^{3} \Psi\right\|^{2} \mathrm{d} \tau \\ &+C_{T} \epsilon^{\alpha-1}\left\|\left(\phi_{0}, \Psi_{0}, \zeta_{0}\right)\right\|_{1}^{2}+C\left\|\nabla^{2} \phi_{0}\right\|^{2}. \end{align} (3.33)

    By incorporating the above estimates into (3.32); and combining them with (3.33), complete the proof of (3.27).

    Lemma 3.4. There exists a positive constant C_T such that

    \begin{align} \sup\limits_{0\leq \tau\leq \tau_1(\epsilon)}\bigg(\|Q\|^2_{2}+\epsilon^{2-2\alpha}\|\mathrm{div}Q\|^2_{2}\bigg)(\tau)\leq C_T\bigg(\frac{\epsilon^{3-2\alpha }}{\delta^4 }+\frac{\epsilon^{4-2\alpha }}{\delta^7 }\bigg)\epsilon^{2-2\alpha}+\frac{\epsilon^4}{\delta^5}+\frac{\epsilon^{4+2\alpha}}{\delta^9} +C\|(\phi _0, \Psi_0 , \zeta_0 )\|^2_2. \end{align} (3.34)

    Proof. It remains to show the energy estimate of Q .

    • Zero-order energy estimate of Q :

    We multiply the fourth equation of (3.4) with Q and integrate the resulting equation over \mathbb{R}\times \mathbb{T}_\epsilon to get

    \begin{align} \frac{1}{b}\|Q\|^2+\frac{\epsilon ^{2-2\alpha }}{ab}\|\mathrm{div}Q \|^2 & = \frac{\epsilon ^{1-\alpha }}{a} \int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon } \nabla(\bar\theta^4-\theta ^4 )Q\mathrm{d}y +\frac{\epsilon ^{3-3\alpha }}{a^2}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }(\bar{\theta^4 } )_{y_1y_1y_1}Q_1\mathrm{d}y\\ &: = \mathcal{W}_{1, 1}+\mathcal{W}_{1, 2}. \end{align} (3.35)

    Using Lemmas 2.2 and 2.3, we have

    \begin{align*} \mathcal{W}_{1, 1}&\le C\epsilon ^{1-\alpha }\left | \int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }\nabla\left(\zeta^{4}+4 \zeta^{3} \tilde {\theta}+6 \zeta^{2} \tilde {\theta}^{2}+4\zeta\tilde {\theta}^3 \right)Q\mathrm{d}y\right |\\ & \quad + C\epsilon ^{1-\alpha } \left |\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }\left (\mathcal{P}^4+4\mathcal{P}^3\bar{\theta }+6\mathcal{P}^2\bar{\theta }^2+4\mathcal{P}\bar{\theta }^3 \right )_{y_1}Q\mathrm{d}y\right |\\ &\le C\epsilon ^{1-\alpha }\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }\bigg(|\nabla \zeta ||Q| +|\zeta ||Q||\tilde \theta _{y_1}|\bigg) \mathrm{d}y+C\epsilon ^{1-\alpha }\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }\bigg(|\mathcal{P} ||\bar{\theta }_{y_1}| |Q|+|\mathcal{P}_{y_1}||Q|\bigg)\mathrm{d}y\\ &\le \frac{1}{5b}\|Q\|^2+C\epsilon ^{2-2\alpha }\|\nabla \zeta \|^2 +C_T\frac{\epsilon^2 }{\delta^2}\|\zeta \|^2 +C_T\frac{\epsilon ^4}{\delta ^5}, \end{align*}

    and

    \mathcal{W}_{1, 2}\leq \epsilon ^{3-3\alpha }\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }|(\bar{\theta^4 } )_{y_1y_1y_1}||Q_1|\mathrm{d}y \le \frac{1}{5b}\|Q\|^2+ C\frac{\epsilon ^{6-2\alpha }}{\delta ^5} .

