Processing math: 12%
Research article Special Issues

Bivariate step-stress accelerated life test for a new three-parameter model under progressive censored schemes with application in medical

  • Received: 19 November 2023 Revised: 17 December 2023 Accepted: 21 December 2023 Published: 08 January 2024
  • MSC : 62N05, 62H05, 62F15

  • In this article, a new three-parameter lifetime model called the Gull alpha power exponentiated exponential (GAPEE) distribution is introduced and studied by combining the Gull alpha power family of distributions and the exponentiated exponential distribution. The shapes of the probability density function (PDF) for the GAPEE distribution can be asymmetric shapes, like unimodal, decreasing, and right-skewed. In addition, the shapes of the hazard rate function (hrf) for the GAPEE distribution can be increasing, decreasing, and upside-down shaped. Several statistical features of the GAPEE distribution are computed. Eight estimation methods such as the maximum likelihood, Anderson-Darling, right-tail Anderson-Darling, left-tailed Anderson-Darling, Cramér-von Mises, least-squares, weighted least-squares, and maximum product of spacing are discussed to estimate the parameters of the GAPEE distribution. The flexibility and the importance of the GAPEE distribution were demonstrated utilizing three real-world datasets related to medical sciences. The GAPEE distribution is extremely adaptable and outperforms several well-known statistical models. A bivariate step-stress accelerated life test based on progressive type-I censoring using the model is presented. Minimizing the asymptotic variance of the maximum likelihood estimate of the log of the scale parameter at design stress under progressive type-I censoring yields an expression for the ideal test plan under progressive type-I censoring.

    Citation: Naif Alotaibi, A. S. Al-Moisheer, Ibrahim Elbatal, Salem A. Alyami, Ahmed M. Gemeay, Ehab M. Almetwally. Bivariate step-stress accelerated life test for a new three-parameter model under progressive censored schemes with application in medical[J]. AIMS Mathematics, 2024, 9(2): 3521-3558. doi: 10.3934/math.2024173

    Related Papers:

    [1] Mohamed S. Eliwa, Essam A. Ahmed . Reliability analysis of constant partially accelerated life tests under progressive first failure type-II censored data from Lomax model: EM and MCMC algorithms. AIMS Mathematics, 2023, 8(1): 29-60. doi: 10.3934/math.2023002
    [2] Neama Salah Youssef Temraz . Analysis of stress-strength reliability with m-step strength levels under type I censoring and Gompertz distribution. AIMS Mathematics, 2024, 9(11): 30728-30744. doi: 10.3934/math.20241484
    [3] A. M. Abd El-Raheem, Ehab M. Almetwally, M. S. Mohamed, E. H. Hafez . Accelerated life tests for modified Kies exponential lifetime distribution: binomial removal, transformers turn insulation application and numerical results. AIMS Mathematics, 2021, 6(5): 5222-5255. doi: 10.3934/math.2021310
    [4] Veronica Kariuki, Anthony Wanjoya, Oscar Ngesa, Mahmoud M. Mansour, Enayat M. Abd Elrazik, Ahmed Z. Afify . The accelerated failure time regression model under the extended-exponential distribution with survival analysis. AIMS Mathematics, 2024, 9(6): 15610-15638. doi: 10.3934/math.2024754
    [5] Bing Long, Zaifu Jiang . Estimation and prediction for two-parameter Pareto distribution based on progressively double Type-II hybrid censored data. AIMS Mathematics, 2023, 8(7): 15332-15351. doi: 10.3934/math.2023784
    [6] Tahani A. Abushal, Alaa H. Abdel-Hamid . Inference on a new distribution under progressive-stress accelerated life tests and progressive type-II censoring based on a series-parallel system. AIMS Mathematics, 2022, 7(1): 425-454. doi: 10.3934/math.2022028
    [7] H. M. Barakat, M. A. Alawady, I. A. Husseiny, M. Nagy, A. H. Mansi, M. O. Mohamed . Bivariate Epanechnikov-exponential distribution: statistical properties, reliability measures, and applications to computer science data. AIMS Mathematics, 2024, 9(11): 32299-32327. doi: 10.3934/math.20241550
    [8] Ahmed R. El-Saeed, Ahmed T. Ramadan, Najwan Alsadat, Hanan Alohali, Ahlam H. Tolba . Analysis of progressive Type-Ⅱ censoring schemes for generalized power unit half-logistic geometric distribution. AIMS Mathematics, 2023, 8(12): 30846-30874. doi: 10.3934/math.20231577
    [9] Hanan Haj Ahmad, Ehab M. Almetwally, Dina A. Ramadan . A comparative inference on reliability estimation for a multi-component stress-strength model under power Lomax distribution with applications. AIMS Mathematics, 2022, 7(10): 18050-18079. doi: 10.3934/math.2022994
    [10] Mazen Nassar, Refah Alotaibi, Ahmed Elshahhat . Reliability analysis at usual operating settings for Weibull Constant-stress model with improved adaptive Type-Ⅱ progressively censored samples. AIMS Mathematics, 2024, 9(7): 16931-16965. doi: 10.3934/math.2024823
  • In this article, a new three-parameter lifetime model called the Gull alpha power exponentiated exponential (GAPEE) distribution is introduced and studied by combining the Gull alpha power family of distributions and the exponentiated exponential distribution. The shapes of the probability density function (PDF) for the GAPEE distribution can be asymmetric shapes, like unimodal, decreasing, and right-skewed. In addition, the shapes of the hazard rate function (hrf) for the GAPEE distribution can be increasing, decreasing, and upside-down shaped. Several statistical features of the GAPEE distribution are computed. Eight estimation methods such as the maximum likelihood, Anderson-Darling, right-tail Anderson-Darling, left-tailed Anderson-Darling, Cramér-von Mises, least-squares, weighted least-squares, and maximum product of spacing are discussed to estimate the parameters of the GAPEE distribution. The flexibility and the importance of the GAPEE distribution were demonstrated utilizing three real-world datasets related to medical sciences. The GAPEE distribution is extremely adaptable and outperforms several well-known statistical models. A bivariate step-stress accelerated life test based on progressive type-I censoring using the model is presented. Minimizing the asymptotic variance of the maximum likelihood estimate of the log of the scale parameter at design stress under progressive type-I censoring yields an expression for the ideal test plan under progressive type-I censoring.



    Statistical models can be used to describe and forecast real-world occurrences. Several extended distributions have been widely employed in data modeling throughout the last few decades. Recent advances have focused on establishing new families that expand well-known distributions while providing tremendous flexibility in modeling data in practice [62,63]. A large field of statistics aims at developing distributions with innovative characteristics to create flexible models for data interpretation. In reality, a new distribution can provide a new modeling perspective and a deeper description of the underlying mechanisms establishing the data. A more robust family of distributions is produced by these phenomena of parameter addition, which is effectively used to model data sets from the fields of engineering, economics, biological research, and environmental sciences. Consequently, several well-known generating families of distributions in this respect include the generalized odd Burr III-G [31], truncated Cauchy power Weibull-G [8], the generalized transmuted-G [50], generalized inverted Kumaraswamy-G [35], truncated Burr X-G [16], odd generalized N-H-G [3], sine extended odd Fréchet-G [36], generalized odd log-logistic [26], arcsine exponentiated-X family [33], generalized truncated Fréchet [61], tan-G [56], extended cosine-G [46], type II exponentiated half logistic-G [4], logistic-G [59], sine-G [40], cosine-G [57], alpha power transformed family of distributions [41], and for more detail see [4,5,17,43,51]. In 2020, Ijaz [34] presented a new family of generalized distributions called the GAP family of distributions and they defined its cumulative distribution function (CDF), probability density function (PDF) as

    F(x)=τ1G(x)G(x),τ>0,xR (1.1)

    and

    f(x)=τ1G(x)g(x)[1log(τ)G(x)],τ>0,xR. (1.2)

    Many authors used the CDF (1.1) and PDF (1.2) to get new generalizations and new sub-models of the Gull alpha power (GAP) family of distributions as the exponentiated generalized Gull alpha power family of distributions [39], Gull alpha power Ampadu family of distributions [12], Kumaraswamy-Gull alpha power Rayleigh distribution [42], and exponentiated Gull alpha power exponential distribution [38].

    The exponentiated exponential (EE) distribution has been demonstrated to be useful in a variety of applications such as life testing, survival analysis, and dependability. This distribution, which is a particular case of the exponentiated Weibull distribution [44,45], was studied in [29]. The CDF and PDF of the EE distribution with scale parameter a and shape parameter b are provided via

    G(x;a,b)=(1eax)b,x,a,b>0 (1.3)

    and

    g(x;a,b)=abeax(1eax)b1,x,a,b>0. (1.4)

    According to the flexibility of the EE distribution, many statisticians utilized it to create new generalizations of the EE distribution, like the beta EE distribution [19], Marshall-Olkin EE distribution [52], half-Cauchy EE distribution [22], odd Lomax EE distribution [54], and modified slashed EE distribution [14].

    When investigations, including the lifespan of test units, must end before full observation, censored data emerges in real-world testing trials. For a number of reasons, including time constraints and financial considerations, censoring is a frequent and necessary routine action. The many forms of censorship have been well studied; types I and II censorship are the most common. A generalized censorship technique known as progressive censored schemes has lately garnered significant attention in the literature compared to standard censorship designs because of its effective use of available resources. The (PTIC) is one of several progressive censored Type-II systems. When a specific number of lifetime test units are consistently removed from the test at the end of each post-test interval, this pattern is seen. According to a study by Balakrishnan et al. [15], it can realistically predict the termination time and provides additional design freedom by permitting test units to be terminated during non-terminal time periods.

    We now talk about accelerated life tests (ALTs), which are ways to get more data in a shorter amount of time by stressing out items more than they would under normal operating settings. Time and money can be significantly saved with such testing. Hakamipour [30] describes the step-stress accelerated life test (SSALT) as one form of ALT. Typically, the researcher starts with a stress level that is slightly over normal condition and gradually increases it at pre-specified time intervals during the test. The test goes on until the time limit is achieved and censoring takes place, or until the full sample of things fails. For more information about SSALT under PTIC, see [9,10].

    The major goal of this paper is to add to the literature by introducing the Gull alpha power exponentiated exponential distribution (GAPEED) as a novel three-parameter model based on the GAP family of distributions. The subsequent points give adequate cause for examining it:

    (1) The GAPEED is a very flexible model whose PDF can be asymmetric (decreasing, unimodal, and right-skewed).

    (2) The hazard function (hrf) shape of the GAPEED includes increasing, upside-down and decreasing shapes.

    (3) The GAPEED has a closed-form quantile function; it is easy to compute numerous properties and generate random numbers using it.

    (4) The parameters of the GAPEED can be estimated utilizing eight different methods of estimation: The maximum likelihood (ML), Anderson-Darling (AD), right-tail Anderson-Darling (RTAD), left-tailed Anderson-Darling (LTAD), Cramér-von Mises (CVM), least-squares (LS), weighted least-squares (WLS), and maximum product of spacing (MPS).

    (5) The importance and the flexibility of the GAPEED is discussed using three real datasets, and the GAPEED gives a better fit than well-known distributions such as the Topp-Leone modified Weibull (TLMW), Type II exponentiated half logistic power Lomax (TIIEHLPL), exponential Lomax (EL), Kumaraswamy Weibull (KW), generalized modified Weibull (GMW), Marshall- Olkin alpha power extended Weibull (MOAPEW), exponential Weibull (EW), exponentiated generalized alpha power exponential (EGAPEx), Kavya-Manoharan generalized exponential (KMGEx), exponentiated half logistic inverted Nadarajah- Haghighi (EHLINH), exponentiated exponential (ExEx), and odd Weibull inverse Topp-Leone (OWITL).

    (6) We suggest utilizing the GAPEED model to create bivariate SSALTs under PTIC. The optimal test strategy for our suggested bivariate SSALT under PTIC is found by minimizing the asymptotic variance of the MLEs of the scale parameter's.

    The remainder of this article is structured as follows: In Section 2, a new three-parameter model utilizing the EE distribution as the parent distribution in the GAP family is presented and discussed. Some important statistical features of the GAPEED are demonstrated in Section 3. Eight different estimation methods, ML, AD, CVM, MPS, LS, RTAD, WLS, and LTAD for the distribution parameters, are proposed in Section 4. In Section 5, we use a Monte Carlo technique to evaluate the quality of different estimators. To illustrate the importance of the GAPEED, we employed three real datasets in Section 6. In Section 7, the bivariate SSALT under the progressive type-I censoring (PTIC) model is discussed. Finally, the paper with concluding remarks.

    The GAPEED can be formulated by inserting (1.3) and (1.4) into (1.1) and (1.2), and then the CDF of the new suggested model is defined as

    F(x;a,b,τ)=(1eax)bτ1(1eax)b,x>0,a,b,τ>0 (2.1)

    and its PDF is defined as follows

    f(x;a,b,τ)=abeax(1eax)b1τ1(1eax)b[1log(τ)(1eax)b]. (2.2)

    The survival function, hazard rate function (hrf), reversed hrf, and cumulative hrf are provided as

    s(x;a,b,τ)=1(1eax)bτ1(1eax)b,
    h(x;a,b,τ)=abeax(1eax)b1τ1(1eax)b[1log(τ)(1eax)b]1(1eax)bτ1(1eax)b,
    ς(x;a,b,τ)=ab[1log(τ)(1eax)b]eax1

    and

    H(x;a,b,τ)=log[1(1eax)bτ1(1eax)b].

    Figure 1 shows the plots of the PDF and hrf for the GAPEED for different values of parameters. From Figure 1, we can note that the PDF of the GAPEED can be decreasing, unimodal, and right skewed but the hrf can be decreasing, increasing, and up-side-down.

    Figure 1.  Plots of PDF and hrf for the GAPEED.

    The quantile function, defined as Q(p;a,b,τ)=F1(p;a,b,τ),p(0, 1), is computed by inverting Eq (1.1) as

    p=τG(x)τG(x).

    Then, we can rewrite the above equation as

    plog(τ)τ=G(x)log(τ)eG(x)log(τ).

    As a result, through the use of the negative Lambert W function, represented by W1(.), we obtain the quantile function of the GAPEED as

    Q(p;a,b,τ)=1alog[1(W1[plog(τ)τ]log(τ))1b].

    Specifically, by inserting p=0.25, 0.5, and 0.75, we obtain the first, second (median), and third quantiles. Furthermore, relying on the quantiles, Bowley's skewness (α1) and Moor's kurtosis (α2) are provided via

    α1=Q(0.75;a,b,τ)2Q(0.5;a,b,τ)+Q(0.25;a,b,τ)Q(0.75;a,b,τ)Q(0.25;a,b,τ)

    and

    α2=Q(0.875;a,b,τ)Q(0.625;a,b,τ)+Q(0.375;a,b,τ)Q(0.125;a,b,τ)Q(0.75;a,b,τ)Q(0.25;a,b,τ),

    respectively. These metrics provide helpful details about the GAPEED skewness and kurtosis modeling capabilities and have the benefit of being specified for all parameter values. The plots of α1 and α2 for the GAPEED are given in Figure 2.

    Figure 2.  Plots of α1 and α2 for the GAPEED at a = 0.5.

    The rth ordinary moments are essential statistics for determining the measures of dispersion for any distribution. Assume that X GAPEED (a,b,τ) for x>0, then the rth ordinary moments of X can computed via

    μr=0xrf(x)dx=ab0xreax(1eax)b1τ1(1eax)b[1log(τ)(1eax)b]dx (3.1)

    by using the power series

    τm=i=0(log(τ))ii!mi. (3.2)

    Inserting (3.2) into (3.1), then

    μr=abi=0(log(τ))ii!0xreax(1eax)b1[1(1eax)b]i[1log(τ)(1eax)b]dx. (3.3)

    Employing the binomial expansion

    (1x)β=j=0(1)j(βj)xj (3.4)

    and inserting (3.4) into (3.3), we get

    μr=abi,j=0(1)j(ij)(log(τ))ii!0xreax(1eax)b(j+1)1[1log(τ)(1eax)b]dx. (3.5)

    We can rewrite the above Eq (3.5) as

    μr=i,j=0πi,j0xr[eax(1eax)b(j+1)1log(τ)eax(1eax)b(j+2)1]dx, (3.6)

    where πi,j=ab(1)j(ij)(log(τ))ii!. Again, using the binomial expansion (3.4) in (3.6), then the rth ordinary moments of the GAPEED are given by

    μr=i,j,k=0πi,j,k0xrea(k+1)xdx=i,j,k=0πi,j,kΓ(r+1)[a(k+1)]r+1, (3.7)

    where πi,j,k=(1)kπi,j[(b(j+1)1k)(b(j+2)1k)log(τ)].

    Table 1 shows some numerical values of μ1, μ2, μ3, μ4, variance (σ2), coefficient of variation (CV), skewness, and kurtosis. Also, some 3D plots of moments are provided in Figure 3.

    Table 1.  Some numerical values of moments for the GAPEED.
    Parameters Measures
    a b τ μ1 μ2 μ3 μ4 σ2 CV skewness kurtosis
    0.5 0.75 0.25 2.68979 12.4088 79.9101 662.52 5.17387 0.845648 2.52479 6.88807
    0.9 1.74385 6.75901 40.1156 319.514 3.71799 1.10572 4.59144 9.78582
    1.5 1.5 2.0773 7.90377 45.4087 353.528 3.5886 0.911934 4.29041 9.70584
    2.0 1.68603 5.38955 27.4263 198.4 2.54684 0.94653 5.75592 12.5055
    0.75 0.75 0.25 1.79319 5.51503 23.6771 130.868 2.2995 0.845648 2.52479 6.88807
    0.9 1.16257 3.004 11.8861 63.1139 1.65244 1.10572 4.59144 9.78582
    1.5 1.5 1.38487 3.51279 13.4544 69.8326 1.59493 0.911934 4.29041 9.70584
    2.0 1.12402 2.39536 8.12631 39.1901 1.13193 0.94653 5.75592 12.5055
    1.5 0.75 0.25 0.896596 1.37876 2.95963 8.17926 0.574874 0.845648 2.52479 6.88807
    0.9 0.581283 0.751001 1.48576 3.94462 0.41311 1.10572 4.59144 9.78582
    1.5 1.5 0.692433 0.878196 1.68181 4.36454 0.398733 0.911934 4.29041 9.70584
    2.0 0.562011 0.598839 1.01579 2.44938 0.282982 0.94653 5.75592 12.5055
    2.5 0.75 0.25 0.537958 0.496353 0.63928 1.06003 0.206955 0.845648 2.52479 6.88807
    0.9 0.34877 0.27036 0.320925 0.511223 0.14872 1.10572 4.59144 9.78582
    1.5 1.5 0.41546 0.316151 0.36327 0.565644 0.143544 0.911934 4.29041 9.70584
    2.0 0.337207 0.215582 0.21941 0.31744 0.101874 0.94653 5.75592 12.5055

     | Show Table
    DownLoad: CSV
    Figure 3.  3D plots of moments for the GAPEED at a = 0.5.

    The moment-generating function for the GAPEED can be computed from (3.7) as

    Mx(t)=0etxf(x)dx=i,j,k=0πi,j,k0xre[a(k+1)t]xdx=i,j,k=0πi,j,kΓ(r+1)[a(k+1)t]r+1.

    The sth lower and upper incomplete moments of the GAPEED are computed as

    ωs(t)=i,j,k=0πi,j,kt0xsea(k+1)xdx=i,j,k=0πi,j,kγ(s+1,a(k+1)t)[a(k+1)]s+1,

    and

    υs(t)=i,j,k=0πi,j,ktxsea(k+1)xdx=i,j,k=0πi,j,kΓ(s+1,a(k+1)t)[a(k+1)]s+1,

    where γ(.,.) and Γ(.,.) are the lower and upper incomplete gamma functions.

    This section introduces traditional estimation methods specifically designed for estimating the parameters of the GAPEED. These methods are applied in a simulation setting to assess their effectiveness and performance. A total of eight estimation methods are considered for this purpose. Each method involves deriving an estimate by optimizing an objective function to either maximize or minimize a specific value. The estimation setting and the definitions of the functions to be optimized are provided in detail below.

    Suppose we have a random sample of values, denoted as x1,x2,,xn, drawn from a random variable that follows the GAPEED. In order to estimate the parameters of the GAPEED, we employ various estimation methods. The first method is maximum likelihood estimation (MLE), where the estimators are obtained by maximizing a specific function which is defined as

    logL=ni=1log(τ1(1eaxi)b)+ni=1log(1log(τ)(1eaxi)b)+bni=1log(1eaxi)ni=1log(eaxi1)+nlog(ab).

    Next, we utilize Anderson-Darling estimation (ADE) [13] technique for estimating the GAPEED parameters. By considering an ordered sample of values, denoted as x(1),x(2),,x(n), we minimize a certain function to derive the estimators, which is defined as

    A=n1nni=1(2i1)[log(τ)(1(1eax(i))b)+blog(1eax(i))+log(1(1eax(i))bτ1(1eax(i))b)].

    Similarly, we employ the right-tail Anderson-Darling estimation (RADE) [13] by minimizing a specific function, defined as

    R=n22ni=1(1eax(i))bτ1(1eax(i))b1nni=1(2i1)log(1(1eax(i))bτ1(1eax(i))b).

    Additionally, the left-tailed Anderson-Darling estimation (LTADE) [47] is utilized to estimate the GAPEED parameters. This estimation method involves minimizing a particular function to obtain the estimators and is defined as

    L=32n+2ni=1(1eax(i))bτ1(1eax(i))b1nni=1(2i1)[log(τ)(1(1eax(i))b)+blog(1eax(i))].

    Furthermore, we consider Cramér-von Mises estimation (CVME) [23], where the estimators are obtained by minimizing a specific function defined as

    C=112n+ni=1[(1eax(i))bτ1(1eax(i))b2i12n]2.

    Another estimation method employed is least-squares estimation (LSE) [58], which involves minimizing a certain function to derive the estimators. This function is defined as follows

    V=ni=1[(1eax(i))bτ1(1eax(i))bin+1]2.

    Additionally, we employ weighted least-squares estimation (WLSE) [58] by minimizing a particular function, and it is defined as

    W=ni=1(n+1)2(n+2)i(ni+1)[(1eax(i))bτ1(1eax(i))bin+1]2.