    Thus, for any \tau\in [0, \tau_1(\epsilon)] , we plug the above estimates into (3.35), then use (3.14) and (3.19) to obtain

    \begin{align} \bigg(\|Q\|^2+\epsilon ^{2-2\alpha }\|\mathrm{div}Q \|^2\bigg)(\tau) &\le C\epsilon ^{2-2\alpha }\|\nabla \zeta \|^2 +C_T\frac{\epsilon^2 }{\delta^2}\|\zeta \|^2 +C_T\frac{\epsilon ^4}{\delta ^5}\\ &\leq C_T\bigg(\epsilon^{2-2\alpha}+\frac{\epsilon^2}{\delta^2}\bigg) \bigg(\frac{\epsilon^{3-2\alpha }}{\delta^4 }+\frac{\epsilon^{4-2\alpha }}{\delta^7 }\bigg) +C_T\frac{\epsilon ^4}{\delta ^5}+C\|(\phi _0, \Psi_0 , \zeta_0 )\|^2_1. \end{align} (3.36)

    • First-order energy estimate of Q :

    Applying the operator \nabla to the fourth equation of (3.4), then multiplying with \nabla Q and integrating the resulting equation over \mathbb{R}\times \mathbb{T}_\epsilon , we have

    \begin{align} \frac{1}{b}\|\nabla Q\|^2+\frac{\epsilon ^{2-2\alpha }}{ab}\|\nabla \mathrm{div}Q \|^2 & = \frac{\epsilon ^{1-\alpha }}{a} \int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon } \nabla^2(\bar\theta^4- \theta ^4 )\cdot\nabla Q\mathrm{d}y +\frac{\epsilon ^{3-3\alpha }}{a^2}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }(\bar{\theta^4 } )_{y_1y_1y_1y_1}Q_{1y_1}\mathrm{d}y\\ &: = \mathcal{W}_{2, 1}+\mathcal{W}_{2, 2}. \end{align} (3.37)

    Direct calculations give that

    \begin{align*} \mathcal{W}_{2, 1} &\le C\epsilon ^{1-\alpha }\left |\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }\nabla^2\left(\zeta^{4}+4 \zeta^{3} \tilde {\theta}+6 \zeta^{2} \tilde {\theta}^{2}+4\zeta \tilde \theta ^3\right)\cdot \nabla Q\mathrm{d}y\right |\\ & \quad + C\epsilon ^{1-\alpha } \left |\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }\left (\mathcal{P}^4+4\mathcal{P}^3\bar{\theta }+6\mathcal{P}^2\bar{\theta }^2+4\mathcal{P}\bar{\theta }^3 \right )_{y_1y_1}Q_{1y_1}\mathrm{d}y\right |. \end{align*}

    Furthermore, we use Lemmas 2.2 and 2.3 to derive that

    \begin{align*} &C\epsilon ^{1-\alpha }\left |\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }\nabla^2\left(\zeta^{4}+4 \zeta^{3} \tilde {\theta}+6 \zeta^{2} \tilde {\theta}^{2}+4\zeta \tilde \theta ^3\right)\cdot \nabla Q\mathrm{d}y\right |\\ &\le C\epsilon ^{1-\alpha } \int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }|\nabla Q ||\zeta |\left(|\nabla \zeta |^2+|\nabla ^2\zeta |+|\nabla \zeta ||\tilde \theta _{y_1}|+|\zeta ||\tilde \theta _{y_1y_1}|+|\zeta ||\tilde \theta^2 _{y_1}|\right)\mathrm{d}y\\ &\le C\epsilon^{4-4\alpha} \|\nabla \zeta\|^2 \|\nabla \zeta\|^2_1+C\epsilon ^{4-4\alpha} \|\nabla^2 \zeta\|^2+\frac{1}{4b}\|\nabla Q\|^2\\ & \quad +C \epsilon^{2-2\alpha}\|\bar{\theta }_{y_1}\|_{L^\infty{(\mathbb{R})}} \int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }| Q_{1y_1} \zeta_{y_1}|\mathrm{d}y +C\epsilon ^{2-2\alpha}\|\mathcal{P} _{y_1}\|_{L^\infty (\mathbb{R})}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }| Q_{1y_1} \zeta_{y_1}|\mathrm{d}y\\ & \quad +C\epsilon ^{6-6\alpha }\bigg(\|\mathcal{P}_{y_1y_1} \|^2+\|\bar{\theta }_{y_1y_1} \|^2+\|\bar{\theta }_{y_1}\|^4+\|\mathcal{P} _{y_1}\|^4\bigg)\\ &\le C\epsilon ^{6-6\alpha } \|\nabla \zeta \|^2+ C\epsilon ^{4-4\alpha } \|\nabla^2 \zeta \|^2+\frac{1}{3b}\|\nabla Q\|^2\\ & \quad +C_T\bigg(\frac{\epsilon^{4-2\alpha} }{\delta^2 }+\frac{\epsilon ^{6-2\alpha }}{\delta ^{5}} \bigg)\|\nabla \zeta \|^2+C_T\bigg(\frac{\epsilon^{8-4\alpha } }{\delta^6 }+\frac{\epsilon ^{6-4\alpha }}{\delta ^{3}} +\frac{\epsilon ^{6-4\alpha}}{\delta^2}+\frac{\epsilon ^{10-4\alpha}}{\delta ^{8}} \bigg), \end{align*}