    Lastly, the maximum product of spacing estimation (MPSE) [37] method is utilized, where the estimators are obtained by maximizing a specific function. This function is defined as

    Υ=1n+1n+1i=1log(ϑi),

    where

    ϑi=(1eax(i))bτ1(1eax(i))b(1eax(i1))bτ1(1eax(i1))b.

    One frequently employed technique for creating confidence intervals (CIs) for parameters relies on the asymptotic normality of MLE and MPS. This method employs the Fisher information matrix, represented as I(θθ), where θθ=(τ,a,b), which is obtained from the second derivatives of the natural logarithm of the likelihood function or product spacing function, calculated at the estimated parameter values ^θθ=(ˆτ,ˆa,ˆb). The asymptotic variance-covariance matrix of the parameter vector θθ can be articulated as follows:

    I(^θθ)=[IˆaˆaIˆbˆaIˆbˆbIˆηˆaIˆηˆbIˆηˆη,]. (4.1)

    The matrix representing the variances and covariances of the estimated parameters, identified as V(^θθ), is determined by taking the inverse of the Fisher information matrix, denoted as I1(^θθ). To create CIs for the parameter vector θθ based on the MLE's asymptotic normality, one can calculate a 100(1α)% confidence interval for each parameter using the following procedure:

    To calculate the CI for a use this formula: ˆa±Z0.025Vˆaˆa.

    To calculate the CI for b use this formula: ˆb±Z0.025Vˆbˆb.

    To calculate the CI for η use this formula: ˆη±Z0.025Vˆaˆa.

    In this context, Z0.025 denotes the critical value from the standard normal distribution's right tail, with a probability of α2. The values Vˆaˆa, Vˆbˆb, and Vˆηˆη correspond to the diagonal components of the variance-covariance matrix V(^θθ).

    In our comprehensive simulation study, we investigate the performance of our proposed model using various sample sizes: n=35, 70, 150, 300 and 600. To generate representative datasets, we employ the inversion of the CDF of our proposed model. For each sample size, we randomly generate datasets based on the following parameter values: θθ=(τ,a,b)={(τ=0.5,a=0.25,b=0.75),(τ=1.5,a=0.75,b=0.5), (τ=2,a=0.5,b=1.5),(τ=2,a=1.5,b=2),(τ=0.75,a=2,b=3),(τ=0.25,a=3,b=0.25)}. This process is repeated five thousand of times. By varying the sample sizes and incorporating diverse parameter combinations, our simulation study aims to comprehensively evaluate the performance of the proposed model across different data scenarios.

    To thoroughly examine the effectiveness of the considered estimation methods, we employ a range of measures that comprehensively evaluate their performance. These measures serve as valuable benchmarks in assessing the quality of the estimators and provide insights into their accuracy, efficiency, and robustness. The following measures are employed to assess the effectiveness of the estimation methods [20,53,60]:

    ● Average of bias:

    Bias=1nnm=1|^θθiθθ|,

    where L represents the number of iterations and ^θθi is the considered estimate for θθ at the m-th iteration sample.

    ● Mean squared error:

    MSE=1nnm=1(^θθθθ)2.

    ● Mean relative error:

    MRE=1nnm=1|^θθθθ|θθ.

    ● Average absolute difference:

    Dabs=1nkkm=1nj=1|F(xij;θθ)F(xij;^θθ)|,

    where F(x;θθ)=F(x) and xij denotes the values obtained at the m-th iteration sample and j-th component of this sample.

    ● Maximum absolute difference

    Dmax=1nnm=1maxj=1,,n|F(xij;θθ)F(xij;^θθ)|.

    ● Average squared absolute error:

    ASAE=1nnm=1|x(i)ˆx(i)|x(L)x(1),

    where x(i) are the ascending ordered observations. The results of simulating the proposed model parameters using different estimation techniques are presented in Tables 27. A graphical representation for some numerical values is presented in Figures 4 and 5. A comprehensive analysis of these tables reveals the following key observations:

    Table 2.  Simulation values of BIAS, MSE, MRE, Dabs, Dmax, and ASAE for (τ=0.5,a=0.25,b=0.75).
    n Est. Est. Par. MLE ADE CVME MPSE LSE RTADE WLSE LTADE
    35 BIAS ˆτ 0.32671{1} 0.58371{5} 0.56143{2} 0.57133{3} 0.60648{6} 0.63277{8} 0.5738{4} 0.61215{7}
    ˆa 0.04966{1} 0.06013{4} 0.0625{6} 0.05958{3} 0.06715{8} 0.06343{7} 0.05815{2} 0.06028{5}
    ˆb 0.24844{1} 0.28129{4} 0.28515{5} 0.29203{6} 0.27907{2} 0.29342{7} 0.28051{3} 0.31435{8}
    MSE ˆτ 0.16299{1} 0.59664{5} 0.52583{2} 0.58252{4} 0.61607{6} 0.721{7} 0.55021{3} 0.93333{8}
    ˆa 0.00411{1} 0.00549{4} 0.00611{6} 0.0054{3} 0.00663{7.5} 0.00663{7.5} 0.00519{2} 0.00574{5}
    ˆb 0.10323{1} 0.11811{4} 0.12803{6} 0.11815{5} 0.1178{3} 0.14159{8} 0.11156{2} 0.14151{7}
    MRE ˆτ 0.65343{1} 1.16742{5} 1.12285{2} 1.14267{3} 1.21295{6} 1.26554{8} 1.1476{4} 1.22429{7}
    ˆa 0.19865{1} 0.24052{4} 0.25{6} 0.23833{3} 0.2686{8} 0.2537{7} 0.23258{2} 0.2411{5}
    ˆb 0.33126{1} 0.37506{4} 0.3802{5} 0.38937{6} 0.37209{2} 0.39123{7} 0.37402{3} 0.41913{8}
    Dabs 0.04372{2} 0.04281{1} 0.04653{7} 0.04411{3} 0.04606{5} 0.04624{6} 0.0448{4} 0.04683{8}
    Dmax 0.07294{3} 0.07168{2} 0.07905{8} 0.07157{1} 0.0766{5} 0.07807{6} 0.07418{4} 0.07819{7}
    ASAE 0.02941{7} 0.02686{2} 0.02879{5} 0.02748{4} 0.02895{6} 0.02682{1} 0.02728{3} 0.03173{8}
    Ranks 21{1} 44{3.5} 60{5} 44{3.5} 64.5{6} 79.5{7} 36{2} 83{8}
    70 BIAS ˆτ 0.31314{1} 0.47069{3} 0.48998{5} 0.49062{6} 0.50913{7} 0.54111{8} 0.47654{4} 0.46785{2}
    ˆa 0.03421{1} 0.04143{2} 0.04746{6} 0.04299{3} 0.04804{7} 0.04809{8} 0.04356{4} 0.04532{5}
    ˆb 0.21631{1} 0.2507{5} 0.23911{2} 0.27064{7} 0.24898{3} 0.24985{4} 0.25229{6} 0.2829{8}
    MSE ˆτ 0.1496{1} 0.41058{4} 0.43118{5} 0.45507{7} 0.44542{6} 0.55159{8} 0.40366{3} 0.39192{2}
    ˆa 0.00191{1} 0.00286{2} 0.0034{6} 0.00317{4} 0.00368{8} 0.00366{7} 0.00308{3} 0.00328{5}
    ˆb 0.07529{1} 0.08986{4} 0.0849{2} 0.10267{7} 0.08698{3} 0.09562{6} 0.09{5} 0.11517{8}
    MRE ˆτ 0.62627{1} 0.94139{3} 0.97995{5} 0.98124{6} 1.01826{7} 1.08221{8} 0.95309{4} 0.93571{2}
    ˆa 0.13684{1} 0.16572{2} 0.18984{6} 0.17197{3} 0.19217{7} 0.19238{8} 0.17425{4} 0.18128{5}
    ˆb 0.28842{1} 0.33426{5} 0.31881{2} 0.36085{7} 0.33197{3} 0.33314{4} 0.33638{6} 0.3772{8}
    Dabs 0.03037{1} 0.03108{3} 0.03275{8} 0.03089{2} 0.03226{5} 0.03245{6} 0.03186{4} 0.03262{7}
    Dmax 0.05103{2} 0.05227{3} 0.05581{8} 0.05055{1} 0.05432{5} 0.05561{7} 0.0531{4} 0.05469{6}
    ASAE 0.01852{7} 0.01764{3} 0.01828{5} 0.01771{4} 0.0183{6} 0.01677{1} 0.01726{2} 0.02027{8}
    Ranks 19{1} 39{2} 60{5} 57{4} 67{7} 75{8} 49{3} 66{6}
    150 BIAS ˆτ 0.27897{1} 0.33896{2} 0.4218{7} 0.37504{5} 0.40603{6} 0.43235{8} 0.36118{4} 0.33952{3}
    ˆa 0.02475{1} 0.02809{2} 0.03377{8} 0.02817{3} 0.03358{7} 0.03171{6} 0.0292{4} 0.03094{5}
    ˆb 0.17834{1} 0.19969{2} 0.22885{6} 0.23606{8} 0.21943{4} 0.23111{7} 0.20646{3} 0.22692{5}
    MSE ˆτ 0.12003{1} 0.21771{3} 0.32049{7} 0.26977{5} 0.2889{6} 0.35196{8} 0.2381{4} 0.18081{2}
    ˆa 0.00097{1} 0.00137{2} 0.00186{7} 0.00155{5} 0.00189{8} 0.00175{6} 0.00149{3} 0.00151{4}
    ˆb 0.05034{1} 0.05811{2} 0.07333{5} 0.08301{8} 0.06651{4} 0.07845{7} 0.06122{3} 0.07669{6}
    MRE ˆτ 0.55795{1} 0.67793{2} 0.84359{7} 0.75008{5} 0.81206{6} 0.86469{8} 0.72235{4} 0.67904{3}
    ˆa 0.09901{1} 0.11236{2} 0.1351{8} 0.11269{3} 0.13434{7} 0.12685{6} 0.11682{4} 0.12378{5}
    ˆb 0.23779{1} 0.26626{2} 0.30514{6} 0.31475{8} 0.29257{4} 0.30814{7} 0.27529{3} 0.30257{5}
    Dabs 0.02145{2} 0.02295{7} 0.0217{3} 0.02129{1} 0.02288{6} 0.023{8} 0.02213{4} 0.0225{5}
    Dmax 0.03601{2} 0.03845{6} 0.03771{4} 0.03525{1} 0.03891{7} 0.03973{8} 0.03688{3} 0.03798{5}
    ASAE 0.011{5} 0.01062{3} 0.01139{6} 0.01092{4} 0.01146{7} 0.01039{1} 0.01045{2} 0.01269{8}
    Ranks 18{1} 35{2} 74{7} 56{4.5} 72{6} 80{8} 41{3} 56{4.5}
    300 BIAS ˆτ 0.20018{1} 0.243{4} 0.29528{6} 0.23781{3} 0.31369{7} 0.33876{8} 0.23778{2} 0.25695{5}
    ˆa 0.01707{1} 0.01972{4} 0.02215{6} 0.01893{3} 0.02216{7} 0.02177{5} 0.01829{2} 0.02228{8}
    ˆb 0.13506{1} 0.15636{3} 0.18002{6} 0.17262{5} 0.19427{7} 0.20028{8} 0.15561{2} 0.16985{4}
    MSE ˆτ 0.0643{1} 0.1019{4} 0.14664{6} 0.08922{2} 0.16416{7} 0.21518{8} 0.08995{3} 0.10932{5}
    ˆa 0.00047{1} 0.00066{4} 0.00082{6} 0.00056{2.5} 0.00088{8} 0.00087{7} 0.00056{2.5} 0.00081{5}
    ˆb 0.03228{1} 0.03756{3} 0.0464{4} 0.05353{7} 0.05263{6} 0.05765{8} 0.03636{2} 0.04878{5}
    MRE ˆτ 0.40037{1} 0.486{4} 0.59055{6} 0.47561{3} 0.62739{7} 0.67751{8} 0.47557{2} 0.5139{5}
    ˆa 0.06829{1} 0.07887{4} 0.08859{6} 0.0757{3} 0.08866{7} 0.0871{5} 0.07315{2} 0.08912{8}
    ˆb 0.18008{1} 0.20848{3} 0.24002{6} 0.23017{5} 0.25903{7} 0.26704{8} 0.20748{2} 0.22646{4}
    Dabs 0.01493{1} 0.01579{5} 0.0158{6} 0.0154{3} 0.01595{7} 0.01566{4} 0.01501{2} 0.01623{8}
    Dmax 0.02495{1} 0.02657{4} 0.0273{6} 0.02576{3} 0.02745{7} 0.02722{5} 0.02546{2} 0.02772{8}
    ASAE 0.00711{5} 0.00685{2} 0.00726{6} 0.007{4} 0.00737{7} 0.0066{1} 0.00688{3} 0.008{8}
    Ranks 16{1} 44{4} 70{5} 43.5{3} 84{8} 75{7} 26.5{2} 73{6}
    600 BIAS ˆτ 0.14883{1} 0.18347{4} 0.22873{7} 0.16341{2} 0.2235{6} 0.23795{8} 0.17744{3} 0.18749{5}
    ˆa 0.01222{1} 0.01372{4} 0.01577{7} 0.01259{2} 0.01528{6} 0.01437{5} 0.01333{3} 0.01579{8}
    ˆb 0.09866{1} 0.12057{3} 0.14941{7} 0.12377{5} 0.14754{6} 0.15886{8} 0.11439{2} 0.12134{4}
    MSE ˆτ 0.03594{1} 0.05294{4} 0.07897{7} 0.04896{2} 0.07454{6} 0.08434{8} 0.04983{3} 0.05618{5}
    ˆa 0.00024{1} 3e04{4} 0.00039{7} 0.00025{2} 0.00038{6} 0.00033{5} 0.00028{3} 4e04{8}
    ˆb 0.01685{1} 0.02314{3} 0.03354{7} 0.03316{6} 0.03195{5} 0.03586{8} 0.02149{2} 0.02667{4}
    MRE ˆτ 0.29767{1} 0.36695{4} 0.45746{7} 0.32682{2} 0.447{6} 0.47591{8} 0.35489{3} 0.37498{5}
    ˆa 0.04889{1} 0.05487{4} 0.06308{7} 0.05037{2} 0.0611{6} 0.05747{5} 0.05332{3} 0.06316{8}
    ˆb 0.13154{1} 0.16077{3} 0.19922{7} 0.16503{5} 0.19672{6} 0.21182{8} 0.15252{2} 0.16179{4}
    Dabs 0.0111{4.5} 0.01086{2} 0.01153{8} 0.01074{1} 0.01151{7} 0.0111{4.5} 0.011{3} 0.01132{6}
    Dmax 0.01861{3} 0.01858{2} 0.02{8} 0.01805{1} 0.01977{7} 0.01944{5} 0.01862{4} 0.01945{6}
    ASAE 0.00463{5} 0.00449{2} 0.00477{7} 0.00458{4} 0.00468{6} 0.00423{1} 0.00453{3} 0.0053{8}
    Ranks 21.5{1} 42{4} 85{8} 34{2.5} 72{6} 72.5{7} 34{2.5} 71{5}

     | Show Table
    DownLoad: CSV
    Table 3.  Simulation values of BIAS, MSE, MRE, Dabs, Dmax, and ASAE for (τ=1.5,a=0.75,b=0.5).
    n Est. Est. Par. MLE ADE CVME MPSE LSE RTADE WLSE LTADE
    35 BIAS ˆτ 0.52028{1} 0.68928{3} 0.70994{5} 0.69622{4} 0.75178{7} 0.67815{2} 0.72398{6} 1.13877{8}
    ˆa 0.31117{5} 0.30596{4} 0.34262{7} 0.29874{2} 0.32249{6} 0.29648{1} 0.30057{3} 0.40126{8}
    ˆb 0.10184{1} 0.12191{2} 0.12619{4} 0.12737{5} 0.14134{8} 0.12264{3} 0.13027{7} 0.12801{6}
    MSE ˆτ 0.39328{1} 0.62488{3} 0.63359{4} 0.64832{5} 0.70817{7} 0.59038{2} 0.6678{6} 5.81642{8}
    ˆa 0.19077{6} 0.16766{4} 0.21757{7} 0.13867{1} 0.1814{5} 0.15924{3} 0.14761{2} 0.28201{8}
    ˆb 0.01765{1} 0.02526{3} 0.02541{4} 0.02837{7} 0.03057{8} 0.02415{2} 0.02725{5} 0.02764{6}
    MRE ˆτ 0.34685{1} 0.45952{3} 0.47329{5} 0.46415{4} 0.50118{7} 0.4521{2} 0.48266{6} 0.75918{8}
    ˆa 0.41489{5} 0.40795{4} 0.45682{7} 0.39832{2} 0.42998{6} 0.39531{1} 0.40076{3} 0.53502{8}
    ˆb 0.20368{1} 0.24381{2} 0.25237{4} 0.25474{5} 0.28267{8} 0.24528{3} 0.26055{7} 0.25601{6}
    Dabs 0.04223{1} 0.04403{2} 0.04672{8} 0.04455{3} 0.04648{7} 0.04513{4} 0.04515{5} 0.04614{6}
    Dmax 0.07079{1} 0.07367{3} 0.07922{8} 0.07196{2} 0.07766{6} 0.07539{5} 0.07491{4} 0.07795{7}
    ASAE 0.02942{7} 0.02673{4} 0.02904{5} 0.02425{1} 0.02924{6} 0.02505{2} 0.02572{3} 0.03359{8}
    Ranks 31{2} 37{3} 68{6} 41{4} 81{7} 30{1} 57{5} 87{8}
    70 BIAS ˆτ 0.44843{1} 0.55647{2} 0.60703{6} 0.59899{5} 0.61789{7} 0.59399{4} 0.5885{3} 0.81136{8}
    ˆa 0.21823{1} 0.23547{2} 0.28101{7} 0.24595{4} 0.27126{6} 0.24022{3} 0.25611{5} 0.34138{8}
    ˆb 0.07119{1} 0.07899{2} 0.09493{7} 0.09127{4} 0.09464{6} 0.09441{5} 0.08918{3} 0.09618{8}
    MSE ˆτ 0.29594{1} 0.41655{2} 0.47968{5} 0.50918{7} 0.49378{6} 0.47083{4} 0.46093{3} 1.11606{8}
    ˆa 0.08284{1} 0.08655{2} 0.13227{7} 0.08818{3} 0.12046{6} 0.09121{4} 0.10373{5} 0.1922{8}
    ˆb 0.00891{1} 0.01107{2} 0.01553{5.5} 0.01731{8} 0.01553{5.5} 0.01424{4} 0.01391{3} 0.01668{7}
    MRE ˆτ 0.29895{1} 0.37098{2} 0.40469{6} 0.39933{5} 0.41193{7} 0.39599{4} 0.39233{3} 0.5409{8}
    ˆa 0.29097{1} 0.31396{2} 0.37468{7} 0.32794{4} 0.36168{6} 0.32029{3} 0.34148{5} 0.45517{8}
    ˆb 0.14238{1} 0.15797{2} 0.18985{7} 0.18254{4} 0.18928{6} 0.18881{5} 0.17837{3} 0.19237{8}
    Dabs 0.03152{2.5} 0.03098{1} 0.03327{6} 0.03152{2.5} 0.03365{7} 0.03254{5} 0.0324{4} 0.03395{8}
    Dmax 0.05225{3} 0.05176{1} 0.0565{6} 0.05216{2} 0.05677{7} 0.05497{5} 0.05425{4} 0.05832{8}
    ASAE 0.01684{5} 0.0164{4} 0.01827{7} 0.01516{2} 0.01819{6} 0.01497{1} 0.01597{3} 0.02063{8}
    Ranks 19.5{1} 24{2} 76.5{7} 50.5{5} 75.5{6} 47{4} 44{3} 95{8}
    150 BIAS ˆτ 0.35036{1} 0.41902{2} 0.48817{6} 0.48135{5} 0.50235{7} 0.47052{4} 0.45634{3} 0.61217{8}
    ˆa 0.15767{1} 0.18619{2} 0.21414{6} 0.20254{5} 0.22223{7} 0.18666{3} 0.18946{4} 0.26043{8}
    ˆb 0.04827{1} 0.05232{3} 0.06485{7} 0.05135{2} 0.06782{8} 0.06386{6} 0.05683{4} 0.06102{5}
    MSE ˆτ 0.18777{1} 0.25158{2} 0.32527{5} 0.352{7} 0.34253{6} 0.31557{4} 0.28732{3} 0.5778{8}
    ˆa 0.04089{1} 0.05247{3} 0.07072{6} 0.06092{5} 0.07443{7} 0.05186{2} 0.05349{4} 0.10477{8}
    ˆb 0.00404{1} 0.00479{2} 0.00774{7} 0.00548{3} 0.00827{8} 0.00696{6} 0.00551{4} 0.00665{5}
    MRE ˆτ 0.23357{1} 0.27934{2} 0.32544{6} 0.3209{5} 0.3349{7} 0.31368{4} 0.30422{3} 0.40811{8}
    ˆa 0.21023{1} 0.24825{2} 0.28552{6} 0.27005{5} 0.29631{7} 0.24888{3} 0.25261{4} 0.34723{8}
    ˆb 0.09655{1} 0.10464{3} 0.12969{7} 0.1027{2} 0.13565{8} 0.12772{6} 0.11365{4} 0.12204{5}
    Dabs 0.02102{1} 0.02184{3} 0.02231{5} 0.02208{4} 0.02368{8} 0.02251{6} 0.02177{2} 0.02282{7}
    Dmax 0.03532{1} 0.03657{2} 0.03853{6} 0.0366{3} 0.04015{8} 0.03831{5} 0.03668{4} 0.03957{7}
    ASAE 0.00991{5} 0.0094{3} 0.0108{7} 0.00918{2} 0.01075{6} 0.00871{1} 0.00976{4} 0.01271{8}
    Ranks 16{1} 29{2} 74{6} 48{4} 87{8} 50{5} 43{3} 85{7}
    300 BIAS ˆτ 0.26655{1} 0.33434{3} 0.37325{6} 0.34711{4} 0.39467{7} 0.36499{5} 0.33138{2} 0.48508{8}
    ˆa 0.12193{1} 0.14744{4} 0.16883{6} 0.15015{5} 0.17776{7} 0.14515{2} 0.14696{3} 0.21805{8}
    ˆb 0.03505{1} 0.03905{4} 0.04169{5} 0.03599{2} 0.04485{7} 0.04629{8} 0.03769{3} 0.04173{6}
    MSE ˆτ 0.11494{1} 0.16891{3} 0.19839{4} 0.22068{7} 0.21592{6} 0.20154{5} 0.16587{2} 0.37566{8}
    ˆa 0.0244{1} 0.03273{4} 0.0429{6} 0.03661{5} 0.04653{7} 0.03141{2} 0.03249{3} 0.07079{8}
    ˆb 0.00192{1} 0.00236{4} 0.00295{6} 0.00211{2} 0.00333{7} 0.00349{8} 0.00226{3} 0.00285{5}
    MRE ˆτ 0.1777{1} 0.22289{3} 0.24883{6} 0.23141{4} 0.26311{7} 0.24333{5} 0.22092{2} 0.32339{8}
    ˆa 0.16257{1} 0.19658{4} 0.2251{6} 0.2002{5} 0.23701{7} 0.19353{2} 0.19595{3} 0.29074{8}
    ˆb 0.0701{1} 0.07811{4} 0.08338{5} 0.07198{2} 0.08971{7} 0.09259{8} 0.07539{3} 0.08345{6}
    Dabs 0.0149{1} 0.01559{4} 0.0158{5} 0.01556{3} 0.01608{7} 0.01621{8} 0.01505{2} 0.01595{6}
    Dmax 0.02507{1} 0.02657{4} 0.02735{5} 0.02614{3} 0.02778{7} 0.02768{6} 0.02561{2} 0.02806{8}
    ASAE 0.00607{5} 0.00598{4} 0.0069{7} 0.00571{2} 0.00682{6} 0.00559{1} 0.00593{3} 0.00804{8}
    Ranks 16{1} 45{4} 67{6} 44{3} 82{7} 60{5} 31{2} 87{8}
    600 BIAS ˆτ 0.19544{1} 0.23541{3} 0.30543{6} 0.22954{2} 0.30719{7} 0.2498{5} 0.24212{4} 0.36224{8}
    ˆa 0.08322{1} 0.10415{4} 0.13813{6} 0.10194{2} 0.13953{7} 0.1021{3} 0.10419{5} 0.1712{8}
    ˆb 0.02563{2} 0.02682{3} 0.03267{8} 0.02544{1} 0.03225{7} 0.03151{6} 0.0275{4} 0.02908{5}
    MSE ˆτ 0.06188{1} 0.09047{2} 0.14058{7} 0.12175{5} 0.13924{6} 0.10305{4} 0.09293{3} 0.21849{8}
    ˆa 0.01115{1} 0.01707{3} 0.02836{6} 0.01967{5} 0.02862{7} 0.01637{2} 0.01746{4} 0.04409{8}
    ˆb 0.00105{2} 0.00116{3} 0.00174{8} 0.00103{1} 0.00162{7} 0.00159{6} 0.00118{4} 0.00135{5}
    MRE ˆτ 0.13029{1} 0.15694{3} 0.20362{6} 0.15302{2} 0.20479{7} 0.16653{5} 0.16141{4} 0.24149{8}
    ˆa 0.11096{1} 0.13886{4} 0.18417{6} 0.13592{2} 0.18604{7} 0.13613{3} 0.13892{5} 0.22827{8}
    ˆb 0.05126{2} 0.05365{3} 0.06534{8} 0.05088{1} 0.06449{7} 0.06302{6} 0.055{4} 0.05817{5}
    Dabs 0.01057{1} 0.01082{3} 0.01131{7} 0.0107{2} 0.01154{8} 0.01116{5} 0.01097{4} 0.01124{6}
    Dmax 0.01792{1} 0.01849{3} 0.01965{6} 0.01801{2} 0.02001{8} 0.01931{5} 0.01869{4} 0.01979{7}
    ASAE 0.00367{3} 0.00378{5} 0.00448{7} 0.00364{2} 0.00445{6} 0.0035{1} 0.00376{4} 0.0053{8}
    Ranks 17{1} 39{3} 81{6} 27{2} 84{7.5} 51{5} 49{4} 84{7.5}

     | Show Table
    DownLoad: CSV
    Table 4.  Simulation values of BIAS, MSE, MRE, Dabs, Dmax, and ASAE for (τ=2,a=0.5,b=1.5).
    n Est. Est. Par. MLE ADE CVME MPSE LSE RTADE WLSE LTADE
    35 BIAS ˆτ 0.53211{2} 0.62026{4} 0.75084{7} 0.47271{1} 0.63274{6} 0.62076{5} 0.55091{3} 0.88774{8}
    ˆa 0.17954{7} 0.14419{3} 0.15786{5} 0.13798{1} 0.16003{6} 0.14116{2} 0.14743{4} 0.20721{8}
    ˆb 0.29362{3} 0.2843{2} 0.33553{5} 0.27643{1} 0.34292{7} 0.34139{6} 0.29688{4} 0.35737{8}
    MSE ˆτ 0.48119{1} 3.73487{7} 5.47953{8} 0.75293{2} 1.38498{5} 1.30859{4} 0.81897{3} 1.74615{6}
    ˆa 0.05597{7} 0.03354{3} 0.04117{5} 0.02854{1} 0.04153{6} 0.03226{2} 0.03661{4} 0.06468{8}
    ˆb 0.15312{3} 0.13705{2} 0.20378{7} 0.11466 ^{\{ 1 \}} 0.19627 ^{\{ 6 \}} 0.19503 ^{\{ 5 \}} 0.16026 ^{\{ 4 \}} 0.25206 ^{\{ 8 \}}
    MRE \hat{\tau} 0.26605 ^{\{ 2 \}} 0.31013 ^{\{ 4 \}} 0.37542 ^{\{ 7 \}} 0.23636 ^{\{ 1 \}} 0.31637 ^{\{ 6 \}} 0.31038 ^{\{ 5 \}} 0.27546 ^{\{ 3 \}} 0.44387 ^{\{ 8 \}}
    \hat{a} 0.35909 ^{\{ 7 \}} 0.28838 ^{\{ 3 \}} 0.31573 ^{\{ 5 \}} 0.27597 ^{\{ 1 \}} 0.32006 ^{\{ 6 \}} 0.28232 ^{\{ 2 \}} 0.29486 ^{\{ 4 \}} 0.41442 ^{\{ 8 \}}
    \hat{b} 0.19574 ^{\{ 3 \}} 0.18953 ^{\{ 2 \}} 0.22369 ^{\{ 5 \}} 0.18428 ^{\{ 1 \}} 0.22862 ^{\{ 7 \}} 0.2276 ^{\{ 6 \}} 0.19792 ^{\{ 4 \}} 0.23825 ^{\{ 8 \}}
    D_{abs} 0.04307 ^{\{ 1 \}} 0.0449 ^{\{ 4 \}} 0.04669 ^{\{ 7 \}} 0.04388 ^{\{ 2 \}} 0.04491 ^{\{ 5 \}} 0.04571 ^{\{ 6 \}} 0.04461 ^{\{ 3 \}} 0.04673 ^{\{ 8 \}}
    D_{max} 0.07024 ^{\{ 1 \}} 0.07378 ^{\{ 3 \}} 0.07974 ^{\{ 7 \}} 0.07148 ^{\{ 2 \}} 0.07603 ^{\{ 5 \}} 0.07639 ^{\{ 6 \}} 0.07422 ^{\{ 4 \}} 0.08325 ^{\{ 8 \}}
    ASAE 0.03049 ^{\{ 7 \}} 0.02701 ^{\{ 3 \}} 0.02932 ^{\{ 6 \}} 0.02714 ^{\{ 4 \}} 0.02773 ^{\{ 5 \}} 0.0261 ^{\{ 1 \}} 0.02631 ^{\{ 2 \}} 0.03283 ^{\{ 8 \}}
    \sum Ranks 44 ^{\{ 4 \}} 40 ^{\{ 2 \}} 74 ^{\{ 7 \}} 18 ^{\{ 1 \}} 70 ^{\{ 6 \}} 50 ^{\{ 5 \}} 42 ^{\{ 3 \}} 94 ^{\{ 8 \}}
    70 BIAS \hat{\tau} 0.51021 ^{\{ 6 \}} 0.46181 ^{\{ 3 \}} 0.55823 ^{\{ 7 \}} 0.32583 ^{\{ 1 \}} 0.50722 ^{\{ 5 \}} 0.4729 ^{\{ 4 \}} 0.44219 ^{\{ 2 \}} 0.72147 ^{\{ 8 \}}
    \hat{a} 0.14444 ^{\{ 7 \}} 0.11709 ^{\{ 3 \}} 0.12932 ^{\{ 6 \}} 0.10479 ^{\{ 1 \}} 0.12807 ^{\{ 5 \}} 0.10663 ^{\{ 2 \}} 0.11767 ^{\{ 4 \}} 0.16304 ^{\{ 8 \}}
    \hat{b} 0.21298 ^{\{ 4 \}} 0.19057 ^{\{ 1 \}} 0.22769 ^{\{ 7 \}} 0.19871 ^{\{ 2 \}} 0.22471 ^{\{ 5 \}} 0.22894 ^{\{ 8 \}} 0.20491 ^{\{ 3 \}} 0.22533 ^{\{ 6 \}}
    MSE \hat{\tau} 0.42994 ^{\{ 5 \}} 0.35419 ^{\{ 2 \}} 0.59732 ^{\{ 7 \}} 0.22679 ^{\{ 1 \}} 0.51238 ^{\{ 6 \}} 0.42894 ^{\{ 4 \}} 0.35475 ^{\{ 3 \}} 0.92497 ^{\{ 8 \}}
    \hat{a} 0.03539 ^{\{ 7 \}} 0.02113 ^{\{ 4 \}} 0.02531 ^{\{ 5 \}} 0.01663 ^{\{ 1 \}} 0.02539 ^{\{ 6 \}} 0.01784 ^{\{ 2 \}} 0.02057 ^{\{ 3 \}} 0.0383 ^{\{ 8 \}}
    \hat{b} 0.07882 ^{\{ 5 \}} 0.06102 ^{\{ 2 \}} 0.08373 ^{\{ 6 \}} 0.05998 ^{\{ 1 \}} 0.07835 ^{\{ 4 \}} 0.08602 ^{\{ 7 \}} 0.07017 ^{\{ 3 \}} 0.08803 ^{\{ 8 \}}
    MRE \hat{\tau} 0.25511 ^{\{ 6 \}} 0.2309 ^{\{ 3 \}} 0.27912 ^{\{ 7 \}} 0.16292 ^{\{ 1 \}} 0.25361 ^{\{ 5 \}} 0.23645 ^{\{ 4 \}} 0.2211 ^{\{ 2 \}} 0.36073 ^{\{ 8 \}}
    \hat{a} 0.28889 ^{\{ 7 \}} 0.23418 ^{\{ 3 \}} 0.25864 ^{\{ 6 \}} 0.20958 ^{\{ 1 \}} 0.25613 ^{\{ 5 \}} 0.21326 ^{\{ 2 \}} 0.23534 ^{\{ 4 \}} 0.32609 ^{\{ 8 \}}
    \hat{b} 0.14198 ^{\{ 4 \}} 0.12705 ^{\{ 1 \}} 0.15179 ^{\{ 7 \}} 0.13248 ^{\{ 2 \}} 0.14981 ^{\{ 5 \}} 0.15263 ^{\{ 8 \}} 0.13661 ^{\{ 3 \}} 0.15022 ^{\{ 6 \}}
    D_{abs} 0.03036 ^{\{ 2 \}} 0.03145 ^{\{ 4 \}} 0.03273 ^{\{ 6 \}} 0.02999 ^{\{ 1 \}} 0.03228 ^{\{ 5 \}} 0.03339 ^{\{ 8 \}} 0.03132 ^{\{ 3 \}} 0.03284 ^{\{ 7 \}}
    D_{max} 0.05009 ^{\{ 2 \}} 0.05184 ^{\{ 3 \}} 0.05627 ^{\{ 7 \}} 0.04922 ^{\{ 1 \}} 0.05469 ^{\{ 5 \}} 0.05545 ^{\{ 6 \}} 0.05225 ^{\{ 4 \}} 0.0576 ^{\{ 8 \}}
    ASAE 0.01841 ^{\{ 6 \}} 0.01732 ^{\{ 3 \}} 0.0189 ^{\{ 7 \}} 0.01759 ^{\{ 4 \}} 0.01822 ^{\{ 5 \}} 0.01671 ^{\{ 1 \}} 0.01717 ^{\{ 2 \}} 0.0212 ^{\{ 8 \}}
    \sum Ranks 61 ^{\{ 5.5 \}} 32 ^{\{ 2 \}} 78 ^{\{ 7 \}} 17 ^{\{ 1 \}} 61 ^{\{ 5.5 \}} 56 ^{\{ 4 \}} 36 ^{\{ 3 \}} 91 ^{\{ 8 \}}
    150 BIAS \hat{\tau} 0.43313 ^{\{ 5 \}} 0.38216 ^{\{ 3 \}} 0.4568 ^{\{ 6 \}} 0.2421 ^{\{ 1 \}} 0.46034 ^{\{ 7 \}} 0.38646 ^{\{ 4 \}} 0.36914 ^{\{ 2 \}} 0.55156 ^{\{ 8 \}}
    \hat{a} 0.11342 ^{\{ 7 \}} 0.09493 ^{\{ 4 \}} 0.10673 ^{\{ 5 \}} 0.07841 ^{\{ 1 \}} 0.10869 ^{\{ 6 \}} 0.09064 ^{\{ 2 \}} 0.09329 ^{\{ 3 \}} 0.13012 ^{\{ 8 \}}
    \hat{b} 0.13544 ^{\{ 3 \}} 0.13508 ^{\{ 2 \}} 0.15218 ^{\{ 6 \}} 0.12937 ^{\{ 1 \}} 0.15998 ^{\{ 8 \}} 0.14971 ^{\{ 5 \}} 0.13655 ^{\{ 4 \}} 0.15561 ^{\{ 7 \}}
    MSE \hat{\tau} 0.3042 ^{\{ 5 \}} 0.23781 ^{\{ 3 \}} 0.35945 ^{\{ 6 \}} 0.11844 ^{\{ 1 \}} 0.37455 ^{\{ 7 \}} 0.26349 ^{\{ 4 \}} 0.23662 ^{\{ 2 \}} 0.47541 ^{\{ 8 \}}
    \hat{a} 0.02075 ^{\{ 7 \}} 0.01375 ^{\{ 4 \}} 0.01716 ^{\{ 5 \}} 0.00947 ^{\{ 1 \}} 0.01836 ^{\{ 6 \}} 0.013 ^{\{ 2 \}} 0.01327 ^{\{ 3 \}} 0.02369 ^{\{ 8 \}}
    \hat{b} 0.03131 ^{\{ 4 \}} 0.02853 ^{\{ 2 \}} 0.03592 ^{\{ 5 \}} 0.02519 ^{\{ 1 \}} 0.03888 ^{\{ 8 \}} 0.03726 ^{\{ 7 \}} 0.03049 ^{\{ 3 \}} 0.03632 ^{\{ 6 \}}
    MRE \hat{\tau} 0.21657 ^{\{ 5 \}} 0.19108 ^{\{ 3 \}} 0.2284 ^{\{ 6 \}} 0.12105 ^{\{ 1 \}} 0.23017 ^{\{ 7 \}} 0.19323 ^{\{ 4 \}} 0.18457 ^{\{ 2 \}} 0.27578 ^{\{ 8 \}}
    \hat{a} 0.22685 ^{\{ 7 \}} 0.18986 ^{\{ 4 \}} 0.21346 ^{\{ 5 \}} 0.15681 ^{\{ 1 \}} 0.21737 ^{\{ 6 \}} 0.18128 ^{\{ 2 \}} 0.18657 ^{\{ 3 \}} 0.26023 ^{\{ 8 \}}
    \hat{b} 0.0903 ^{\{ 3 \}} 0.09005 ^{\{ 2 \}} 0.10145 ^{\{ 6 \}} 0.08625 ^{\{ 1 \}} 0.10665 ^{\{ 8 \}} 0.09981 ^{\{ 5 \}} 0.09104 ^{\{ 4 \}} 0.10374 ^{\{ 7 \}}
    D_{abs} 0.02029 ^{\{ 1 \}} 0.02158 ^{\{ 4 \}} 0.02244 ^{\{ 8 \}} 0.02061 ^{\{ 2 \}} 0.02192 ^{\{ 6 \}} 0.02201 ^{\{ 7 \}} 0.0213 ^{\{ 3 \}} 0.02178 ^{\{ 5 \}}
    D_{max} 0.0336 ^{\{ 1 \}} 0.0357 ^{\{ 4 \}} 0.0381 ^{\{ 8 \}} 0.03368 ^{\{ 2 \}} 0.03725 ^{\{ 6 \}} 0.03676 ^{\{ 5 \}} 0.03557 ^{\{ 3 \}} 0.03761 ^{\{ 7 \}}
    ASAE 0.01084 ^{\{ 5 \}} 0.01034 ^{\{ 2 \}} 0.01173 ^{\{ 7 \}} 0.01071 ^{\{ 4 \}} 0.01128 ^{\{ 6 \}} 0.00996 ^{\{ 1 \}} 0.01055 ^{\{ 3 \}} 0.01309 ^{\{ 8 \}}
    \sum Ranks 53 ^{\{ 5 \}} 37 ^{\{ 3 \}} 73 ^{\{ 6 \}} 17 ^{\{ 1 \}} 81 ^{\{ 7 \}} 48 ^{\{ 4 \}} 35 ^{\{ 2 \}} 88 ^{\{ 8 \}}
    300 BIAS \hat{\tau} 0.38726 ^{\{ 6 \}} 0.33359 ^{\{ 2 \}} 0.38992 ^{\{ 7 \}} 0.18992 ^{\{ 1 \}} 0.37128 ^{\{ 5 \}} 0.35983 ^{\{ 4 \}} 0.34388 ^{\{ 3 \}} 0.46204 ^{\{ 8 \}}
    \hat{a} 0.09738 ^{\{ 7 \}} 0.0794 ^{\{ 2 \}} 0.09391 ^{\{ 6 \}} 0.06178 ^{\{ 1 \}} 0.08945 ^{\{ 5 \}} 0.08286 ^{\{ 3 \}} 0.08352 ^{\{ 4 \}} 0.11042 ^{\{ 8 \}}
    \hat{b} 0.09272 ^{\{ 1 \}} 0.10093 ^{\{ 4 \}} 0.11688 ^{\{ 7 \}} 0.09282 ^{\{ 2 \}} 0.11978 ^{\{ 8 \}} 0.10638 ^{\{ 5 \}} 0.10064 ^{\{ 3 \}} 0.11367 ^{\{ 6 \}}
    MSE \hat{\tau} 0.23046 ^{\{ 6 \}} 0.1782 ^{\{ 2 \}} 0.24446 ^{\{ 7 \}} 0.08426 ^{\{ 1 \}} 0.2303 ^{\{ 5 \}} 0.21335 ^{\{ 4 \}} 0.19028 ^{\{ 3 \}} 0.31359 ^{\{ 8 \}}
    \hat{a} 0.01471 ^{\{ 7 \}} 0.00985 ^{\{ 2 \}} 0.01326 ^{\{ 6 \}} 0.0063 ^{\{ 1 \}} 0.01233 ^{\{ 5 \}} 0.01072 ^{\{ 4 \}} 0.01051 ^{\{ 3 \}} 0.01694 ^{\{ 8 \}}
    \hat{b} 0.01347 ^{\{ 2 \}} 0.0154 ^{\{ 3 \}} 0.02142 ^{\{ 7 \}} 0.0127 ^{\{ 1 \}} 0.02166 ^{\{ 8 \}} 0.01781 ^{\{ 5 \}} 0.01588 ^{\{ 4 \}} 0.02005 ^{\{ 6 \}}
    MRE \hat{\tau} 0.19363 ^{\{ 6 \}} 0.16679 ^{\{ 2 \}} 0.19496 ^{\{ 7 \}} 0.09496 ^{\{ 1 \}} 0.18564 ^{\{ 5 \}} 0.17992 ^{\{ 4 \}} 0.17194 ^{\{ 3 \}} 0.23102 ^{\{ 8 \}}
    \hat{a} 0.19476 ^{\{ 7 \}} 0.1588 ^{\{ 2 \}} 0.18781 ^{\{ 6 \}} 0.12356 ^{\{ 1 \}} 0.17891 ^{\{ 5 \}} 0.16573 ^{\{ 3 \}} 0.16703 ^{\{ 4 \}} 0.22084 ^{\{ 8 \}}
    \hat{b} 0.06181 ^{\{ 1 \}} 0.06728 ^{\{ 4 \}} 0.07792 ^{\{ 7 \}} 0.06188 ^{\{ 2 \}} 0.07985 ^{\{ 8 \}} 0.07092 ^{\{ 5 \}} 0.0671 ^{\{ 3 \}} 0.07578 ^{\{ 6 \}}
    D_{abs} 0.01458 ^{\{ 2 \}} 0.01466 ^{\{ 3 \}} 0.01637 ^{\{ 8 \}} 0.01442 ^{\{ 1 \}} 0.01585 ^{\{ 5 \}} 0.01586 ^{\{ 6 \}} 0.01526 ^{\{ 4 \}} 0.01617 ^{\{ 7 \}}
    D_{max} 0.02429 ^{\{ 2 \}} 0.02455 ^{\{ 3 \}} 0.02772 ^{\{ 8 \}} 0.0237 ^{\{ 1 \}} 0.02703 ^{\{ 6 \}} 0.02665 ^{\{ 5 \}} 0.0255 ^{\{ 4 \}} 0.02769 ^{\{ 7 \}}
    ASAE 0.00677 ^{\{ 5 \}} 0.0067 ^{\{ 3 \}} 0.00736 ^{\{ 7 \}} 0.00671 ^{\{ 4 \}} 0.00725 ^{\{ 6 \}} 0.00629 ^{\{ 1 \}} 0.00664 ^{\{ 2 \}} 0.00836 ^{\{ 8 \}}
    \sum Ranks 52 ^{\{ 5 \}} 32 ^{\{ 2 \}} 83 ^{\{ 7 \}} 17 ^{\{ 1 \}} 71 ^{\{ 6 \}} 49 ^{\{ 4 \}} 40 ^{\{ 3 \}} 88 ^{\{ 8 \}}
    600 BIAS \hat{\tau} 0.33439 ^{\{ 6 \}} 0.29901 ^{\{ 2 \}} 0.33425 ^{\{ 5 \}} 0.12434 ^{\{ 1 \}} 0.34928 ^{\{ 7 \}} 0.307 ^{\{ 3 \}} 0.31014 ^{\{ 4 \}} 0.38531 ^{\{ 8 \}}
    \hat{a} 0.08166 ^{\{ 6 \}} 0.0727 ^{\{ 3 \}} 0.07959 ^{\{ 5 \}} 0.04277 ^{\{ 1 \}} 0.08482 ^{\{ 7 \}} 0.07253 ^{\{ 2 \}} 0.0737 ^{\{ 4 \}} 0.09209 ^{\{ 8 \}}
    \hat{b} 0.0686 ^{\{ 2 \}} 0.07273 ^{\{ 4 \}} 0.0851 ^{\{ 7 \}} 0.06697 ^{\{ 1 \}} 0.08853 ^{\{ 8 \}} 0.07975 ^{\{ 5 \}} 0.07184 ^{\{ 3 \}} 0.08318 ^{\{ 6 \}}
    MSE \hat{\tau} 0.16634 ^{\{ 5 \}} 0.13955 ^{\{ 2 \}} 0.17655 ^{\{ 6 \}} 0.05129 ^{\{ 1 \}} 0.18951 ^{\{ 7 \}} 0.15596 ^{\{ 4 \}} 0.1493 ^{\{ 3 \}} 0.20575 ^{\{ 8 \}}
    \hat{a} 0.01011 ^{\{ 6 \}} 0.00794 ^{\{ 2 \}} 0.00965 ^{\{ 5 \}} 0.0035 ^{\{ 1 \}} 0.01076 ^{\{ 7 \}} 0.00839 ^{\{ 4 \}} 0.00828 ^{\{ 3 \}} 0.01148 ^{\{ 8 \}}
    \hat{b} 0.00734 ^{\{ 2 \}} 0.00804 ^{\{ 3 \}} 0.01118 ^{\{ 7 \}} 0.00685 ^{\{ 1 \}} 0.01207 ^{\{ 8 \}} 0.00953 ^{\{ 5 \}} 0.00809 ^{\{ 4 \}} 0.01058 ^{\{ 6 \}}
    MRE \hat{\tau} 0.1672 ^{\{ 6 \}} 0.14951 ^{\{ 2 \}} 0.16712 ^{\{ 5 \}} 0.06217 ^{\{ 1 \}} 0.17464 ^{\{ 7 \}} 0.1535 ^{\{ 3 \}} 0.15507 ^{\{ 4 \}} 0.19266 ^{\{ 8 \}}
    \hat{a} 0.16331 ^{\{ 6 \}} 0.1454 ^{\{ 3 \}} 0.15918 ^{\{ 5 \}} 0.08554 ^{\{ 1 \}} 0.16963 ^{\{ 7 \}} 0.14506 ^{\{ 2 \}} 0.14741 ^{\{ 4 \}} 0.18418 ^{\{ 8 \}}
    \hat{b} 0.04573 ^{\{ 2 \}} 0.04849 ^{\{ 4 \}} 0.05674 ^{\{ 7 \}} 0.04465 ^{\{ 1 \}} 0.05902 ^{\{ 8 \}} 0.05317 ^{\{ 5 \}} 0.0479 ^{\{ 3 \}} 0.05545 ^{\{ 6 \}}
    D_{abs} 0.01052 ^{\{ 1 \}} 0.01059 ^{\{ 3 \}} 0.01098 ^{\{ 5 \}} 0.01057 ^{\{ 2 \}} 0.01117 ^{\{ 7 \}} 0.0113 ^{\{ 8 \}} 0.01068 ^{\{ 4 \}} 0.01106 ^{\{ 6 \}}
    D_{max} 0.01751 ^{\{ 2 \}} 0.01784 ^{\{ 3 \}} 0.01888 ^{\{ 5 \}} 0.01736 ^{\{ 1 \}} 0.01914 ^{\{ 7 \}} 0.01915 ^{\{ 8 \}} 0.01798 ^{\{ 4 \}} 0.01898 ^{\{ 6 \}}
    ASAE 0.00424 ^{\{ 4 \}} 0.0042 ^{\{ 2 \}} 0.00469 ^{\{ 7 \}} 0.00438 ^{\{ 5 \}} 0.00466 ^{\{ 6 \}} 0.00396 ^{\{ 1 \}} 0.00422 ^{\{ 3 \}} 0.00525 ^{\{ 8 \}}
    \sum Ranks 48 ^{\{ 4 \}} 33 ^{\{ 2 \}} 69 ^{\{ 6 \}} 17 ^{\{ 1 \}} 86 ^{\{ 7.5 \}} 50 ^{\{ 5 \}} 43 ^{\{ 3 \}} 86 ^{\{ 7.5 \}}