    and

    \begin{align*} &C\epsilon ^{1-\alpha } \left |\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }\left (\mathcal{P}^4+4\mathcal{P}^3\bar{\theta }+6\mathcal{P}^2\bar{\theta }^2+4\mathcal{P}\bar{\theta }^3 \right )_{y_1y_1}Q_{1y_1}\mathrm{d}y\right |\\ &\le C\epsilon ^{1-\alpha }\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }\bigg(|\mathcal{P}_{y_1}|^2|Q_{1y_1}|+|\mathcal{P}_{y_1y_1} ||Q_{1y_1}| +|\bar{\theta }_{y_1} |^2|\mathcal{P} ||Q_{1y_1}|+|\bar{\theta }_{y_1y_1} ||\mathcal{P} ||Q_1{y_1}|\bigg)\mathrm{d}y\\ &\le \frac{1}{3b}\|\nabla Q\|^2+C_T\frac{\epsilon ^{6+2\alpha }}{\delta ^9} + C_T\frac{\epsilon ^{4+2\alpha }}{\delta ^6}, \end{align*}

    so we have

    \mathcal{W}_{2, 1} \le \frac{1}{3b}\|\nabla Q\|^2 +C\epsilon ^{6-6\alpha } \|\nabla \zeta \|^2+ C\epsilon ^{4-4\alpha } \|\nabla^2 \zeta \|^2 +C_T\frac{\epsilon ^{4+2\alpha }}{\delta^6 }.

    Obviously, it holds that

    \mathcal{W}_{2, 2}\leq \epsilon ^{3-3\alpha }\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }|(\bar{\theta^4 } )_{y_1y_1y_1y_1}||Q_{1y_1}|\mathrm{d}y \le \frac{1}{3b}\|\nabla Q\|^2+ C\frac{\epsilon ^{6 }}{\delta ^7}.

    Thus, for any \tau\in [0, \tau_1(\epsilon)] , inserting the above estimates into (3.37), then using (3.19) and (3.27), we obtain

    \begin{align} \bigg(\|\nabla Q\|^2+\epsilon ^{2-2\alpha }\|\nabla \mathrm{div}Q \|^2\bigg)(\tau) &\le C\epsilon ^{6-6\alpha }\|\nabla \zeta \|^2 +C\epsilon^{4-4\alpha}\|\nabla^2\zeta \|^2 +C_T\frac{\epsilon ^{4+2\alpha}}{\delta ^6}+C\frac{\epsilon^6}{\delta^7}\\ &\leq C_T\epsilon^{4-4\alpha} \bigg(\frac{\epsilon^{3-2\alpha }}{\delta^4 }+\frac{\epsilon^{4-2\alpha }}{\delta^7 }\bigg)+ C_T\frac{\epsilon ^{4+2\alpha}}{\delta ^6}+C\frac{\epsilon^6}{\delta^7}+C\|(\phi _0, \Psi_0 , \zeta_0 )\|^2_2. \end{align} (3.38)

    • Second-order energy estimate of Q :