     | Show Table
    DownLoad: CSV
    Table 5.  Simulation values of BIAS, MSE, MRE, D_{abs} , D_{max} , and ASAE for (\tau = 2, \; a = 1.5, \; b = 2) .
    n Est. Est. Par. MLE ADE CVME MPSE LSE RTADE WLSE LTADE
    35 BIAS \hat{\tau} 0.51619 ^{\{ 2 \}} 0.63113 ^{\{ 6 \}} 0.67423 ^{\{ 7 \}} 0.51172 ^{\{ 1 \}} 0.61334 ^{\{ 4 \}} 0.62651 ^{\{ 5 \}} 0.55707 ^{\{ 3 \}} 0.88577 ^{\{ 8 \}}
    \hat{a} 0.4211 ^{\{ 6 \}} 0.39524 ^{\{ 5 \}} 0.43673 ^{\{ 7 \}} 0.34427 ^{\{ 1 \}} 0.38438 ^{\{ 3 \}} 0.36625 ^{\{ 2 \}} 0.38901 ^{\{ 4 \}} 0.57667 ^{\{ 8 \}}
    \hat{b} 0.42122 ^{\{ 2 \}} 0.42702 ^{\{ 3 \}} 0.52173 ^{\{ 8 \}} 0.40397 ^{\{ 1 \}} 0.48285 ^{\{ 6 \}} 0.45722 ^{\{ 5 \}} 0.44181 ^{\{ 4 \}} 0.4914 ^{\{ 7 \}}
    MSE \hat{\tau} 0.44269 ^{\{ 1 \}} 1.40915 ^{\{ 6 \}} 0.97253 ^{\{ 5 \}} 0.79973 ^{\{ 4 \}} 0.78856 ^{\{ 3 \}} 4.65109 ^{\{ 8 \}} 0.70986 ^{\{ 2 \}} 1.63292 ^{\{ 7 \}}
    \hat{a} 0.28044 ^{\{ 6 \}} 0.24296 ^{\{ 5 \}} 0.31317 ^{\{ 7 \}} 0.18465 ^{\{ 1 \}} 0.23352 ^{\{ 4 \}} 0.21626 ^{\{ 2 \}} 0.23222 ^{\{ 3 \}} 0.50968 ^{\{ 8 \}}
    \hat{b} 0.32216 ^{\{ 2 \}} 0.33661 ^{\{ 4 \}} 0.5635 ^{\{ 8 \}} 0.25378 ^{\{ 1 \}} 0.4679 ^{\{ 6 \}} 0.37052 ^{\{ 5 \}} 0.3353 ^{\{ 3 \}} 0.47121 ^{\{ 7 \}}
    MRE \hat{\tau} 0.2581 ^{\{ 2 \}} 0.31556 ^{\{ 6 \}} 0.33711 ^{\{ 7 \}} 0.25586 ^{\{ 1 \}} 0.30667 ^{\{ 4 \}} 0.31326 ^{\{ 5 \}} 0.27853 ^{\{ 3 \}} 0.44288 ^{\{ 8 \}}
    \hat{a} 0.28073 ^{\{ 6 \}} 0.26349 ^{\{ 5 \}} 0.29115 ^{\{ 7 \}} 0.22951 ^{\{ 1 \}} 0.25625 ^{\{ 3 \}} 0.24417 ^{\{ 2 \}} 0.25934 ^{\{ 4 \}} 0.38445 ^{\{ 8 \}}
    \hat{b} 0.21061 ^{\{ 2 \}} 0.21351 ^{\{ 3 \}} 0.26087 ^{\{ 8 \}} 0.20198 ^{\{ 1 \}} 0.24143 ^{\{ 6 \}} 0.22861 ^{\{ 5 \}} 0.2209 ^{\{ 4 \}} 0.2457 ^{\{ 7 \}}
    D_{abs} 0.04173 ^{\{ 1 \}} 0.04563 ^{\{ 4 \}} 0.04698 ^{\{ 8 \}} 0.04308 ^{\{ 2 \}} 0.0467 ^{\{ 7 \}} 0.04585 ^{\{ 5 \}} 0.04476 ^{\{ 3 \}} 0.04629 ^{\{ 6 \}}
    D_{max} 0.06876 ^{\{ 1 \}} 0.07601 ^{\{ 4 \}} 0.08059 ^{\{ 7 \}} 0.07069 ^{\{ 2 \}} 0.07795 ^{\{ 6 \}} 0.07656 ^{\{ 5 \}} 0.07406 ^{\{ 3 \}} 0.08173 ^{\{ 8 \}}
    ASAE 0.03095 ^{\{ 7 \}} 0.02759 ^{\{ 4 \}} 0.02937 ^{\{ 6 \}} 0.02711 ^{\{ 3 \}} 0.02798 ^{\{ 5 \}} 0.02651 ^{\{ 1 \}} 0.02653 ^{\{ 2 \}} 0.03252 ^{\{ 8 \}}
    \sum Ranks 38 ^{\{ 2.5 \}} 55 ^{\{ 5 \}} 85 ^{\{ 7 \}} 19 ^{\{ 1 \}} 57 ^{\{ 6 \}} 50 ^{\{ 4 \}} 38 ^{\{ 2.5 \}} 90 ^{\{ 8 \}}
    70 BIAS \hat{\tau} 0.47926 ^{\{ 5 \}} 0.46754 ^{\{ 4 \}} 0.5632 ^{\{ 7 \}} 0.3673 ^{\{ 1 \}} 0.55214 ^{\{ 6 \}} 0.46172 ^{\{ 2 \}} 0.46383 ^{\{ 3 \}} 0.67025 ^{\{ 8 \}}
    \hat{a} 0.36435 ^{\{ 7 \}} 0.30602 ^{\{ 3 \}} 0.3521 ^{\{ 6 \}} 0.27605 ^{\{ 1 \}} 0.33303 ^{\{ 5 \}} 0.29119 ^{\{ 2 \}} 0.31509 ^{\{ 4 \}} 0.43801 ^{\{ 8 \}}
    \hat{b} 0.29223 ^{\{ 3 \}} 0.29115 ^{\{ 2 \}} 0.3284 ^{\{ 7 \}} 0.28673 ^{\{ 1 \}} 0.33862 ^{\{ 8 \}} 0.31389 ^{\{ 5 \}} 0.30284 ^{\{ 4 \}} 0.31591 ^{\{ 6 \}}
    MSE \hat{\tau} 0.37454 ^{\{ 3 \}} 0.36448 ^{\{ 2 \}} 0.56211 ^{\{ 7 \}} 0.2657 ^{\{ 1 \}} 0.53431 ^{\{ 6 \}} 0.39635 ^{\{ 5 \}} 0.37914 ^{\{ 4 \}} 0.72289 ^{\{ 8 \}}
    \hat{a} 0.20482 ^{\{ 7 \}} 0.14296 ^{\{ 3 \}} 0.18606 ^{\{ 6 \}} 0.11389 ^{\{ 1 \}} 0.17027 ^{\{ 5 \}} 0.1266 ^{\{ 2 \}} 0.15246 ^{\{ 4 \}} 0.27299 ^{\{ 8 \}}
    \hat{b} 0.14415 ^{\{ 3 \}} 0.13708 ^{\{ 2 \}} 0.17917 ^{\{ 7 \}} 0.13026 ^{\{ 1 \}} 0.19342 ^{\{ 8 \}} 0.16635 ^{\{ 5 \}} 0.15758 ^{\{ 4 \}} 0.1689 ^{\{ 6 \}}
    MRE \hat{\tau} 0.23963 ^{\{ 5 \}} 0.23377 ^{\{ 4 \}} 0.2816 ^{\{ 7 \}} 0.18365 ^{\{ 1 \}} 0.27607 ^{\{ 6 \}} 0.23086 ^{\{ 2 \}} 0.23191 ^{\{ 3 \}} 0.33512 ^{\{ 8 \}}
    \hat{a} 0.2429 ^{\{ 7 \}} 0.20401 ^{\{ 3 \}} 0.23473 ^{\{ 6 \}} 0.18403 ^{\{ 1 \}} 0.22202 ^{\{ 5 \}} 0.19413 ^{\{ 2 \}} 0.21006 ^{\{ 4 \}} 0.29201 ^{\{ 8 \}}
    \hat{b} 0.14612 ^{\{ 3 \}} 0.14557 ^{\{ 2 \}} 0.1642 ^{\{ 7 \}} 0.14337 ^{\{ 1 \}} 0.16931 ^{\{ 8 \}} 0.15694 ^{\{ 5 \}} 0.15142 ^{\{ 4 \}} 0.15796 ^{\{ 6 \}}
    D_{abs} 0.03043 ^{\{ 1 \}} 0.03146 ^{\{ 3 \}} 0.03257 ^{\{ 5 \}} 0.03117 ^{\{ 2 \}} 0.03291 ^{\{ 7 \}} 0.03307 ^{\{ 8 \}} 0.03149 ^{\{ 4 \}} 0.03263 ^{\{ 6 \}}
    D_{max} 0.04996 ^{\{ 1 \}} 0.05229 ^{\{ 4 \}} 0.0556 ^{\{ 7 \}} 0.05107 ^{\{ 2 \}} 0.05559 ^{\{ 6 \}} 0.05467 ^{\{ 5 \}} 0.05214 ^{\{ 3 \}} 0.05719 ^{\{ 8 \}}
    ASAE 0.01855 ^{\{ 6 \}} 0.01739 ^{\{ 3 \}} 0.01871 ^{\{ 7 \}} 0.01758 ^{\{ 4 \}} 0.01813 ^{\{ 5 \}} 0.01678 ^{\{ 1 \}} 0.01729 ^{\{ 2 \}} 0.02109 ^{\{ 8 \}}
    \sum Ranks 51 ^{\{ 5 \}} 35 ^{\{ 2 \}} 79 ^{\{ 7 \}} 17 ^{\{ 1 \}} 75 ^{\{ 6 \}} 44 ^{\{ 4 \}} 43 ^{\{ 3 \}} 88 ^{\{ 8 \}}
    150 BIAS \hat{\tau} 0.4392 ^{\{ 5 \}} 0.39379 ^{\{ 3 \}} 0.45566 ^{\{ 7 \}} 0.27549 ^{\{ 1 \}} 0.44834 ^{\{ 6 \}} 0.38128 ^{\{ 2 \}} 0.41046 ^{\{ 4 \}} 0.54089 ^{\{ 8 \}}
    \hat{a} 0.31014 ^{\{ 7 \}} 0.26139 ^{\{ 3 \}} 0.28645 ^{\{ 5 \}} 0.21856 ^{\{ 1 \}} 0.28762 ^{\{ 6 \}} 0.24802 ^{\{ 2 \}} 0.26741 ^{\{ 4 \}} 0.3628 ^{\{ 8 \}}
    \hat{b} 0.19985 ^{\{ 3 \}} 0.19591 ^{\{ 1 \}} 0.21751 ^{\{ 6 \}} 0.19621 ^{\{ 2 \}} 0.22876 ^{\{ 8 \}} 0.21446 ^{\{ 5 \}} 0.20679 ^{\{ 4 \}} 0.2256 ^{\{ 7 \}}
    MSE \hat{\tau} 0.31057 ^{\{ 5 \}} 0.2424 ^{\{ 2 \}} 0.33171 ^{\{ 7 \}} 0.13533 ^{\{ 1 \}} 0.32597 ^{\{ 6 \}} 0.25702 ^{\{ 3 \}} 0.26429 ^{\{ 4 \}} 0.43436 ^{\{ 8 \}}
    \hat{a} 0.15063 ^{\{ 7 \}} 0.10087 ^{\{ 3 \}} 0.12317 ^{\{ 6 \}} 0.07577 ^{\{ 1 \}} 0.12274 ^{\{ 5 \}} 0.09392 ^{\{ 2 \}} 0.10589 ^{\{ 4 \}} 0.18107 ^{\{ 8 \}}
    \hat{b} 0.06714 ^{\{ 4 \}} 0.05805 ^{\{ 1 \}} 0.07483 ^{\{ 6 \}} 0.05816 ^{\{ 2 \}} 0.08113 ^{\{ 7 \}} 0.07187 ^{\{ 5 \}} 0.06713 ^{\{ 3 \}} 0.08227 ^{\{ 8 \}}
    MRE \hat{\tau} 0.2196 ^{\{ 5 \}} 0.19689 ^{\{ 3 \}} 0.22783 ^{\{ 7 \}} 0.13775 ^{\{ 1 \}} 0.22417 ^{\{ 6 \}} 0.19064 ^{\{ 2 \}} 0.20523 ^{\{ 4 \}} 0.27044 ^{\{ 8 \}}
    \hat{a} 0.20676 ^{\{ 7 \}} 0.17426 ^{\{ 3 \}} 0.19097 ^{\{ 5 \}} 0.14571 ^{\{ 1 \}} 0.19175 ^{\{ 6 \}} 0.16535 ^{\{ 2 \}} 0.17827 ^{\{ 4 \}} 0.24186 ^{\{ 8 \}}
    \hat{b} 0.09993 ^{\{ 3 \}} 0.09795 ^{\{ 1 \}} 0.10875 ^{\{ 6 \}} 0.09811 ^{\{ 2 \}} 0.11438 ^{\{ 8 \}} 0.10723 ^{\{ 5 \}} 0.10339 ^{\{ 4 \}} 0.1128 ^{\{ 7 \}}
    D_{abs} 0.02083 ^{\{ 1 \}} 0.02159 ^{\{ 4 \}} 0.02178 ^{\{ 5 \}} 0.02125 ^{\{ 2.5 \}} 0.02218 ^{\{ 6 \}} 0.02294 ^{\{ 8 \}} 0.02125 ^{\{ 2.5 \}} 0.02263 ^{\{ 7 \}}
    D_{max} 0.03432 ^{\{ 1 \}} 0.03586 ^{\{ 4 \}} 0.03724 ^{\{ 5 \}} 0.03487 ^{\{ 2 \}} 0.03795 ^{\{ 6 \}} 0.03803 ^{\{ 7 \}} 0.03566 ^{\{ 3 \}} 0.03867 ^{\{ 8 \}}
    ASAE 0.0109 ^{\{ 5 \}} 0.01075 ^{\{ 3.5 \}} 0.01143 ^{\{ 7 \}} 0.01075 ^{\{ 3.5 \}} 0.0111 ^{\{ 6 \}} 0.01011 ^{\{ 1 \}} 0.01051 ^{\{ 2 \}} 0.01296 ^{\{ 8 \}}
    \sum Ranks 53 ^{\{ 5 \}} 31.5 ^{\{ 2 \}} 72 ^{\{ 6 \}} 20 ^{\{ 1 \}} 76 ^{\{ 7 \}} 44 ^{\{ 4 \}} 42.5 ^{\{ 3 \}} 93 ^{\{ 8 \}}
    300 BIAS \hat{\tau} 0.38358 ^{\{ 5 \}} 0.35025 ^{\{ 3 \}} 0.40996 ^{\{ 7 \}} 0.20918 ^{\{ 1 \}} 0.38933 ^{\{ 6 \}} 0.35514 ^{\{ 4 \}} 0.34544 ^{\{ 2 \}} 0.47301 ^{\{ 8 \}}
    \hat{a} 0.25949 ^{\{ 7 \}} 0.22513 ^{\{ 3 \}} 0.25895 ^{\{ 6 \}} 0.15794 ^{\{ 1 \}} 0.25286 ^{\{ 5 \}} 0.2244 ^{\{ 2 \}} 0.23092 ^{\{ 4 \}} 0.31424 ^{\{ 8 \}}
    \hat{b} 0.14384 ^{\{ 3 \}} 0.14219 ^{\{ 2 \}} 0.16653 ^{\{ 7 \}} 0.13428 ^{\{ 1 \}} 0.16744 ^{\{ 8 \}} 0.15275 ^{\{ 5 \}} 0.14455 ^{\{ 4 \}} 0.16515 ^{\{ 6 \}}
    MSE \hat{\tau} 0.22395 ^{\{ 5 \}} 0.18899 ^{\{ 3 \}} 0.25726 ^{\{ 7 \}} 0.08634 ^{\{ 1 \}} 0.23811 ^{\{ 6 \}} 0.21275 ^{\{ 4 \}} 0.18524 ^{\{ 2 \}} 0.31153 ^{\{ 8 \}}
    \hat{a} 0.10146 ^{\{ 7 \}} 0.07569 ^{\{ 2 \}} 0.0982 ^{\{ 6 \}} 0.04298 ^{\{ 1 \}} 0.09473 ^{\{ 5 \}} 0.07846 ^{\{ 3 \}} 0.07943 ^{\{ 4 \}} 0.13087 ^{\{ 8 \}}
    \hat{b} 0.03255 ^{\{ 4 \}} 0.0313 ^{\{ 2 \}} 0.04249 ^{\{ 7 \}} 0.02688 ^{\{ 1 \}} 0.04388 ^{\{ 8 \}} 0.03491 ^{\{ 5 \}} 0.03196 ^{\{ 3 \}} 0.04248 ^{\{ 6 \}}
    MRE \hat{\tau} 0.19179 ^{\{ 5 \}} 0.17513 ^{\{ 3 \}} 0.20498 ^{\{ 7 \}} 0.10459 ^{\{ 1 \}} 0.19466 ^{\{ 6 \}} 0.17757 ^{\{ 4 \}} 0.17272 ^{\{ 2 \}} 0.2365 ^{\{ 8 \}}
    \hat{a} 0.17299 ^{\{ 7 \}} 0.15009 ^{\{ 3 \}} 0.17264 ^{\{ 6 \}} 0.10529 ^{\{ 1 \}} 0.16858 ^{\{ 5 \}} 0.1496 ^{\{ 2 \}} 0.15394 ^{\{ 4 \}} 0.20949 ^{\{ 8 \}}
    \hat{b} 0.07192 ^{\{ 3 \}} 0.07109 ^{\{ 2 \}} 0.08327 ^{\{ 7 \}} 0.06714 ^{\{ 1 \}} 0.08372 ^{\{ 8 \}} 0.07638 ^{\{ 5 \}} 0.07227 ^{\{ 4 \}} 0.08258 ^{\{ 6 \}}
    D_{abs} 0.01502 ^{\{ 2 \}} 0.01519 ^{\{ 4 \}} 0.01582 ^{\{ 6 \}} 0.01471 ^{\{ 1 \}} 0.01536 ^{\{ 5 \}} 0.01593 ^{\{ 7 \}} 0.01513 ^{\{ 3 \}} 0.01595 ^{\{ 8 \}}
    D_{max} 0.02487 ^{\{ 2 \}} 0.02543 ^{\{ 4 \}} 0.02719 ^{\{ 7 \}} 0.02418 ^{\{ 1 \}} 0.02652 ^{\{ 5 \}} 0.02678 ^{\{ 6 \}} 0.02539 ^{\{ 3 \}} 0.02738 ^{\{ 8 \}}
    ASAE 0.00687 ^{\{ 5 \}} 0.00666 ^{\{ 2 \}} 0.00739 ^{\{ 7 \}} 0.00686 ^{\{ 4 \}} 0.00722 ^{\{ 6 \}} 0.00639 ^{\{ 1 \}} 0.0067 ^{\{ 3 \}} 0.00837 ^{\{ 8 \}}
    \sum Ranks 55 ^{\{ 5 \}} 33 ^{\{ 2 \}} 80 ^{\{ 7 \}} 15 ^{\{ 1 \}} 73 ^{\{ 6 \}} 48 ^{\{ 4 \}} 38 ^{\{ 3 \}} 90 ^{\{ 8 \}}
    600 BIAS \hat{\tau} 0.34337 ^{\{ 5 \}} 0.29599 ^{\{ 2 \}} 0.35608 ^{\{ 7 \}} 0.12837 ^{\{ 1 \}} 0.34858 ^{\{ 6 \}} 0.30958 ^{\{ 4 \}} 0.30911 ^{\{ 3 \}} 0.4042 ^{\{ 8 \}}
    \hat{a} 0.22922 ^{\{ 7 \}} 0.19345 ^{\{ 3 \}} 0.22519 ^{\{ 5 \}} 0.09817 ^{\{ 1 \}} 0.22778 ^{\{ 6 \}} 0.19235 ^{\{ 2 \}} 0.20261 ^{\{ 4 \}} 0.27243 ^{\{ 8 \}}
    \hat{b} 0.10161 ^{\{ 2 \}} 0.10663 ^{\{ 3 \}} 0.12649 ^{\{ 8 \}} 0.09413 ^{\{ 1 \}} 0.12277 ^{\{ 6 \}} 0.11287 ^{\{ 5 \}} 0.10742 ^{\{ 4 \}} 0.12442 ^{\{ 7 \}}
    MSE \hat{\tau} 0.17598 ^{\{ 6 \}} 0.13529 ^{\{ 2 \}} 0.18281 ^{\{ 7 \}} 0.04448 ^{\{ 1 \}} 0.17429 ^{\{ 5 \}} 0.15427 ^{\{ 4 \}} 0.14265 ^{\{ 3 \}} 0.22018 ^{\{ 8 \}}
    \hat{a} 0.07869 ^{\{ 7 \}} 0.05647 ^{\{ 2 \}} 0.07356 ^{\{ 6 \}} 0.02176 ^{\{ 1 \}} 0.07329 ^{\{ 5 \}} 0.05829 ^{\{ 3 \}} 0.06038 ^{\{ 4 \}} 0.09527 ^{\{ 8 \}}
    \hat{b} 0.01627 ^{\{ 2 \}} 0.01766 ^{\{ 3 \}} 0.02538 ^{\{ 8 \}} 0.01352 ^{\{ 1 \}} 0.02319 ^{\{ 6 \}} 0.01936 ^{\{ 5 \}} 0.01824 ^{\{ 4 \}} 0.02403 ^{\{ 7 \}}
    MRE \hat{\tau} 0.17169 ^{\{ 5 \}} 0.14799 ^{\{ 2 \}} 0.17804 ^{\{ 7 \}} 0.06418 ^{\{ 1 \}} 0.17429 ^{\{ 6 \}} 0.15479 ^{\{ 4 \}} 0.15455 ^{\{ 3 \}} 0.2021 ^{\{ 8 \}}
    \hat{a} 0.15282 ^{\{ 7 \}} 0.12897 ^{\{ 3 \}} 0.15012 ^{\{ 5 \}} 0.06545 ^{\{ 1 \}} 0.15185 ^{\{ 6 \}} 0.12823 ^{\{ 2 \}} 0.13507 ^{\{ 4 \}} 0.18162 ^{\{ 8 \}}
    \hat{b} 0.0508 ^{\{ 2 \}} 0.05331 ^{\{ 3 \}} 0.06325 ^{\{ 8 \}} 0.04706 ^{\{ 1 \}} 0.06139 ^{\{ 6 \}} 0.05644 ^{\{ 5 \}} 0.05371 ^{\{ 4 \}} 0.06221 ^{\{ 7 \}}
    D_{abs} 0.01056 ^{\{ 2 \}} 0.0106 ^{\{ 3 \}} 0.01125 ^{\{ 7 \}} 0.0103 ^{\{ 1 \}} 0.01164 ^{\{ 8 \}} 0.01124 ^{\{ 6 \}} 0.0107 ^{\{ 4 \}} 0.01089 ^{\{ 5 \}}
    D_{max} 0.01782 ^{\{ 2 \}} 0.01801 ^{\{ 3 \}} 0.01931 ^{\{ 7 \}} 0.017 ^{\{ 1 \}} 0.01973 ^{\{ 8 \}} 0.01893 ^{\{ 6 \}} 0.01812 ^{\{ 4 \}} 0.01874 ^{\{ 5 \}}
    ASAE 0.00429 ^{\{ 2 \}} 0.0043 ^{\{ 3 \}} 0.00478 ^{\{ 7 \}} 0.0045 ^{\{ 5 \}} 0.00457 ^{\{ 6 \}} 0.00406 ^{\{ 1 \}} 0.00431 ^{\{ 4 \}} 0.00534 ^{\{ 8 \}}
    \sum Ranks 49 ^{\{ 5 \}} 32 ^{\{ 2 \}} 82 ^{\{ 7 \}} 16 ^{\{ 1 \}} 74 ^{\{ 6 \}} 47 ^{\{ 4 \}} 45 ^{\{ 3 \}} 87 ^{\{ 8 \}}

     | Show Table
    DownLoad: CSV
    Table 6.  Simulation values of BIAS, MSE, MRE, D_{abs} , D_{max} , and ASAE for (\tau = 0.75, \; a = 2, \; b = 3) .
    n Est. Est. Par. MLE ADE CVME MPSE LSE RTADE WLSE LTADE
    35 BIAS \hat{\tau} 0.41263 ^{\{ 1 \}} 0.63117 ^{\{ 3 \}} 0.61646 ^{\{ 2 \}} 0.68971 ^{\{ 6 \}} 0.66123 ^{\{ 4 \}} 0.69605 ^{\{ 7 \}} 0.6614 ^{\{ 5 \}} 0.73592 ^{\{ 8 \}}
    \hat{a} 0.3458 ^{\{ 1 \}} 0.40339 ^{\{ 3 \}} 0.40077 ^{\{ 2 \}} 0.43258 ^{\{ 6 \}} 0.43443 ^{\{ 7 \}} 0.46564 ^{\{ 8 \}} 0.41928 ^{\{ 5 \}} 0.40721 ^{\{ 4 \}}
    \hat{b} 0.90474 ^{\{ 2 \}} 0.95946 ^{\{ 6 \}} 0.95309 ^{\{ 4 \}} 0.95489 ^{\{ 5 \}} 0.92977 ^{\{ 3 \}} 0.88 ^{\{ 1 \}} 0.96175 ^{\{ 7 \}} 1.06824 ^{\{ 8 \}}
    MSE \hat{\tau} 0.23196 ^{\{ 1 \}} 0.53768 ^{\{ 3 \}} 0.47197 ^{\{ 2 \}} 0.65139 ^{\{ 7 \}} 0.55116 ^{\{ 4 \}} 0.64812 ^{\{ 6 \}} 0.57172 ^{\{ 5 \}} 0.87411 ^{\{ 8 \}}
    \hat{a} 0.19495 ^{\{ 1 \}} 0.25654 ^{\{ 3 \}} 0.25032 ^{\{ 2 \}} 0.28251 ^{\{ 5 \}} 0.28292 ^{\{ 6 \}} 0.33262 ^{\{ 8 \}} 0.27497 ^{\{ 4 \}} 0.28509 ^{\{ 7 \}}
    \hat{b} 1.40385 ^{\{ 7 \}} 1.37779 ^{\{ 5 \}} 1.33026 ^{\{ 3 \}} 1.37841 ^{\{ 6 \}} 1.24057 ^{\{ 1 \}} 1.28937 ^{\{ 2 \}} 1.33079 ^{\{ 4 \}} 1.7756 ^{\{ 8 \}}
    MRE \hat{\tau} 0.55017 ^{\{ 1 \}} 0.84156 ^{\{ 3 \}} 0.82195 ^{\{ 2 \}} 0.91961 ^{\{ 6 \}} 0.88164 ^{\{ 4 \}} 0.92807 ^{\{ 7 \}} 0.88187 ^{\{ 5 \}} 0.98123 ^{\{ 8 \}}
    \hat{a} 0.1729 ^{\{ 1 \}} 0.20169 ^{\{ 3 \}} 0.20039 ^{\{ 2 \}} 0.21629 ^{\{ 6 \}} 0.21721 ^{\{ 7 \}} 0.23282 ^{\{ 8 \}} 0.20964 ^{\{ 5 \}} 0.20361 ^{\{ 4 \}}
    \hat{b} 0.30158 ^{\{ 2 \}} 0.31982 ^{\{ 6 \}} 0.3177 ^{\{ 4 \}} 0.3183 ^{\{ 5 \}} 0.30992 ^{\{ 3 \}} 0.29333 ^{\{ 1 \}} 0.32058 ^{\{ 7 \}} 0.35608 ^{\{ 8 \}}
    D_{abs} 0.04253 ^{\{ 1 \}} 0.04336 ^{\{ 2 \}} 0.04718 ^{\{ 8 \}} 0.04338 ^{\{ 3 \}} 0.04551 ^{\{ 5 \}} 0.04671 ^{\{ 7 \}} 0.04479 ^{\{ 4 \}} 0.04664 ^{\{ 6 \}}
    D_{max} 0.07112 ^{\{ 2 \}} 0.07194 ^{\{ 3 \}} 0.0792 ^{\{ 8 \}} 0.07007 ^{\{ 1 \}} 0.07453 ^{\{ 5 \}} 0.07777 ^{\{ 6 \}} 0.07355 ^{\{ 4 \}} 0.07787 ^{\{ 7 \}}
    ASAE 0.02959 ^{\{ 7 \}} 0.02756 ^{\{ 3 \}} 0.02928 ^{\{ 6 \}} 0.02713 ^{\{ 2 \}} 0.02829 ^{\{ 5 \}} 0.02772 ^{\{ 4 \}} 0.02691 ^{\{ 1 \}} 0.03129 ^{\{ 8 \}}
    \sum Ranks 27 ^{\{ 1 \}} 43 ^{\{ 2 \}} 45 ^{\{ 3 \}} 58 ^{\{ 6 \}} 54 ^{\{ 4 \}} 65 ^{\{ 7 \}} 56 ^{\{ 5 \}} 84 ^{\{ 8 \}}
    70 BIAS \hat{\tau} 0.37728 ^{\{ 1 \}} 0.57428 ^{\{ 3 \}} 0.57379 ^{\{ 2 \}} 0.61526 ^{\{ 7 \}} 0.60356 ^{\{ 5 \}} 0.60726 ^{\{ 6 \}} 0.58819 ^{\{ 4 \}} 0.61897 ^{\{ 8 \}}
    \hat{a} 0.25016 ^{\{ 1 \}} 0.31949 ^{\{ 2 \}} 0.33757 ^{\{ 4 \}} 0.35113 ^{\{ 7 \}} 0.34537 ^{\{ 6 \}} 0.35421 ^{\{ 8 \}} 0.33813 ^{\{ 5 \}} 0.3285 ^{\{ 3 \}}
    \hat{b} 0.68242 ^{\{ 1 \}} 0.79998 ^{\{ 5 \}} 0.77034 ^{\{ 3 \}} 0.82325 ^{\{ 6 \}} 0.83417 ^{\{ 8 \}} 0.69139 ^{\{ 2 \}} 0.78972 ^{\{ 4 \}} 0.82557 ^{\{ 7 \}}
    MSE \hat{\tau} 0.20498 ^{\{ 1 \}} 0.47839 ^{\{ 4 \}} 0.45179 ^{\{ 2 \}} 0.57434 ^{\{ 7 \}} 0.47675 ^{\{ 3 \}} 0.53826 ^{\{ 6 \}} 0.48684 ^{\{ 5 \}} 0.5989 ^{\{ 8 \}}
    \hat{a} 0.09985 ^{\{ 1 \}} 0.15258 ^{\{ 2 \}} 0.17907 ^{\{ 4 \}} 0.20305 ^{\{ 8 \}} 0.18005 ^{\{ 5 \}} 0.18882 ^{\{ 7 \}} 0.17375 ^{\{ 3 \}} 0.18104 ^{\{ 6 \}}
    \hat{b} 0.77461 ^{\{ 2 \}} 1.01864 ^{\{ 6 \}} 0.8902 ^{\{ 3 \}} 1.13061 ^{\{ 8 \}} 1.01306 ^{\{ 5 \}} 0.74376 ^{\{ 1 \}} 0.95657 ^{\{ 4 \}} 1.08045 ^{\{ 7 \}}
    MRE \hat{\tau} 0.50303 ^{\{ 1 \}} 0.76571 ^{\{ 3 \}} 0.76505 ^{\{ 2 \}} 0.82035 ^{\{ 7 \}} 0.80474 ^{\{ 5 \}} 0.80968 ^{\{ 6 \}} 0.78426 ^{\{ 4 \}} 0.8253 ^{\{ 8 \}}
    \hat{a} 0.12508 ^{\{ 1 \}} 0.15974 ^{\{ 2 \}} 0.16879 ^{\{ 4 \}} 0.17557 ^{\{ 7 \}} 0.17268 ^{\{ 6 \}} 0.1771 ^{\{ 8 \}} 0.16906 ^{\{ 5 \}} 0.16425 ^{\{ 3 \}}
    \hat{b} 0.22747 ^{\{ 1 \}} 0.26666 ^{\{ 5 \}} 0.25678 ^{\{ 3 \}} 0.27442 ^{\{ 6 \}} 0.27806 ^{\{ 8 \}} 0.23046 ^{\{ 2 \}} 0.26324 ^{\{ 4 \}} 0.27519 ^{\{ 7 \}}
    D_{abs} 0.03062 ^{\{ 2 \}} 0.03064 ^{\{ 3 \}} 0.03404 ^{\{ 8 \}} 0.03001 ^{\{ 1 \}} 0.03304 ^{\{ 7 \}} 0.03289 ^{\{ 6 \}} 0.03251 ^{\{ 4 \}} 0.03252 ^{\{ 5 \}}
    D_{max} 0.05131 ^{\{ 2 \}} 0.05151 ^{\{ 3 \}} 0.05754 ^{\{ 8 \}} 0.04967 ^{\{ 1 \}} 0.05555 ^{\{ 7 \}} 0.05553 ^{\{ 6 \}} 0.05366 ^{\{ 4 \}} 0.0546 ^{\{ 5 \}}
    ASAE 0.01854 ^{\{ 7 \}} 0.01731 ^{\{ 4 \}} 0.01828 ^{\{ 6 \}} 0.01722 ^{\{ 2 \}} 0.01814 ^{\{ 5 \}} 0.01725 ^{\{ 3 \}} 0.01692 ^{\{ 1 \}} 0.01936 ^{\{ 8 \}}
    \sum Ranks 21 ^{\{ 1 \}} 42 ^{\{ 2 \}} 49 ^{\{ 4 \}} 67 ^{\{ 6 \}} 70 ^{\{ 7 \}} 61 ^{\{ 5 \}} 47 ^{\{ 3 \}} 75 ^{\{ 8 \}}
    150 BIAS \hat{\tau} 0.31212 ^{\{ 1 \}} 0.45159 ^{\{ 2 \}} 0.49391 ^{\{ 4 \}} 0.50158 ^{\{ 6 \}} 0.49767 ^{\{ 5 \}} 0.51173 ^{\{ 8 \}} 0.47926 ^{\{ 3 \}} 0.50467 ^{\{ 7 \}}
    \hat{a} 0.18389 ^{\{ 1 \}} 0.24619 ^{\{ 2 \}} 0.26366 ^{\{ 5 \}} 0.26623 ^{\{ 6 \}} 0.27263 ^{\{ 8 \}} 0.26155 ^{\{ 3 \}} 0.26205 ^{\{ 4 \}} 0.26637 ^{\{ 7 \}}
    \hat{b} 0.51055 ^{\{ 1 \}} 0.58914 ^{\{ 2 \}} 0.64746 ^{\{ 7 \}} 0.59531 ^{\{ 4 \}} 0.65501 ^{\{ 8 \}} 0.62579 ^{\{ 5 \}} 0.59382 ^{\{ 3 \}} 0.63847 ^{\{ 6 \}}
    MSE \hat{\tau} 0.14708 ^{\{ 1 \}} 0.33233 ^{\{ 2 \}} 0.35351 ^{\{ 3 \}} 0.44757 ^{\{ 8 \}} 0.36746 ^{\{ 5 \}} 0.41305 ^{\{ 7 \}} 0.36255 ^{\{ 4 \}} 0.4025 ^{\{ 6 \}}
    \hat{a} 0.05157 ^{\{ 1 \}} 0.09975 ^{\{ 2 \}} 0.10789 ^{\{ 3 \}} 0.12791 ^{\{ 8 \}} 0.11535 ^{\{ 6 \}} 0.1123 ^{\{ 5 \}} 0.11096 ^{\{ 4 \}} 0.1174 ^{\{ 7 \}}
    \hat{b} 0.47277 ^{\{ 1 \}} 0.61572 ^{\{ 4 \}} 0.6529 ^{\{ 5 \}} 0.7086 ^{\{ 8 \}} 0.67921 ^{\{ 6 \}} 0.59584 ^{\{ 2 \}} 0.60046 ^{\{ 3 \}} 0.70453 ^{\{ 7 \}}
    MRE \hat{\tau} 0.41616 ^{\{ 1 \}} 0.60212 ^{\{ 2 \}} 0.65854 ^{\{ 4 \}} 0.66877 ^{\{ 6 \}} 0.66356 ^{\{ 5 \}} 0.68231 ^{\{ 8 \}} 0.63901 ^{\{ 3 \}} 0.67289 ^{\{ 7 \}}
    \hat{a} 0.09195 ^{\{ 1 \}} 0.1231 ^{\{ 2 \}} 0.13183 ^{\{ 5 \}} 0.13311 ^{\{ 6 \}} 0.13632 ^{\{ 8 \}} 0.13078 ^{\{ 3 \}} 0.13102 ^{\{ 4 \}} 0.13318 ^{\{ 7 \}}
    \hat{b} 0.17018 ^{\{ 1 \}} 0.19638 ^{\{ 2 \}} 0.21582 ^{\{ 7 \}} 0.19844 ^{\{ 4 \}} 0.21834 ^{\{ 8 \}} 0.2086 ^{\{ 5 \}} 0.19794 ^{\{ 3 \}} 0.21282 ^{\{ 6 \}}
    D_{abs} 0.02081 ^{\{ 1 \}} 0.02156 ^{\{ 3 \}} 0.02279 ^{\{ 7.5 \}} 0.02171 ^{\{ 4 \}} 0.02269 ^{\{ 6 \}} 0.02221 ^{\{ 5 \}} 0.02123 ^{\{ 2 \}} 0.02279 ^{\{ 7.5 \}}
    D_{max} 0.03496 ^{\{ 1 \}} 0.0362 ^{\{ 4 \}} 0.0389 ^{\{ 8 \}} 0.03607 ^{\{ 3 \}} 0.03834 ^{\{ 5 \}} 0.03836 ^{\{ 6 \}} 0.03583 ^{\{ 2 \}} 0.03862 ^{\{ 7 \}}
    ASAE 0.01105 ^{\{ 5 \}} 0.0105 ^{\{ 3 \}} 0.0111 ^{\{ 7 \}} 0.01079 ^{\{ 4 \}} 0.01108 ^{\{ 6 \}} 0.01049 ^{\{ 2 \}} 0.01039 ^{\{ 1 \}} 0.01196 ^{\{ 8 \}}
    \sum Ranks 16 ^{\{ 1 \}} 30 ^{\{ 2 \}} 65.5 ^{\{ 5 \}} 67 ^{\{ 6 \}} 76 ^{\{ 7 \}} 59 ^{\{ 4 \}} 36 ^{\{ 3 \}} 82.5 ^{\{ 8 \}}
    300 BIAS \hat{\tau} 0.26159 ^{\{ 1 \}} 0.33734 ^{\{ 2 \}} 0.40449 ^{\{ 6 \}} 0.3744 ^{\{ 4 \}} 0.41347 ^{\{ 7 \}} 0.42097 ^{\{ 8 \}} 0.34325 ^{\{ 3 \}} 0.37827 ^{\{ 5 \}}
    \hat{a} 0.14993 ^{\{ 1 \}} 0.18532 ^{\{ 3 \}} 0.20625 ^{\{ 7 \}} 0.19513 ^{\{ 4 \}} 0.20695 ^{\{ 8 \}} 0.19719 ^{\{ 5 \}} 0.18169 ^{\{ 2 \}} 0.20501 ^{\{ 6 \}}
    \hat{b} 0.37223 ^{\{ 1 \}} 0.41779 ^{\{ 2 \}} 0.508 ^{\{ 7 \}} 0.44601 ^{\{ 4 \}} 0.50594 ^{\{ 6 \}} 0.52145 ^{\{ 8 \}} 0.42076 ^{\{ 3 \}} 0.45303 ^{\{ 5 \}}
    MSE \hat{\tau} 0.10953 ^{\{ 1 \}} 0.20094 ^{\{ 2 \}} 0.26331 ^{\{ 5 \}} 0.29301 ^{\{ 7 \}} 0.28568 ^{\{ 6 \}} 0.30513 ^{\{ 8 \}} 0.20537 ^{\{ 3 \}} 0.24655 ^{\{ 4 \}}
    \hat{a} 0.03556 ^{\{ 1 \}} 0.05977 ^{\{ 3 \}} 0.06975 ^{\{ 4 \}} 0.07768 ^{\{ 8 \}} 0.07525 ^{\{ 7 \}} 0.07119 ^{\{ 5 \}} 0.05699 ^{\{ 2 \}} 0.07212 ^{\{ 6 \}}
    \hat{b} 0.29126 ^{\{ 1 \}} 0.31942 ^{\{ 2 \}} 0.43464 ^{\{ 6 \}} 0.48268 ^{\{ 8 \}} 0.44893 ^{\{ 7 \}} 0.43375 ^{\{ 5 \}} 0.32104 ^{\{ 3 \}} 0.39031 ^{\{ 4 \}}
    MRE \hat{\tau} 0.34879 ^{\{ 1 \}} 0.44978 ^{\{ 2 \}} 0.53932 ^{\{ 6 \}} 0.49921 ^{\{ 4 \}} 0.5513 ^{\{ 7 \}} 0.56129 ^{\{ 8 \}} 0.45767 ^{\{ 3 \}} 0.50436 ^{\{ 5 \}}
    \hat{a} 0.07496 ^{\{ 1 \}} 0.09266 ^{\{ 3 \}} 0.10313 ^{\{ 7 \}} 0.09757 ^{\{ 4 \}} 0.10347 ^{\{ 8 \}} 0.09859 ^{\{ 5 \}} 0.09085 ^{\{ 2 \}} 0.1025 ^{\{ 6 \}}
    \hat{b} 0.12408 ^{\{ 1 \}} 0.13926 ^{\{ 2 \}} 0.16933 ^{\{ 7 \}} 0.14867 ^{\{ 4 \}} 0.16865 ^{\{ 6 \}} 0.17382 ^{\{ 8 \}} 0.14025 ^{\{ 3 \}} 0.15101 ^{\{ 5 \}}
    D_{abs} 0.01478 ^{\{ 1 \}} 0.01563 ^{\{ 4 \}} 0.01625 ^{\{ 8 \}} 0.01541 ^{\{ 3 \}} 0.01591 ^{\{ 6 \}} 0.01623 ^{\{ 7 \}} 0.01493 ^{\{ 2 \}} 0.01584 ^{\{ 5 \}}
    D_{max} 0.02519 ^{\{ 1 \}} 0.02694 ^{\{ 4 \}} 0.02821 ^{\{ 8 \}} 0.02592 ^{\{ 3 \}} 0.02751 ^{\{ 6 \}} 0.02814 ^{\{ 7 \}} 0.02552 ^{\{ 2 \}} 0.0274 ^{\{ 5 \}}
    ASAE 0.00695 ^{\{ 4 \}} 0.00682 ^{\{ 3 \}} 0.00721 ^{\{ 7 \}} 0.00697 ^{\{ 5 \}} 0.00704 ^{\{ 6 \}} 0.00671 ^{\{ 1 \}} 0.0068 ^{\{ 2 \}} 0.00775 ^{\{ 8 \}}
    \sum Ranks 15 ^{\{ 1 \}} 32 ^{\{ 3 \}} 78 ^{\{ 7 \}} 58 ^{\{ 4 \}} 80 ^{\{ 8 \}} 75 ^{\{ 6 \}} 30 ^{\{ 2 \}} 64 ^{\{ 5 \}}
    600 BIAS \hat{\tau} 0.19336 ^{\{ 1 \}} 0.23349 ^{\{ 2 \}} 0.28978 ^{\{ 6 \}} 0.23372 ^{\{ 3 \}} 0.30777 ^{\{ 7 \}} 0.30949 ^{\{ 8 \}} 0.23507 ^{\{ 4 \}} 0.2662 ^{\{ 5 \}}
    \hat{a} 0.10937 ^{\{ 1 \}} 0.12304 ^{\{ 2 \}} 0.14902 ^{\{ 6 \}} 0.12842 ^{\{ 4 \}} 0.15724 ^{\{ 8 \}} 0.13825 ^{\{ 5 \}} 0.12621 ^{\{ 3 \}} 0.15464 ^{\{ 7 \}}
    \hat{b} 0.26801 ^{\{ 1 \}} 0.30194 ^{\{ 4 \}} 0.37263 ^{\{ 6 \}} 0.27088 ^{\{ 2 \}} 0.38556 ^{\{ 7 \}} 0.42662 ^{\{ 8 \}} 0.29441 ^{\{ 3 \}} 0.30703 ^{\{ 5 \}}
    MSE \hat{\tau} 0.06126 ^{\{ 1 \}} 0.10127 ^{\{ 2 \}} 0.15044 ^{\{ 6 \}} 0.13095 ^{\{ 4 \}} 0.16716 ^{\{ 8 \}} 0.16478 ^{\{ 7 \}} 0.10547 ^{\{ 3 \}} 0.13164 ^{\{ 5 \}}
    \hat{a} 0.0189 ^{\{ 1 \}} 0.02821 ^{\{ 2 \}} 0.04017 ^{\{ 6 \}} 0.03537 ^{\{ 4 \}} 0.04408 ^{\{ 8 \}} 0.03582 ^{\{ 5 \}} 0.02981 ^{\{ 3 \}} 0.04188 ^{\{ 7 \}}
    \hat{b} 0.12688 ^{\{ 1 \}} 0.15549 ^{\{ 2 \}} 0.25123 ^{\{ 6 \}} 0.18801 ^{\{ 4 \}} 0.28486 ^{\{ 7 \}} 0.29794 ^{\{ 8 \}} 0.15848 ^{\{ 3 \}} 0.18934 ^{\{ 5 \}}
    MRE \hat{\tau} 0.25781 ^{\{ 1 \}} 0.31131 ^{\{ 2 \}} 0.38638 ^{\{ 6 \}} 0.31162 ^{\{ 3 \}} 0.41036 ^{\{ 7 \}} 0.41265 ^{\{ 8 \}} 0.31343 ^{\{ 4 \}} 0.35494 ^{\{ 5 \}}
    \hat{a} 0.05468 ^{\{ 1 \}} 0.06152 ^{\{ 2 \}} 0.07451 ^{\{ 6 \}} 0.06421 ^{\{ 4 \}} 0.07862 ^{\{ 8 \}} 0.06912 ^{\{ 5 \}} 0.06311 ^{\{ 3 \}} 0.07732 ^{\{ 7 \}}
    \hat{b} 0.08934 ^{\{ 1 \}} 0.10065 ^{\{ 4 \}} 0.12421 ^{\{ 6 \}} 0.09029 ^{\{ 2 \}} 0.12852 ^{\{ 7 \}} 0.14221 ^{\{ 8 \}} 0.09814 ^{\{ 3 \}} 0.10234 ^{\{ 5 \}}
    D_{abs} 0.01062 ^{\{ 2 \}} 0.01055 ^{\{ 1 \}} 0.01157 ^{\{ 7 \}} 0.01098 ^{\{ 3 \}} 0.01158 ^{\{ 8 \}} 0.01113 ^{\{ 5 \}} 0.01112 ^{\{ 4 \}} 0.0113 ^{\{ 6 \}}
    D_{max} 0.0181 ^{\{ 1 \}} 0.01823 ^{\{ 2 \}} 0.02019 ^{\{ 8 \}} 0.01873 ^{\{ 3 \}} 0.0201 ^{\{ 7 \}} 0.01976 ^{\{ 6 \}} 0.01902 ^{\{ 4 \}} 0.01972 ^{\{ 5 \}}
    ASAE 0.00457 ^{\{ 5 \}} 0.00443 ^{\{ 3 \}} 0.00471 ^{\{ 6 \}} 0.00456 ^{\{ 4 \}} 0.00473 ^{\{ 7 \}} 0.0044 ^{\{ 2 \}} 0.00435 ^{\{ 1 \}} 0.00516 ^{\{ 8 \}}
    \sum Ranks 17 ^{\{ 1 \}} 28 ^{\{ 2 \}} 75 ^{\{ 6.5 \}} 40 ^{\{ 4 \}} 89 ^{\{ 8 \}} 75 ^{\{ 6.5 \}} 38 ^{\{ 3 \}} 70 ^{\{ 5 \}}