    Last, we apply the operator \nabla^2 to the fourth equation of (3.4), multiply with \nabla^2 Q , and integrate the resulting equation over \mathbb{R}\times \mathbb{T}_\epsilon to obtain

    \begin{align} \frac{1}{b}\|\nabla^2 Q\|^2+\frac{\epsilon ^{2-2\alpha }}{ab}\|\nabla^2 \mathrm{div}Q \|^2 & = \frac{\epsilon ^{1-\alpha }}{a} \int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon } \nabla^2(\theta^4- \bar \theta ^4 )\cdot\nabla^2\mathrm{div} Q\mathrm{d}y+\frac{\epsilon ^{3-3\alpha }}{a^2}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }(\bar{\theta^4 } )_{y_1y_1y_1y_1y_1}Q_{1y_1y_1}\mathrm{d}y\\ &: = \mathcal{W}_{3, 1}+\mathcal{W}_{3, 2}. \end{align} (3.39)

    We divide the \mathcal{W}_{3, 1} into two terms.

    \begin{align*} \mathcal{W}_{3, 1} \le& C\epsilon ^{1-\alpha }\left |\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }\nabla^2\left(\zeta^{4}+4 \zeta^{3} \tilde {\theta}+6 \zeta^{2} \tilde {\theta}^{2}+4\zeta \tilde \theta ^3\right)\cdot \nabla^2\mathrm{div} Q\mathrm{d}y\right |\\ &+ C\epsilon ^{1-\alpha } \left |\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }\left (\mathcal{P}^4+4\mathcal{P}^3\bar{\theta }+6\mathcal{P}^2\bar{\theta }^2+4\mathcal{P}\bar{\theta }^3 \right )_{y_1y_1y_1}Q_{1y_1y_1}\mathrm{d}y\right |. \end{align*}

    We use Lemmas 2.2 and 2.3 to obtain

    \begin{align*} &C\epsilon ^{1-\alpha }\left |\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }\nabla^2\left(\zeta^{4}+4 \zeta^{3} \tilde {\theta}+6 \zeta^{2} \tilde {\theta}^{2}+4\zeta \tilde \theta ^3\right)\cdot \nabla^2\mathrm{div} Q\mathrm{d}y\right |\\ &\le C\epsilon ^{1-\alpha } \int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }|\nabla^2\mathrm{div} Q ||\zeta |\left(|\nabla \zeta |^2+|\nabla ^2\zeta |+|\nabla \zeta ||\tilde \theta _{y_1}|+|\zeta ||\tilde \theta _{y_1y_1}|+|\zeta ||\tilde \theta^2 _{y_1}|\right)\mathrm{d}y\\ &\le C\epsilon^{2-2\alpha} \|\nabla \zeta\|^2 \|\nabla \zeta\|^2_1+C\epsilon ^{2-2\alpha} \|\nabla^2 \zeta\|^2+\frac{\epsilon^{2-2\alpha } }{3ab}\|\nabla^2\mathrm{div} Q\|^2+C \epsilon^{2-2\alpha}\|\bar{\theta }_{y_1}\|_{L^\infty{(\mathbb{R})}} \int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }| Q_{1y_1} \zeta_{y_1}|\mathrm{d}y\\ & \quad +C\epsilon ^{2-2\alpha}\|\mathcal{P} _{y_1}\|_{L^\infty (\mathbb{R})}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }| Q_{1y_1} \zeta_{y_1}|\mathrm{d}y+C\epsilon ^{4-4\alpha }\bigg(\|\mathcal{P}_{y_1y_1} \|^2+\|\bar{\theta }_{y_1y_1} \|^2+\|\bar{\theta }_{y_1}\|^4+\|\mathcal{P} _{y_1}\|^4\bigg)\\ &\le C\epsilon ^{4-4\alpha } \|\nabla \zeta \|^2+ C\epsilon ^{2-2\alpha } \|\nabla^2 \zeta \|^2+\frac{\epsilon ^{2-2\alpha }}{3ab}\|\nabla^2\mathrm{div} Q\|^2\\ & \quad +C_T\bigg(\frac{\epsilon^{2} }{\delta^2 }+\frac{\epsilon ^{4 }}{\delta ^{5}} \bigg)\|\nabla \zeta \|^2+C_T\bigg(\frac{\epsilon^{6-2\alpha } }{\delta^6 }+\frac{\epsilon ^{4-2\alpha }}{\delta ^{3}}+ \frac{\epsilon ^{4-2\alpha }}{\delta^2 }+\frac{\epsilon ^{8-2\alpha }}{\delta ^{8}} \bigg), \end{align*}