     | Show Table
    DownLoad: CSV
    Table 7.  Simulation values of BIAS, MSE, MRE, D_{abs} , D_{max} , and ASAE for (\tau = 0.25, \; a = 3, \; b = 0.25) .
    n Est. Est. Par. MLE ADE CVME MPSE LSE RTADE WLSE LTADE
    35 BIAS \hat{\tau} 0.28261 ^{\{ 2 \}} 0.4647 ^{\{ 5 \}} 0.48379 ^{\{ 7 \}} 0.41025 ^{\{ 3 \}} 0.42315 ^{\{ 4 \}} 0.51017 ^{\{ 8 \}} 0.47272 ^{\{ 6 \}} 0.26393 ^{\{ 1 \}}
    \hat{a} 0.70395 ^{\{ 1 \}} 0.78929 ^{\{ 3 \}} 0.91784 ^{\{ 8 \}} 0.77174 ^{\{ 2 \}} 0.90659 ^{\{ 7 \}} 0.82398 ^{\{ 4 \}} 0.83444 ^{\{ 5 \}} 0.84481 ^{\{ 6 \}}
    \hat{b} 0.11892 ^{\{ 2 \}} 0.13452 ^{\{ 6 \}} 0.13845 ^{\{ 7 \}} 0.12898 ^{\{ 4 \}} 0.11407 ^{\{ 1 \}} 0.14639 ^{\{ 8 \}} 0.13051 ^{\{ 5 \}} 0.12794 ^{\{ 3 \}}
    MSE \hat{\tau} 0.14259 ^{\{ 1 \}} 0.54086 ^{\{ 5 \}} 0.58623 ^{\{ 6 \}} 0.45928 ^{\{ 3 \}} 0.52049 ^{\{ 4 \}} 0.67661 ^{\{ 8 \}} 0.60141 ^{\{ 7 \}} 0.18215 ^{\{ 2 \}}
    \hat{a} 0.92929 ^{\{ 2 \}} 0.99608 ^{\{ 3 \}} 1.35102 ^{\{ 8 \}} 0.89166 ^{\{ 1 \}} 1.27505 ^{\{ 7 \}} 1.08694 ^{\{ 4 \}} 1.10922 ^{\{ 5 \}} 1.17679 ^{\{ 6 \}}
    \hat{b} 0.02632 ^{\{ 3 \}} 0.03369 ^{\{ 6 \}} 0.03609 ^{\{ 7 \}} 0.02757 ^{\{ 4 \}} 0.02515 ^{\{ 2 \}} 0.03881 ^{\{ 8 \}} 0.03305 ^{\{ 5 \}} 0.02449 ^{\{ 1 \}}
    MRE \hat{\tau} 1.13045 ^{\{ 2 \}} 1.85879 ^{\{ 5 \}} 1.93515 ^{\{ 7 \}} 1.64101 ^{\{ 3 \}} 1.6926 ^{\{ 4 \}} 2.04067 ^{\{ 8 \}} 1.8909 ^{\{ 6 \}} 1.05573 ^{\{ 1 \}}
    \hat{a} 0.23465 ^{\{ 1 \}} 0.2631 ^{\{ 3 \}} 0.30595 ^{\{ 8 \}} 0.25725 ^{\{ 2 \}} 0.3022 ^{\{ 7 \}} 0.27466 ^{\{ 4 \}} 0.27815 ^{\{ 5 \}} 0.2816 ^{\{ 6 \}}
    \hat{b} 0.47569 ^{\{ 2 \}} 0.53808 ^{\{ 6 \}} 0.5538 ^{\{ 7 \}} 0.5159 ^{\{ 4 \}} 0.45626 ^{\{ 1 \}} 0.58556 ^{\{ 8 \}} 0.52205 ^{\{ 5 \}} 0.51177 ^{\{ 3 \}}
    D_{abs} 0.04268 ^{\{ 1 \}} 0.04508 ^{\{ 3 \}} 0.04693 ^{\{ 8 \}} 0.04333 ^{\{ 2 \}} 0.04525 ^{\{ 4 \}} 0.04586 ^{\{ 6 \}} 0.0455 ^{\{ 5 \}} 0.04675 ^{\{ 7 \}}
    D_{max} 0.0706 ^{\{ 1 \}} 0.07457 ^{\{ 3 \}} 0.07976 ^{\{ 8 \}} 0.0712 ^{\{ 2 \}} 0.07566 ^{\{ 5 \}} 0.07738 ^{\{ 7 \}} 0.07522 ^{\{ 4 \}} 0.07734 ^{\{ 6 \}}
    ASAE 0.02998 ^{\{ 6 \}} 0.02782 ^{\{ 4 \}} 0.02947 ^{\{ 5 \}} 0.02765 ^{\{ 3 \}} 0.03091 ^{\{ 7 \}} 0.02581 ^{\{ 1 \}} 0.02751 ^{\{ 2 \}} 0.03566 ^{\{ 8 \}}
    \sum Ranks 24 ^{\{ 1 \}} 52 ^{\{ 4 \}} 86 ^{\{ 8 \}} 33 ^{\{ 2 \}} 53 ^{\{ 5 \}} 74 ^{\{ 7 \}} 60 ^{\{ 6 \}} 50 ^{\{ 3 \}}
    70 BIAS \hat{\tau} 0.26535 ^{\{ 2 \}} 0.35171 ^{\{ 5 \}} 0.40366 ^{\{ 7 \}} 0.29134 ^{\{ 3 \}} 0.35289 ^{\{ 6 \}} 0.42263 ^{\{ 8 \}} 0.34207 ^{\{ 4 \}} 0.24784 ^{\{ 1 \}}
    \hat{a} 0.47336 ^{\{ 1 \}} 0.55386 ^{\{ 3 \}} 0.64736 ^{\{ 7 \}} 0.55627 ^{\{ 4 \}} 0.64889 ^{\{ 8 \}} 0.61187 ^{\{ 6 \}} 0.54143 ^{\{ 2 \}} 0.59785 ^{\{ 5 \}}
    \hat{b} 0.09971 ^{\{ 1 \}} 0.11155 ^{\{ 5 \}} 0.11542 ^{\{ 6 \}} 0.10741 ^{\{ 3 \}} 0.10532 ^{\{ 2 \}} 0.12794 ^{\{ 8 \}} 0.10844 ^{\{ 4 \}} 0.11607 ^{\{ 7 \}}
    MSE \hat{\tau} 0.12711 ^{\{ 1 \}} 0.28471 ^{\{ 4 \}} 0.4177 ^{\{ 7 \}} 0.22138 ^{\{ 3 \}} 0.33996 ^{\{ 6 \}} 0.48266 ^{\{ 8 \}} 0.30172 ^{\{ 5 \}} 0.13702 ^{\{ 2 \}}
    \hat{a} 0.36529 ^{\{ 1 \}} 0.48714 ^{\{ 4 \}} 0.68965 ^{\{ 8 \}} 0.48295 ^{\{ 2 \}} 0.66234 ^{\{ 7 \}} 0.6146 ^{\{ 6 \}} 0.48359 ^{\{ 3 \}} 0.58995 ^{\{ 5 \}}
    \hat{b} 0.01575 ^{\{ 1 \}} 0.02146 ^{\{ 5 \}} 0.02598 ^{\{ 7 \}} 0.01737 ^{\{ 2 \}} 0.02098 ^{\{ 4 \}} 0.03058 ^{\{ 8 \}} 0.02191 ^{\{ 6 \}} 0.01909 ^{\{ 3 \}}
    MRE \hat{\tau} 1.06141 ^{\{ 2 \}} 1.40685 ^{\{ 5 \}} 1.61465 ^{\{ 7 \}} 1.16535 ^{\{ 3 \}} 1.41156 ^{\{ 6 \}} 1.6905 ^{\{ 8 \}} 1.3683 ^{\{ 4 \}} 0.99135 ^{\{ 1 \}}
    \hat{a} 0.15779 ^{\{ 1 \}} 0.18462 ^{\{ 3 \}} 0.21579 ^{\{ 7 \}} 0.18542 ^{\{ 4 \}} 0.2163 ^{\{ 8 \}} 0.20396 ^{\{ 6 \}} 0.18048 ^{\{ 2 \}} 0.19928 ^{\{ 5 \}}
    \hat{b} 0.39883 ^{\{ 1 \}} 0.44619 ^{\{ 5 \}} 0.46169 ^{\{ 6 \}} 0.42965 ^{\{ 3 \}} 0.42127 ^{\{ 2 \}} 0.51178 ^{\{ 8 \}} 0.43376 ^{\{ 4 \}} 0.46429 ^{\{ 7 \}}
    D_{abs} 0.02997 ^{\{ 1 \}} 0.03175 ^{\{ 4 \}} 0.03324 ^{\{ 8 \}} 0.03081 ^{\{ 2 \}} 0.03247 ^{\{ 5 \}} 0.0327 ^{\{ 7 \}} 0.03127 ^{\{ 3 \}} 0.03251 ^{\{ 6 \}}
    D_{max} 0.0499 ^{\{ 1 \}} 0.05326 ^{\{ 4 \}} 0.05658 ^{\{ 8 \}} 0.05081 ^{\{ 2 \}} 0.05486 ^{\{ 6 \}} 0.05572 ^{\{ 7 \}} 0.05218 ^{\{ 3 \}} 0.05438 ^{\{ 5 \}}
    ASAE 0.01808 ^{\{ 5 \}} 0.0179 ^{\{ 4 \}} 0.01884 ^{\{ 6 \}} 0.01751 ^{\{ 3 \}} 0.0192 ^{\{ 7 \}} 0.01618 ^{\{ 1 \}} 0.01733 ^{\{ 2 \}} 0.02197 ^{\{ 8 \}}
    \sum Ranks 18 ^{\{ 1 \}} 51 ^{\{ 4 \}} 84 ^{\{ 8 \}} 34 ^{\{ 2 \}} 67 ^{\{ 6 \}} 81 ^{\{ 7 \}} 42 ^{\{ 3 \}} 55 ^{\{ 5 \}}
    150 BIAS \hat{\tau} 0.20572 ^{\{ 2 \}} 0.23878 ^{\{ 4 \}} 0.31697 ^{\{ 8 \}} 0.216 ^{\{ 3 \}} 0.29435 ^{\{ 7 \}} 0.28901 ^{\{ 6 \}} 0.25867 ^{\{ 5 \}} 0.20305 ^{\{ 1 \}}
    \hat{a} 0.30956 ^{\{ 1 \}} 0.34668 ^{\{ 2 \}} 0.42934 ^{\{ 7 \}} 0.34894 ^{\{ 3 \}} 0.4327 ^{\{ 8 \}} 0.39302 ^{\{ 5 \}} 0.36418 ^{\{ 4 \}} 0.41109 ^{\{ 6 \}}
    \hat{b} 0.07839 ^{\{ 1 \}} 0.08716 ^{\{ 2 \}} 0.09845 ^{\{ 8 \}} 0.08897 ^{\{ 3 \}} 0.09366 ^{\{ 5 \}} 0.09844 ^{\{ 7 \}} 0.09049 ^{\{ 4 \}} 0.09505 ^{\{ 6 \}}
    MSE \hat{\tau} 0.0763 ^{\{ 2 \}} 0.11584 ^{\{ 4 \}} 0.24604 ^{\{ 8 \}} 0.08934 ^{\{ 3 \}} 0.21433 ^{\{ 6 \}} 0.22492 ^{\{ 7 \}} 0.14363 ^{\{ 5 \}} 0.07388 ^{\{ 1 \}}
    \hat{a} 0.15388 ^{\{ 1 \}} 0.18414 ^{\{ 2 \}} 0.29541 ^{\{ 8 \}} 0.19105 ^{\{ 3 \}} 0.29359 ^{\{ 7 \}} 0.25171 ^{\{ 5 \}} 0.20937 ^{\{ 4 \}} 0.26876 ^{\{ 6 \}}
    \hat{b} 0.00994 ^{\{ 1 \}} 0.01226 ^{\{ 3 \}} 0.01875 ^{\{ 7 \}} 0.01132 ^{\{ 2 \}} 0.01714 ^{\{ 6 \}} 0.01897 ^{\{ 8 \}} 0.014 ^{\{ 5 \}} 0.01332 ^{\{ 4 \}}
    MRE \hat{\tau} 0.82287 ^{\{ 2 \}} 0.95511 ^{\{ 4 \}} 1.26786 ^{\{ 8 \}} 0.86398 ^{\{ 3 \}} 1.17741 ^{\{ 7 \}} 1.15604 ^{\{ 6 \}} 1.03466 ^{\{ 5 \}} 0.81219 ^{\{ 1 \}}
    \hat{a} 0.10319 ^{\{ 1 \}} 0.11556 ^{\{ 2 \}} 0.14311 ^{\{ 7 \}} 0.11631 ^{\{ 3 \}} 0.14423 ^{\{ 8 \}} 0.13101 ^{\{ 5 \}} 0.12139 ^{\{ 4 \}} 0.13703 ^{\{ 6 \}}
    \hat{b} 0.31354 ^{\{ 1 \}} 0.34864 ^{\{ 2 \}} 0.39378 ^{\{ 8 \}} 0.35589 ^{\{ 3 \}} 0.37463 ^{\{ 5 \}} 0.39376 ^{\{ 7 \}} 0.36195 ^{\{ 4 \}} 0.38019 ^{\{ 6 \}}
    D_{abs} 0.02072 ^{\{ 1 \}} 0.02107 ^{\{ 2 \}} 0.0225 ^{\{ 7 \}} 0.02189 ^{\{ 4 \}} 0.02263 ^{\{ 8 \}} 0.02228 ^{\{ 6 \}} 0.02197 ^{\{ 5 \}} 0.02181 ^{\{ 3 \}}
    D_{max} 0.03401 ^{\{ 1 \}} 0.03512 ^{\{ 2 \}} 0.03847 ^{\{ 8 \}} 0.03585 ^{\{ 3 \}} 0.03844 ^{\{ 7 \}} 0.038 ^{\{ 6 \}} 0.0367 ^{\{ 4 \}} 0.03682 ^{\{ 5 \}}
    ASAE 0.01108 ^{\{ 5 \}} 0.0106 ^{\{ 3 \}} 0.01135 ^{\{ 6 \}} 0.01106 ^{\{ 4 \}} 0.01179 ^{\{ 7 \}} 0.00992 ^{\{ 1 \}} 0.01047 ^{\{ 2 \}} 0.01254 ^{\{ 8 \}}
    \sum Ranks 19 ^{\{ 1 \}} 32 ^{\{ 2 \}} 90 ^{\{ 8 \}} 37 ^{\{ 3 \}} 81 ^{\{ 7 \}} 69 ^{\{ 6 \}} 51 ^{\{ 4 \}} 53 ^{\{ 5 \}}
    300 BIAS \hat{\tau} 0.16066 ^{\{ 1 \}} 0.18134 ^{\{ 3 \}} 0.23938 ^{\{ 8 \}} 0.17022 ^{\{ 2 \}} 0.22051 ^{\{ 6 \}} 0.23877 ^{\{ 7 \}} 0.1881 ^{\{ 4 \}} 0.18849 ^{\{ 5 \}}
    \hat{a} 0.22654 ^{\{ 2 \}} 0.24264 ^{\{ 3 \}} 0.2944 ^{\{ 7 \}} 0.22178 ^{\{ 1 \}} 0.28817 ^{\{ 6 \}} 0.26568 ^{\{ 5 \}} 0.25777 ^{\{ 4 \}} 0.30304 ^{\{ 8 \}}
    \hat{b} 0.06214 ^{\{ 1 \}} 0.07012 ^{\{ 2 \}} 0.08156 ^{\{ 6 \}} 0.07737 ^{\{ 4 \}} 0.07758 ^{\{ 5 \}} 0.08871 ^{\{ 8 \}} 0.07058 ^{\{ 3 \}} 0.08471 ^{\{ 7 \}}
    MSE \hat{\tau} 0.04415 ^{\{ 2 \}} 0.05978 ^{\{ 4 \}} 0.11788 ^{\{ 7 \}} 0.04234 ^{\{ 1 \}} 0.10883 ^{\{ 6 \}} 0.13383 ^{\{ 8 \}} 0.06789 ^{\{ 5 \}} 0.05456 ^{\{ 3 \}}
    \hat{a} 0.08313 ^{\{ 2 \}} 0.09201 ^{\{ 3 \}} 0.14205 ^{\{ 8 \}} 0.07858 ^{\{ 1 \}} 0.13512 ^{\{ 6 \}} 0.11565 ^{\{ 5 \}} 0.10225 ^{\{ 4 \}} 0.13876 ^{\{ 7 \}}
    \hat{b} 0.00617 ^{\{ 1 \}} 0.00773 ^{\{ 2 \}} 0.01181 ^{\{ 7 \}} 0.00837 ^{\{ 4 \}} 0.01107 ^{\{ 6 \}} 0.015 ^{\{ 8 \}} 0.00814 ^{\{ 3 \}} 0.01064 ^{\{ 5 \}}
    MRE \hat{\tau} 0.64263 ^{\{ 1 \}} 0.72534 ^{\{ 3 \}} 0.95752 ^{\{ 8 \}} 0.68088 ^{\{ 2 \}} 0.88205 ^{\{ 6 \}} 0.95509 ^{\{ 7 \}} 0.75242 ^{\{ 4 \}} 0.75394 ^{\{ 5 \}}
    \hat{a} 0.07551 ^{\{ 2 \}} 0.08088 ^{\{ 3 \}} 0.09813 ^{\{ 7 \}} 0.07393 ^{\{ 1 \}} 0.09606 ^{\{ 6 \}} 0.08856 ^{\{ 5 \}} 0.08592 ^{\{ 4 \}} 0.10101 ^{\{ 8 \}}
    \hat{b} 0.24856 ^{\{ 1 \}} 0.28049 ^{\{ 2 \}} 0.32624 ^{\{ 6 \}} 0.30949 ^{\{ 4 \}} 0.31033 ^{\{ 5 \}} 0.35482 ^{\{ 8 \}} 0.2823 ^{\{ 3 \}} 0.33885 ^{\{ 7 \}}
    D_{abs} 0.01473 ^{\{ 2 \}} 0.01494 ^{\{ 3 \}} 0.01581 ^{\{ 6 \}} 0.01432 ^{\{ 1 \}} 0.01598 ^{\{ 7 \}} 0.01578 ^{\{ 5 \}} 0.01551 ^{\{ 4 \}} 0.01624 ^{\{ 8 \}}
    D_{max} 0.02441 ^{\{ 2 \}} 0.02498 ^{\{ 3 \}} 0.02726 ^{\{ 8 \}} 0.02345 ^{\{ 1 \}} 0.027 ^{\{ 5 \}} 0.02708 ^{\{ 6 \}} 0.02606 ^{\{ 4 \}} 0.02724 ^{\{ 7 \}}
    ASAE 0.00706 ^{\{ 5 \}} 0.00686 ^{\{ 3 \}} 0.00722 ^{\{ 6 \}} 0.00694 ^{\{ 4 \}} 0.00749 ^{\{ 7 \}} 0.00632 ^{\{ 1 \}} 0.00684 ^{\{ 2 \}} 0.0084 ^{\{ 8 \}}
    \sum Ranks 22 ^{\{ 1 \}} 34 ^{\{ 3 \}} 84 ^{\{ 8 \}} 26 ^{\{ 2 \}} 71 ^{\{ 5 \}} 73 ^{\{ 6 \}} 44 ^{\{ 4 \}} 78 ^{\{ 7 \}}
    600 BIAS \hat{\tau} 0.13045 ^{\{ 1 \}} 0.14467 ^{\{ 4 \}} 0.1922 ^{\{ 7 \}} 0.13076 ^{\{ 2 \}} 0.18277 ^{\{ 6 \}} 0.19589 ^{\{ 8 \}} 0.15452 ^{\{ 5 \}} 0.14197 ^{\{ 3 \}}
    \hat{a} 0.1464 ^{\{ 1 \}} 0.17091 ^{\{ 3 \}} 0.19656 ^{\{ 6 \}} 0.15933 ^{\{ 2 \}} 0.20011 ^{\{ 7 \}} 0.18356 ^{\{ 5 \}} 0.17299 ^{\{ 4 \}} 0.21255 ^{\{ 8 \}}
    \hat{b} 0.05408 ^{\{ 1 \}} 0.05771 ^{\{ 2 \}} 0.0699 ^{\{ 7 \}} 0.06108 ^{\{ 4 \}} 0.06848 ^{\{ 6 \}} 0.07427 ^{\{ 8 \}} 0.06095 ^{\{ 3 \}} 0.06422 ^{\{ 5 \}}
    MSE \hat{\tau} 0.02716 ^{\{ 2 \}} 0.03419 ^{\{ 4 \}} 0.06868 ^{\{ 7 \}} 0.02593 ^{\{ 1 \}} 0.0615 ^{\{ 6 \}} 0.08038 ^{\{ 8 \}} 0.03947 ^{\{ 5 \}} 0.03024 ^{\{ 3 \}}
    \hat{a} 0.03481 ^{\{ 1 \}} 0.04524 ^{\{ 3 \}} 0.06127 ^{\{ 6 \}} 0.04288 ^{\{ 2 \}} 0.06229 ^{\{ 7 \}} 0.05226 ^{\{ 5 \}} 0.04678 ^{\{ 4 \}} 0.06879 ^{\{ 8 \}}
    \hat{b} 0.00463 ^{\{ 1 \}} 0.00511 ^{\{ 2 \}} 0.00825 ^{\{ 7 \}} 0.00581 ^{\{ 4 \}} 0.00774 ^{\{ 6 \}} 0.01049 ^{\{ 8 \}} 0.0057 ^{\{ 3 \}} 0.00661 ^{\{ 5 \}}
    MRE \hat{\tau} 0.52182 ^{\{ 1 \}} 0.57868 ^{\{ 4 \}} 0.76881 ^{\{ 7 \}} 0.52302 ^{\{ 2 \}} 0.73109 ^{\{ 6 \}} 0.78357 ^{\{ 8 \}} 0.61806 ^{\{ 5 \}} 0.56786 ^{\{ 3 \}}
    \hat{a} 0.0488 ^{\{ 1 \}} 0.05697 ^{\{ 3 \}} 0.06552 ^{\{ 6 \}} 0.05311 ^{\{ 2 \}} 0.0667 ^{\{ 7 \}} 0.06119 ^{\{ 5 \}} 0.05766 ^{\{ 4 \}} 0.07085 ^{\{ 8 \}}
    \hat{b} 0.21631 ^{\{ 1 \}} 0.23082 ^{\{ 2 \}} 0.27958 ^{\{ 7 \}} 0.24431 ^{\{ 4 \}} 0.27392 ^{\{ 6 \}} 0.29709 ^{\{ 8 \}} 0.24381 ^{\{ 3 \}} 0.25689 ^{\{ 5 \}}
    D_{abs} 0.00998 ^{\{ 1 \}} 0.01059 ^{\{ 3 \}} 0.01162 ^{\{ 8 \}} 0.01045 ^{\{ 2 \}} 0.01138 ^{\{ 7 \}} 0.01125 ^{\{ 6 \}} 0.01098 ^{\{ 4 \}} 0.01118 ^{\{ 5 \}}
    D_{max} 0.01645 ^{\{ 1 \}} 0.01762 ^{\{ 3 \}} 0.01993 ^{\{ 8 \}} 0.01726 ^{\{ 2 \}} 0.01949 ^{\{ 7 \}} 0.01935 ^{\{ 6 \}} 0.01833 ^{\{ 4 \}} 0.01893 ^{\{ 5 \}}
    ASAE 0.00442 ^{\{ 3 \}} 0.00443 ^{\{ 4 \}} 0.00475 ^{\{ 7 \}} 0.00444 ^{\{ 5 \}} 0.00472 ^{\{ 6 \}} 0.00408 ^{\{ 1 \}} 0.00436 ^{\{ 2 \}} 0.00545 ^{\{ 8 \}}
    \sum Ranks 15 ^{\{ 1 \}} 37 ^{\{ 3 \}} 83 ^{\{ 8 \}} 32 ^{\{ 2 \}} 77 ^{\{ 7 \}} 76 ^{\{ 6 \}} 46 ^{\{ 4 \}} 66 ^{\{ 5 \}}

     | Show Table
    DownLoad: CSV
    Figure 4.  Graphical representation of BIAS, MSE, and MRE values in Table 2.
    Figure 5.  Graphical representation of BIAS, MSE, and MRE values in Table 3.

    First, it is important to note that all the parameter estimation methods for the proposed model demonstrate a high level of reliability, with estimated values that are very close to the actual values. This indicates the precision and accuracy of the estimation techniques employed in capturing the underlying characteristics of the proposed model.

    Second, as the sample size n increases, each scenario's calculated measures exhibit a decreasing trend. This observation highlights the influence of sample size on the performance of the estimation methods. Larger sample sizes tend to lead to more precise and accurate parameter estimates. In CIs, Asymptotic CI (ACI) approaches are used for MLE and MPS. The length of ACIs can be denoted as LACI. The confidence level is 95%. Also, the coverage probability (CP) are obtained for MLE and MPS methods. See Tables 9 and 10.

    Table 8.  Partial and overall ranks of all the methods of estimation of proposed distribution by various values of \tau , a , and b .
    Parameter n MLE ADE CVME MPSE OLSE RTADE WLSE LTADE
    \tau=0.5 , a=0.25 , b=0.75 35 4 2 7 1 6 5 3 8
    70 5.5 2 7 1 5.5 4 3 8
    150 5 3 6 1 7 4 2 8
    300 5 2 7 1 6 4 3 8
    600 4 2 6 1 7.5 5 3 7.5
    \tau=1.5 , a=0.75 , b=0.5 35 2.5 5 7 1 6 4 2.5 8
    70 5 2 7 1 6 4 3 8
    150 5 2 6 1 7 4 3 8
    300 5 2 7 1 6 4 3 8
    600 5 2 7 1 6 4 3 8
    \tau=2 , a=0.5 , b=1.5 35 1 3.5 5 3.5 6 7 2 8
    70 1 2 5 4 7 8 3 6
    150 1 2 7 4.5 6 8 3 4.5
    300 1 4 5 3 8 7 2 6
    600 1 4 8 2.5 6 7 2.5 5
    \tau=2 , a=1.5 , b=2 35 2 3 6 4 7 1 5 8
    70 1 2 7 5 6 4 3 8
    150 1 2 6 4 8 5 3 7
    300 1 4 6 3 7 5 2 8
    600 1 3 6 2 7.5 5 4 7.5
    \tau=0.75 , a=2 , b=3 35 1 2 3 6 4 7 5 8
    70 1 2 4 6 7 5 3 8
    150 1 2 5 6 7 4 3 8
    300 1 3 7 4 8 6 2 5
    600 1 2 6.5 4 8 6.5 3 5
    \tau=0.25 , a=3 , b=0.25 35 1 4 8 2 5 7 6 3
    70 1 4 8 2 6 7 3 5
    150 1 2 8 3 7 6 4 5
    300 1 3 8 2 5 6 4 7
    600 1 3 8 2 7 6 4 5
    \sum Ranks 67.0 80.5 193.5 82.5 195.5 159.5 95.0 206.5
    Overall Rank 1 2 6 3 7 5 4 8

     | Show Table
    DownLoad: CSV
    Table 9.  Lower, upper, length of CP, and CP for GAPEED parameters by MLE and MPS.
    MLE MPS
    n Lower Upper LACI CP Lower Upper LACI CP
    a=0.25 35 a 0.1424 0.3840 0.2416 95.2% 0.1240 0.3716 0.2475 97.4%
    b 0.3074 1.3956 1.0881 96.2% 0.1761 1.3511 1.1751 98.6%
    \tau -0.1474 1.3940 1.5415 94.6% -0.2409 1.3937 1.6346 95.6%
    70 a 0.1680 0.3336 0.1655 95.8% 0.1571 0.3300 0.1730 96.0%
    b 0.3442 1.2438 0.8996 94.6% 0.2876 1.1783 0.8907 96.8%
    \tau -0.0981 1.3002 1.3983 94.2% -0.0982 1.1923 1.2906 96.8%
    b=0.75 150 a 0.1940 0.3084 0.1144 94.2% 0.1890 0.3050 0.1160 96.4%
    b 0.4466 1.0598 0.6132 93.2% 0.4220 1.0220 0.6001 96.4%
    \tau 0.0900 0.9525 0.8625 94.0% 0.1039 0.8881 0.7841 95.0%
    \tau=0.5 300 a 0.2082 0.2896 0.0814 95.2% 0.2092 0.2852 0.0761 96.4%
    b 0.4659 1.0316 0.5657 94.8% 0.5239 0.9391 0.4153 96.2%
    \tau 0.0907 0.9503 0.8596 93.6% 0.2218 0.7761 0.5543 95.8%
    600 a 0.2172 0.2825 0.0654 94.2% 0.2162 0.2805 0.0643 95.4%
    b 0.5764 0.9262 0.3498 93.6% 0.5853 0.8925 0.3073 95.2%
    \tau 0.2346 0.7904 0.5559 94.6% 0.2858 0.7160 0.4302 96.0%
    a=0.75 35 a 0.3749 1.7629 1.3880 96.8% 0.2215 1.6978 1.4762 98.2%
    b 0.1733 0.7843 0.6110 91.0% 0.1273 0.7737 0.6464 92.8%
    \tau 0.0167 2.3436 2.3269 99.8% -0.1434 2.5520 2.6954 100.0%
    70 a 0.5547 1.4283 0.8736 95.2% 0.4283 1.4450 1.0167 97.8%
    b 0.1933 0.7132 0.5198 92.0% 0.1226 0.7452 0.6226 93.8%
    \tau 0.1180 2.1860 2.0680 94.2% -0.1264 2.4289 2.5553 100.0%
    b=0.5 150 a 0.6664 1.3496 0.6831 94.8% 0.5957 1.3420 0.7462 97.8%
    b 0.2169 0.6506 0.4337 93.0% 0.2726 0.6031 0.3306 93.2%
    \tau 0.1519 1.9431 1.7911 94.4% 0.3050 1.8915 1.5865 93.0%
    \tau=1.5 300 a 0.7354 1.2244 0.4890 95.2% 0.6828 1.2239 0.5411 96.6%
    b 0.3296 0.5786 0.2489 95.4% 0.3910 0.5441 0.1531 89.8%
    \tau 0.5329 1.7045 1.1716 95.6% 0.7327 1.6352 0.9025 90.8%
    600 a 0.8075 1.1805 0.3730 95.2% 0.7656 1.1558 0.3902 98.6%
    b 0.3372 0.5607 0.2236 97.4% 0.4507 0.4944 0.0438 49.6%
    \tau 0.5921 1.5764 0.9843 96.6% 0.9952 1.3684 0.3732 65.0%
    a=0.5 35 a 0.0841 3.0983 3.0142 99.4% 0.5964 2.4213 1.8249 97.0%
    b 0.7792 3.3199 2.5407 96.4% 0.9277 2.9819 2.0541 96.2%
    \tau -4.1397 11.2084 15.3481 96.8% 0.5888 5.0887 4.5000 96.8%
    70 a 0.3513 2.9435 2.5922 98.6% 0.7959 2.3551 1.5592 97.6%
    b 1.1282 2.8535 1.7253 95.8% 1.2526 2.6453 1.3927 95.4%
    \tau -2.3903 7.7478 10.1381 94.6% 0.7896 3.9179 3.1283 96.6%
    b=1.5 150 a 0.4155 3.0630 2.6474 95.6% 0.8704 2.4470 1.5766 98.4%
    b 1.2344 2.6437 1.4093 95.8% 1.4967 2.3945 0.8979 95.0%
    \tau -1.8044 6.2974 8.1017 93.8% 0.7386 3.4610 2.7224 99.2%
    \tau=2 300 a 0.7300 2.9444 2.2144 89.4% 0.9837 2.4903 1.5066 96.4%
    b 1.4469 2.5415 1.0947 93.2% 1.6720 2.3314 0.6594 95.2%
    \tau -0.7896 4.4351 5.2247 92.8% 0.8241 2.8969 2.0728 96.8%
    600 a 0.8443 3.0427 2.1984 88.0% 1.1938 2.4879 1.2942 91.4%
    b 1.4851 2.4993 1.0142 91.4% 1.8123 2.2369 0.4246 89.2%
    \tau -0.9598 4.2972 5.2570 91.6% 0.8832 2.5574 1.6742 90.4%

     | Show Table
    DownLoad: CSV
    Table 10.  Lower, upper, length of CP, and CP for GAPEED parameters by MLE and MPS.
    MLE MPS
    n Lower Upper LACI CP Lower Upper LACI CP
    a=1.5 35 a 0.0841 3.0983 3.0142 99.4% 0.5964 2.4213 1.8249 97.0%
    b 0.7792 3.3199 2.5407 96.4% 0.9277 2.9819 2.0541 96.2%
    \tau -4.1397 11.2084 15.3481 96.8% 0.5888 5.0887 4.5000 96.8%
    70 a 0.3513 2.9435 2.5922 98.6% 0.7959 2.3551 1.5592 97.6%
    b 1.1282 2.8535 1.7253 95.8% 1.2526 2.6453 1.3927 95.4%
    \tau -2.3903 7.7478 10.1381 94.6% 0.7896 3.9179 3.1283 96.6%
    b=2 150 a 0.4155 3.0630 2.6474 95.6% 0.8704 2.4470 1.5766 98.4%
    b 1.2344 2.6437 1.4093 95.8% 1.4967 2.3945 0.8979 95.0%
    \tau -1.8044 6.2974 8.1017 93.8% 0.7386 3.4610 2.7224 99.2%
    \tau=2 300 a 0.7300 2.9444 2.2144 89.4% 0.9837 2.4903 1.5066 96.4%
    b 1.4469 2.5415 1.0947 93.2% 1.6720 2.3314 0.6594 95.2%
    \tau -0.7896 4.4351 5.2247 92.8% 0.8241 2.8969 2.0728 96.8%
    600 a 0.8443 3.0427 2.1984 88.0% 1.1938 2.4879 1.2942 91.4%
    b 1.4851 2.4993 1.0142 91.4% 1.8123 2.2369 0.4246 89.2%
    \tau -0.9598 4.2972 5.2570 91.6% 0.8832 2.5574 1.6742 90.4%
    a=2 35 a 1.4516 3.0180 1.5664 95.2% 1.2272 3.0073 1.7800 98.6%
    b 1.2482 5.2132 3.9651 95.8% 0.8513 4.9181 4.0668 99.2%
    \tau -0.2282 1.6153 1.8435 95.6% -0.4111 1.7960 2.2071 94.0%
    70 a 1.6144 2.7305 1.1160 95.0% 1.4843 2.7390 1.2547 97.6%
    b 1.4910 4.6090 3.1180 96.2% 1.1561 4.5050 3.3489 99.0%
    \tau -0.0943 1.4316 1.5259 95.2% -0.2493 1.5585 1.8078 94.8%
    b=3 150 a 1.7896 2.5391 0.7496 95.4% 1.7365 2.5418 0.8053 96.2%
    b 1.7926 4.1551 2.3625 96.2% 1.6447 4.0422 2.3974 96.8%
    \tau 0.0645 1.1806 1.1161 96.6% 0.0097 1.1917 1.1821 97.0%
    \tau=0.75 300 a 1.9039 2.4287 0.5249 95.8% 1.8799 2.4292 0.5493 97.4%
    b 2.1524 3.7909 1.6385 94.2% 1.9889 3.7889 1.8000 97.2%
    \tau 0.1813 1.0293 0.8480 95.4% 0.1349 1.0399 0.9050 97.0%
    600 a 1.9724 2.3730 0.4006 95.6% 1.9612 2.3715 0.4103 96.0%
    b 2.3438 3.5541 1.2102 94.2% 2.3352 3.4916 1.1564 95.4%
    \tau 0.2739 0.9082 0.6344 95.0% 0.2774 0.8905 0.6131 96.2%
    a=3 35 a 1.9729 4.6161 2.6432 95.8% 1.8782 4.3354 2.4572 97.0%
    b -0.0293 0.7353 0.7646 97.0% -0.0398 0.6755 0.7154 98.0%
    \tau -0.4116 1.4397 1.8512 94.0% -0.4786 1.4140 1.8926 95.4%
    70 a 2.4063 3.9743 1.5680 94.2% 2.2750 3.9640 1.6890 94.2%
    b -0.0284 0.5486 0.5770 94.8% -0.0534 0.5696 0.6230 97.4%
    \tau -0.3834 1.0028 1.3862 93.4% -0.4462 1.0793 1.5255 93.6%
    b=0.25 150 a 2.6660 3.7299 1.0639 93.4% 2.6852 3.6862 1.0010 94.4%
    b 0.0336 0.4138 0.3803 94.2% -0.0209 0.5050 0.5260 91.6%
    \tau -0.2258 0.6358 0.8616 93.8% -0.3280 0.8359 1.1640 88.4%
    \tau=0.25 300 a 2.8201 3.5448 0.7248 94.0% 2.9279 3.5496 0.6216 93.8%
    b 0.0642 0.3265 0.2624 92.6% 0.2438 0.3026 0.0587 98.2%
    \tau -0.1524 0.4342 0.5866 92.8% 0.3140 0.3670 0.0530 97.3%
    600 a 2.9387 3.4003 0.4616 94.8% 2.9697 3.1695 0.1998 98.1%
    b 0.1070 0.2593 0.1523 95.4% 0.3550 0.1831 -0.1719 96.9%
    \tau -0.0465 0.2697 0.3162 95.4% 0.4718 0.1116 -0.3601 97.5%

     | Show Table
    DownLoad: CSV

    Considering the results derived from the simulation analysis and the subsequent evaluations of rankings in Tables 28, we can identify several significant conclusions:

    ● The property of consistency among the estimators was observed in this investigation. This property signifies that, as the sample size, denoted as n , expands, the estimators tend to approach the true parameter values. This convergence not only reaffirms the robustness of these estimators but also underscores their appropriateness for various statistical inference purposes.