    and

    \begin{align*} &C\epsilon ^{1-\alpha } \left |\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }\left (\mathcal{P}^4+4\mathcal{P}^3\bar{\theta }+6\mathcal{P}^2\bar{\theta }^2+4\mathcal{P}\bar{\theta }^3 \right )_{y_1y_1y_1}Q_{1y_1y_1}\mathrm{d}y\right |\\ &\le C\epsilon ^{1-\alpha}\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon } \bigg (|\mathcal{P}_{y_1}|^3|Q_{1y_1y_1}|+|\mathcal{P}_{y_1y_1y_1} ||Q_{1y_1y_1}| +|\bar{\theta }_{y_1} |^3|\mathcal{P} ||Q_{1y_1y_1}|+|\bar{\theta }_{y_1y_1y_1} ||\mathcal{P} ||Q_{1y_1y_1}|\\ & \quad +|\mathcal{P}_{y_1y_1}||\mathcal{P}_{y_1} ||Q_{1y_1y_1}|+|\mathcal{P}_{y_1y_1}||\bar{\theta } _{y_1} ||Q_{1y_1y_1}| +|\bar{\theta } _{y_1y_1}||\mathcal{P}_{y_1}||Q_{1y_1y_1}|+|\bar{\theta } _{y_1y_1}||\bar\theta _{y_1}||\mathcal{P} ||Q_{1y_1y_1}|\bigg )\mathrm{d}y\\ &\le \frac{1}{3b}\|\nabla ^2Q\|^2+C_T\bigg(\frac{\epsilon^{8+2\alpha } }{\delta ^{14}}+\frac{\epsilon^{4+4\alpha } }{\delta ^{8}} +\frac{\epsilon^{4+2\alpha } }{\delta ^{9}} +\frac{\epsilon^{6+2\alpha } }{\delta ^{12}}\bigg) . \end{align*}

    Then plugging the above estimates into \mathcal{W}_{3, 1} , we have

    \begin{align*} \mathcal{W}_{3, 1} \le C\epsilon ^{4-4\alpha } \|\nabla \zeta \|^2+ C\epsilon ^{2-2\alpha } \|\nabla^2 \zeta \|^2+\frac{1}{3b}\|\nabla^2 Q\|^2+\frac{\epsilon ^{2-2\alpha }}{3ab}\|\nabla^2\mathrm{div} Q\|^2 +C_T \frac{\epsilon ^{4+2\alpha }}{\delta^9 }. \end{align*}

    Also, it holds

    \mathcal{W}_{3, 2}\leq \epsilon ^{3-3\alpha }\int\limits_{\mathbb{R}\times \mathbb{T}_\epsilon }|(\bar{\theta^4 } )_{y_1y_1y_1y_1y_1}||Q_{1y_1y_1}|\mathrm{d}y \le \frac{1}{3b}\|\nabla^2 Q\|^2+ C\frac{\epsilon ^{6+2\alpha }}{\delta ^9}.

    Thus, for any \tau\in [0, \tau_1(\epsilon)] , inserting the above estimates into (3.39), then using (3.19) and (3.27), we obtain

    \begin{align} \bigg(\|\nabla^2 Q\|^2+\epsilon ^{2-2\alpha }\|\nabla^2 \mathrm{div}Q \|^2\bigg)(\tau) &\le C\epsilon ^{4-4\alpha }\|\nabla \zeta \|^2 +C\epsilon^{2-2\alpha}\|\nabla^2\zeta \|^2 +C\frac{\epsilon^{4+2\alpha}}{\delta^9}\\ &\leq C_T\epsilon^{2-2\alpha} \bigg(\frac{\epsilon^{3-2\alpha }}{\delta^4 }+\frac{\epsilon^{4-2\alpha }}{\delta^7 }\bigg)+ C_T\frac{\epsilon ^{4+2\alpha}}{\delta ^9}+C\|(\phi _0, \Psi_0 , \zeta_0 )\|^2_2. \end{align} (3.40)

    Finally, we combine (3.36), (3.38), and (3.40) together to end the proof of (3.34).

    Collecting Lemmas 3.1–3.4 together, choosing \delta = \epsilon^{\omega}|\ln\epsilon| with

    \begin{equation} \omega\in \left ( 0, \frac{1}{4} \right ] \quad \mathrm{and} \quad \alpha\in \left(\frac{5}{8}, 1\right), \end{equation} (3.41)

    such that

    \begin{equation} \left. \begin{aligned} \frac{\epsilon^{3-2\alpha}}{\delta^4}+\frac{\epsilon^{4-2\alpha}}{\delta^7}\ll \epsilon^{2-2\alpha}, &\\ \frac{\epsilon^4}{\delta^5}+\frac{\epsilon^{4+2\alpha}}{\delta^9}\ll \epsilon^{4-4\alpha}, &\\ \left(\frac{\epsilon}{\delta^{\frac{5}{2}}}, \frac{\epsilon^{2\alpha-1}}{\delta}, \frac{\epsilon^{\alpha}}{\delta^2}\right)\ll 1, & \end{aligned} \right\} \mathrm{when} \quad \epsilon\ll 1, \end{equation} (3.42)

    we finally close the a priori Assumption (3.10) and obtain a priori estimates (3.11) and (3.12). Eventually, Proposition 3.1 is proved.

    In this paper, we establish the vanishing viscosity limit for the two-dimensional radiative hydrodynamics system, demonstrating that its solutions converge to the planar rarefaction wave solution of the corresponding compressible Euler equations as the viscosity parameter \epsilon\to 0 . Further, we develop new cancelation mechanisms to address the radiative term in the system. Instead of specifying the order of scaling, we provide a broad range of orders. Using carefully designed scaling relationships and performing meticulous energy estimates, we establish the explicit convergence rate presented in (1.11). This shows that our result serves as a generalization of [11,12] to radiative hydrodynamics.

    The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The author declare no conflict of interest.