    ● As the sample size "n" increased, a noticeable trend in bias reduction was evident across all the estimating techniques under investigation. This observation highlights larger sample sizes' positive influence on the parameter estimation's precision and impartiality. This phenomenon can be attributed to the decreasing impact of random variations within more extensive datasets.

    ● With the expansion of the sample size "n", another significant observation pertaining to the consistent reduction is the MSE across all the estimators. The MSE is a comprehensive estimation performance indicator, encompassing bias and variance. The evident decline in the MSE underscores the enhancement in overall estimation accuracy with larger sample sizes.

    ● For the other measures ( MRE, D_{abs}, D_{max}, ASAE ), we can see that, as the sample size increases, all of these methods' values decrease.

    ● Based on the overall evaluation of the estimation strategies, the MLE technique emerges as the most effective method for estimating the parameters of the proposed model. As shown in Table 8, which presents the overall ranks for all estimation strategies, the MLE achieves the lowest total score of 67.0. This result further emphasizes the superiority of the MLE technique in accurately estimating the parameters of the proposed model in the context of this study.

    To prove that the proposed model is better than previous distributions, a comparison must be made using some data from previous studies. From the previous studies, we note that the basic distribution under study focused on the data of medical field. The three datasets under study have a basic relationship with the medical field in various ways. The GAPEED was applied to the various three datasets, and the outcomes of this comparison were produced with the TLMW [11], TIIEHLPL [32], EL [27], KW [25], GMW [21], MOAPEW [6], EW [24], EGAPEx [28], KMGEx [1], EHLINH [1], ExEx [48], and OWITL [7].

    Furthermore, in order to assess the EGAPE model's validity in comparison to other competing models, we utilized various goodness-of-fit metrics, including the Kolmogorov-Smirnov (K-S) statistic with its p-value, Cramer-von Mises (CVM), and Anderson-Darling (AD), as well as other criteria measures like Bayesian information (BI), Akaike information (AI), corrected AI (CAI), and Hannan-Quinn information (HQI). All goodness-of-fit metrics are all taken into account when comparing the fits of all models. We utilize R software and the Maximum Likelihood Estimation (MLE) method to estimate the parameters of the specified distributions and to assess the goodness-of-fit metrics.

    Data I: This data set was utilized as "1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3.0, 1.7, 2.3, 1.6, 2.0" by Barco et al. [18], and the data shows how quickly 20 people felt better after taking an analgesic.

    Data II: The most recent data cited by [2,11], showing the number of daily confirmed death cases linked to COVID-19. The data consists of 89 observed values with an average daily death rate of 18.72. The data set is given as follows: "1, 1, 2, 4, 5, 1, 1, 3, 6, 6, 4, 1, 5, 6, 6, 8, 5, 7, 7, 9, 9, 15, 17, 11, 13, 5, 14, 5, 13, 9, 19, 15, 11, 14, 12, 11, 7, 13, 10, 20, 22, 21, 12, 14, 9, 14, 7, 16, 17, 13, 21, 11, 11, 8, 11, 12, 15, 21, 20, 18, 15, 14, 21, 16, 11, 28, 29, 19, 14, 19, 29, 34, 34, 46, 46, 47, 36, 38, 40, 32, 39, 34, 35, 36, 35, 45, 62." Recently, papers [2,11] used this data, for which the Topp-Leone modified Weibull (TLMW) [11] has the best results where the KSPV reached 0.7280, while in this paper the KSPV reached 0.7453, and this is better than the another comparative models.

    Data III: Survival rates for Guinea pigs infected with virulent tubercle bacilli are shown in the set of data [55]. Guinea pigs were chosen for this experiment for a number of reasons, one of which is that it is believed that they are extremely vulnerable to human tuberculosis. The information set is as follows: 0.10, 0.33, 0.44, 0.56, 0.59, 0.72, 0.74, 0.77, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 1.07, 1.08, 1.08, 1.08, 1.09, 1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24 1.30, 1.34, 1.36, 1.39, 1.44, 1.46, 1.53, 1.59, 1.6, 1.63, 1.63, 1.68, 1.71, 1.72 1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 4.32, 4.58, 5.55.

    Tables 11Tables 16 present the MLE of the parameters for the GAPEED as well as other distributions, together with standard error (SE) values of the parameters and goodness of fit metrics for each distribution. In order to obtain the likelihood with SE, we first used the "maxLik" package, which implements the Newton Raphson (NR) method of maximization, and the variance covariance matrix. Second, we compare the fits with other distributions to determine if the relevant datasets genuinely fit the GAPEED or not using the goodness-of-fit test. Among all the models that have been fitted to these datasets, the GAPEED provides the lowest values for the KSD, AI, BI, CAI, HAI, CVM, and AD statistics. It also provides the highest value for the P-value when compared to other distributions. Figures 614 have been discussed for GAPEED.

    Table 11.  Estimates and SE for parameters of each model: Taking an analgesic, data I.
    \alpha \beta \tau \theta \lambda
    EGAPE Estimates 1.8897 29.0863 1.7697
    SE 0.5609 21.0642 0.8618
    EL Estimates 77.2175 12.0930 3.6927
    SE 116.8405 17.6372 7.7470
    KW Estimates 30.4293 0.3994 1.7768 1.4045
    SE 35.9424 0.4654 0.8620 0.6895
    EW Estimates 2.757653 13.05099 11.26919
    SE 0.425237 16.18943 25.32466
    MOAPEW Estimates 0.0048 0.4068 0.1943 0.4860 0.0038
    SE 0.0070 0.1936 0.0756 0.2005 0.0011
    KMGE Estimates 32.4295 2.0003
    SE 20.6526 0.4056
    EHLINH Estimates 6.7046 28.4439 0.0674
    SE 2.0967 65.6860 0.1601
    ExEx Estimates 133.3134 0.0028
    SE 78.3222 0.0015
    OWITL Estimates 2.9015 79.0976 0.3261
    SE 0.4311 115.5561 0.1408

     | Show Table
    DownLoad: CSV
    Table 12.  Statistical measures of each comparative models: Taking an analgesic data I.
    KSD KSPV AI BI CAI HQI CVM AD
    GAPEED 0.1163 0.9495 37.8850 40.8722 39.3850 38.4682 0.0427 0.2510
    EL 0.1211 0.9308 37.5124 40.4996 39.0124 38.0955 0.0391 0.2260
    KW 0.1392 0.8329 39.9867 43.9696 42.6534 40.7642 0.0498 0.2913
    MOAPEW 0.1853 0.4984 47.2771 50.2643 48.7771 47.8603 0.1866 1.0986
    EW 0.1853 0.4984 47.2771 50.2643 48.7771 47.8603 0.1866 1.0986
    KMGE 0.1206 0.9330 35.9024 37.8938 36.6082 36.2911 0.0438 0.2576
    EHLINH 0.1294 0.8912 37.9113 40.8985 39.4113 38.4944 0.0457 0.2641
    ExEx 0.4041 0.0029 59.5574 61.5489 60.2633 59.9461 0.1761 1.0400
    OWITL 0.1783 0.5481 44.5537 47.5409 46.0537 45.1369 0.1441 0.8519

     | Show Table
    DownLoad: CSV
    Table 13.  Estimates and SE for parameters of each model: COVID-19, data II.
    \alpha \beta \tau \theta \lambda
    EGAPE Estimates 0.0886 1.4401 0.6050
    SE 0.0157 0.5555 0.6115
    TLMW Estimates 0.0106 0.0101 1.2689 1.2680
    SE 0.0740 0.0276 0.2493 1.0647
    TIIEHLPL Estimates 1.7143 0.1844 28.8074 166.7427
    SE 2.9734 0.2303 71.7154 27.4533
    EL Estimates 1.8125 11.2464 123.1732
    SE 0.3163 8.1168 102.2685
    KW Estimates 1.2083 2.3127 0.0326 1.1786
    SE 0.9050 6.4453 0.0641 0.6493
    GMW Estimates 0.0370 1.2290 0.0015 1.1750
    SE 0.0939 0.9993 0.0140 0.7523
    MOAPEW Estimates 0.3553 0.2575 0.1384 0.0058 0.0087
    SE 0.5066 0.0104 0.1008 0.0018 0.0078
    EW Estimates 0.2312 0.0085 0.2914
    SE 0.0152 0.0058 0.1531
    KMGE Estimates 1.8212 0.0675
    SE 0.2588 0.0091
    EHLINH Estimates 19.5686 0.2837 1589.2263
    SE 15.3431 0.0490 237.2804
    ExEx Estimates 3.4494 0.0117
    SE 1.9636 0.0079
    OWITL Estimates 1.1721 0.0508 1.1382
    SE 0.4598 0.0350 0.5937

     | Show Table
    DownLoad: CSV
    Table 14.  Statistical measures of each comparative models for COVID-19, data II.
    KSD KSPV AI BI CAI HQI CVM AD
    GAPEED 0.0728 0.7453 662.0716 669.4693 662.3608 665.0504 0.0869 0.5958
    TLMW 0.0740 0.7280 663.9288 673.7924 664.4166 667.9005 0.0901 0.6041
    TIIEHLPL 0.0816 0.6084 665.4572 675.3208 665.9450 669.4290 0.0814 0.6494
    EL 0.0845 0.5635 663.7241 671.1218 664.0132 666.7029 0.0761 0.6190
    KW 0.0752 0.7090 663.9278 673.7914 664.4156 667.8996 0.0920 0.6121
    GMW 0.0768 0.6834 663.8639 673.7276 664.3517 667.8357 0.0943 0.6201
    MOAPEW 0.0762 0.6929 665.7249 678.0545 666.4657 670.6897 0.0879 0.5993
    EW 0.1110 0.2336 667.4458 674.8435 667.7349 670.4246 0.2186 1.2041
    KMGE 0.0861 0.5389 662.3907 669.8323 662.5335 665.3766 0.0763 0.6177
    EHLINH 0.0864 0.5345 664.3826 671.7803 664.6718 667.3615 0.0853 0.7083
    ExEx 0.0919 0.4547 662.8435 669.7753 662.9863 665.8294 0.1603 0.9021
    OWITL 0.0771 0.6787 662.6932 669.5910 662.9824 665.6721 0.0996 0.6511

     | Show Table
    DownLoad: CSV
    Table 15.  Estimates and SE for parameters of each model: Guinea pigs, data III.
    \alpha \beta \tau \theta
    EGAPE Estimates 1.2948 0.9091 0.0079
    SE 0.1631 0.6367 0.0242
    TLMW Estimates 0.2497 0.2004 1.2916 2.7723
    SE 0.9087 0.7554 0.7622 1.5924
    TIIEHLPL Estimates 0.0927 1.3381 2.4967 138.0944
    SE 0.2557 0.8698 1.5475 532.9272
    EL Estimates 3.8657 36.6762 30.4730
    SE 0.8248 61.0255 53.2398
    KW Estimates 3.9049 3.8098 0.6329 0.7832
    SE 9.9178 25.2951 0.8289 1.7951
    GMW Estimates 1.4999 7.0403 0.1177 0.5813
    SE 0.7081 2.0431 0.0250 0.1381
    EW Estimates 1.8162 36.6594 5.3695
    SE 0.1607 70.2187 9.0321
    EGAPEx Estimates 2.2303 3.0157 3.0038 0.4497
    SE 4.3322 1.7338 3.8605 0.5913
    KMGE Estimates 3.7890 0.9720
    SE 0.7019 0.1221
    EHLINH Estimates 34.1057 0.3627 94.1204
    SE 38.2904 0.0934 165.6271
    ExEx Estimates 70.0000 0.0051
    SE 81.8420 0.0059
    OWITL Estimates 1.8011 19.0880 0.3149
    SE 0.1713 23.2625 0.1740

     | Show Table
    DownLoad: CSV
    Table 16.  Statistical measures of each comparative models for Guinea pigs, dataset III.
    KSD KSPV AI BI CAI HQI CVM AD
    GAPEED 0.0826 0.7094 192.5995 199.4295 192.9524 195.3185 0.0881 0.5118
    TLMW 0.0885 0.6253 196.1265 205.2332 196.7235 199.7519 0.0915 0.5657
    TIIEHLPL 0.0874 0.6408 196.0386 205.1453 196.6356 199.6640 0.0747 0.4823
    EL 0.0944 0.5429 194.7195 201.5495 195.0725 197.4386 0.0770 0.5188
    KW 0.0896 0.6103 196.1880 205.2947 196.7850 199.8134 0.0933 0.5735
    GMW 0.0905 0.5967 197.2302 206.3369 197.8272 200.8556 0.1064 0.6601
    EW 0.1056 0.3984 197.6848 204.5148 198.0377 200.4038 0.1662 0.9792
    EGAPEx 0.0874 0.6411 196.1340 205.2406 196.7310 199.7594 0.0917 0.5652
    KMGE 0.0906 0.5961 193.4319 200.9853 193.6058 196.2446 0.0970 0.5771
    EHLINH 0.1011 0.4537 195.7417 202.5717 196.0946 198.4607 0.0976 0.6161
    ExEx 0.2118 0.0031 210.6588 215.2121 210.8327 212.4715 0.2429 1.4240
    OWITL 0.0929 0.5634 194.6419 201.4719 194.9949 197.3610 0.0921 0.5773

     | Show Table
    DownLoad: CSV
    Figure 6.  Estimation of GAPEED model of taking an analgesic, data I.
    Figure 7.  Profile likelihood of GAPEED parameter for taking an analgesic, data I.
    Figure 8.  Uniqueness proof of GAPEED parameter for taking an analgesic, data I.
    Figure 9.  Estimation of GAPEED model of COVID-19, data II.
    Figure 10.  Profile likelihood of GAPEED parameter for COVID-19, data II.
    Figure 11.  Uniqueness of GAPEED parameter for COVID-19, data II.
    Figure 12.  Estimation of GAPEED model of Guinea pigs, dataset III.
    Figure 13.  Profile likelihood of GAPEED parameter for Guinea pigs, dataset III.
    Figure 14.  Uniqueness of GAPEED parameter for Guinea pigs, dataset III.

    Profile likelihood and uniqueness proof of GAPEED parameters have been discussed in Figures 7, 8, 10, 11, 13, and 14. The results in Tables 12, 14, and 16 show that the GAPEED is the most effective model to fit these datasets when compared to the other distributions indicated in Tables 12, 14, and 16. Graphical representations in Figures 6, 9, and 12 reflect these findings.

    The majority of research employs just one accelerating stress variable. There are situations when increasing one stress variable does not produce enough failure data. For further acceleration, two stress factors might be required. Two stress variables are examined in this paper. It will be possible to better comprehend the impact of two stress variables functioning simultaneously if two stress variables are included in a test design. Furthermore, the test units' failure time is assumed by the author to follow a GAPEED model. The bivariate SSALT under PTIC is discussed in this section. The MLE of the model parameters is also examined.

    The bivariate SSALT under PTIC is as follows: Each stress variable (SV) has two levels when using the bivariate SSALT. Let H_s represent the variable l's stress level (SL) s , where l = 1, 2 and s = 0, 1, 2 . H_{10} and H_{20} illustrate typical operational scenarios. Allow the experiment to run for T_1 , during which n_1 failures will be logged, with all n units starting at the 1^{st} step with SLs (K_{11}, K_{21}) .

    The 1^{st} SV is raised from H_{11} to H_{12} at time T_1 , c_1 units are removed at random from the remaining N-n_1 units, and the 1^{st} SV is raised from H_{11} to H_{12} . Until the predetermined time tau_2 is calculated at time tau_2 from the remaining N-n_1- c_1- n_2 units, the second phase is repeated.

    The other SV is increased from H_{21} to H_{22} at the conclusion of the 2^{nd} step. Up until when T is reached, at which point n_2 units fail this stage, the test is repeated. All of the surviving units c_3 = N-n_1- c_1- n_2- c_2-n_3 are taken out of the test at time T .

    In the first phase, GAPEED with cdf in Eq (2.1) is used to calculate the life of test units. A log-linear function of SLs exists for the scale parameter \alpha_i at test step i for i = 1, 2, and 3.

    Step 1.   \ln(\alpha_1) = B_0+B_1H_{11}+B_2H_{21} ;

    Step 2.   \ln(\alpha_2) = B_0+B_1H_{12}+B_2H_{21} ;

    Step 3.   \ln(\alpha_3) = B_0+B_1H_{12}+B_2H_{22} ,

    where B_0 , B_1 , and B_2 are unidentified parameters that vary based on the test technique and the product. The two pressures are thought to be unrelated to one another.

    The model of cumulative exposure is also considered. Regardless of how the chance is calculated, the remaining life in this model is completely based on the current cumulative failure probability and the current SL [49].

    The shape parameter \beta is constant for all SLs. The cumulative distribution function (cdf) of the test unit lifespan for the bivariate SSALT and cumulative exposure models is then:

    \begin{equation} F_i(x) = \left\{ \begin{array}{cc} \left(1-e^{-a_1 x}\right)^b \tau ^{1-\left(1-e^{-a_1 x}\right)^b} & 0\le x\le T_1, \\ \left(1-e^{-\left[ a_1 T_1+ a_2 (x-T_1)\right]}\right)^b \tau ^{1-\left(1-e^{-\left[ a_1 T_1+ a_2 (x-T_1)\right]}\right)^b} & T_1\le x\le T_2, \\ \left(1-e^{-\left[ a_1 T_1+ a_2 (T_2-T_1) +a_3 (x-T_2)\right]}\right)^b \tau ^{1-\left(1-e^{-\left[ a_1 T_1+ a_2 (T_2-T_1) +a_3 (x-T_2)\right]}\right)^b} & T_2\le x\le T, \end{array} \right. \end{equation} (7.1)

    where i = 1, 2, 3 . The pdf of bivariate SSALT for this can be written as

    \begin{equation} f_1(x) = \frac{1}{e^{a_1 x}-1} \left\{a_1 b \left(1-e^{-a_1 x}\right)^b \tau ^{1-\left(1-e^{-a_1 x}\right)^b} \left[1-\log (\tau ) \left(1-e^{-a_1 x}\right)^b\right]\right\}, \; \; 0\le x\le T_1, \end{equation} (7.2)
    \begin{equation} \begin{aligned} f_2(x) = & \frac{1}{e^{\left(a_1 T_1+ a_2 (x-T_1)\right)}-1} \left\{a_2 b \left(1-e^{-\left(a_1 T_1+ a_2 (x-T_1)\right)}\right)^b \tau ^{1-\left(1-e^{-\left(a_1 T_1+ a_2 (x-T_1)\right)}\right)^b}\right.\\& \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \left. \left[1-\log (\tau ) \left(1-e^{-\left(a_1 T_1+ a_2 (x-T_1)\right)}\right)^b\right]\right\}, \; \; \; T_1\le x\le T_2, \end{aligned} \end{equation} (7.3)

    and

    \begin{equation} \begin{aligned} f_3(x) = & \frac{1}{e^{\left( a_1 T_1+ a_2 (T_2-T_1) +a_3 (x-T_2)\right)}-1} \left\{a_3 b \left(1-e^