    [1] F. Huang, Xing Li, Convergence to the rarefaction wave for a model of radiating gas in one-dimension, Acta Math. Appl. Sin. Engl. Ser., 32 (2016), 239–256. https://doi.org/10.1007/s10255-016-0576-7 doi: 10.1007/s10255-016-0576-7
    [2] Z. Xin, Zero dissipation limit to rarefaction waves for the one-dimensional Navier-Stokes equations of compressible isentropic gases, Commun. Pure Appl. Math., 46 (1993), 621–665.
    [3] D. Hoff, T. Liu, The inviscid limit for the Navier-Stokes equations of compressible, isentropic flow with shock data, Ind. Uni. Math. J., 38 (1989), 861–915.
    [4] F. Huang, Y. Wang, T. Yang, Vanishing viscosity limit of the compressible Navier-Stokes equations for solutions to a Riemann problem, Arch. Rational Mech. Anal., 203 (2012), 379–413. https://doi.org/10.1007/s00205-011-0450-y doi: 10.1007/s00205-011-0450-y
    [5] F. Huang, Y. Wang, T. Yang, Fluid dynamic limit to the riemann solutions of Euler equations: Ⅰ. Superposition of rarefaction waves and contact discontinuity, Kinet. Related Models, 3 (2010), 685–728.
    [6] G. Q. G. Chen, M. Perepelitsa, Vanishing viscosity limit of the Navier-Stokes equations to the Euler equations for compressible fluid flow, Commun. Pure Appl. Math., 63 (2010), 1469–1504. https://doi.org/10.1002/cpa.20332 doi: 10.1002/cpa.20332
    [7] S. Jiang, G. Ni, W. Sun, Vanishing viscosity limit to rarefaction waves for the Navier-Stokes equations of one-dimensional compressible heat-conducting fluids, SIAM J. Math. Anal., 38 (2006), 368–384. https://doi.org/10.1137/050626478 doi: 10.1137/050626478
    [8] N. Masmoudi, Remarks about the inviscid limit of the Navier-Stokes system, Commun. Math. Phys., 270 (2007), 777–788. https://doi.org/10.1007/s00220-006-0171-5 doi: 10.1007/s00220-006-0171-5
    [9] S. H. Yu, Zero-dissipation limit of solutions with shocks for systems of hyperbolic conservation laws, Arch. Rational Mech. Anal., 146 (1999), 275–370. https://doi.org/10.1007/s002050050143 doi: 10.1007/s002050050143
    [10] L. Li, D. Wang, Y. Wang, Vanishing viscosity limit to the planar rarefaction wave for the two-dimensional compressible Navier-Stokes equations, Commun. Math. Phys., 376 (2020), 353–384. https://doi.org/10.1007/s00220-019-03580-8 doi: 10.1007/s00220-019-03580-8
    [11] L. Li, D. Wang, Y. Wang, Vanishing dissipation limit to the planar rarefaction wave for the three-dimensional compressible Navier-Stokes-Fourier equations, J. Funct. Anal., 283 (2022), 109499. https://doi.org/10.1016/j.jfa.2022.109499 doi: 10.1016/j.jfa.2022.109499
    [12] X. Li, L. Li, Vanishing viscosity limit to the planar rarefaction wave for the two-dimensional full compressible Navier-Stokes equations, J. Differ. Equ., 269 (2020), 3160–3195. https://doi.org/10.1016/j.jde.2020.02.026 doi: 10.1016/j.jde.2020.02.026
    [13] L. Li, Y. Wang, Stability of planar rarefaction wave to two-dimensional compressible Navier-Stokes equations, SIAM J. Math. Anal., 50 (2018), 4937–4963. https://doi.org/10.1137/18M1171059 doi: 10.1137/18M1171059
    [14] L. Li, T. Wang, Y. Wang, Stability of planar rarefaction wave to 3D full compressible Navier-Stokes equations, Arch. Rational Mech. Anal., 230 (2018), 911–937. https://doi.org/10.1007/s00205-018-1260-2 doi: 10.1007/s00205-018-1260-2
    [15] M. Hou, L. Liu, S. Wang, L. Xu, Vanishing viscosity limit to the planar rarefaction wave with vacuum for 3-D full compressible Navier-Stokes equations with temperaturedependent transport coefficients, Math. Ann., 390 (2024), 3513–3566. https://doi.org/10.1007/s00208-024-02840-w doi: 10.1007/s00208-024-02840-w
    [16] L. Fan, L. Ruan, W. Xiang, Asymptotic stability of a composite wave of two viscous shock waves for the one-dimensional radiative Euler equations, Ann. l'Institut Henri Poincar´e C, Anal. non lin´eaire, 36 (2019), 1–25. https://doi.org/10.1016/j.anihpc.2018.03.008 doi: 10.1016/j.anihpc.2018.03.008
    [17] L. Fan, L. Ruan, W. Xiang, Asymptotic stability of rarefaction wave for the inflow problem governed by the one-dimensional radiative Euler equations, SIAM J. Math. Anal., 51 (2019), 595–625. https://doi.org/10.1137/18M1203043 doi: 10.1137/18M1203043
    [18] L. Fan, L. Ruan, W. Xiang, Global stability of rarefaction wave for the outflow problem governed by the radiative Euler equations, Ind. Uni. Math. J., 71 (2022), 463–508. https://doi.org/10.1512/iumj.2022.71.8925 doi: 10.1512/iumj.2022.71.8925
    [19] J. Smoller, Shock waves and reaction-diffusion equations, Berlin: Grundlehren der mathematischen Wissenschaften, Springer, 1994.
    [20] P. D. Lax, Hyperbolic systems of conservation laws Ⅱ, Commun. Pure Appl. Math., 10 (1957), 537–566.
    [21] F. Huang, M. Li, Y. Wang, Zero dissipation limit to rarefaction wave with vacuum for one-dimensional compressible Navier–Stokes equations, SIAM J. Math. Anal., 44 (2012), 1742–1759. https://doi.org/10.1137/100814305 doi: 10.1137/100814305
    [22] B. Huang, L. Zhang, Asymptotic stability of planar rarefaction wave to 3D radiative hydrodynamics, Nonlinear Anal. Real World Appl., 46 (2019), 43–57. https://doi.org/10.1016/j.nonrwa.2018.09.003 doi: 10.1016/j.nonrwa.2018.09.003
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(376) PDF downloads(49) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog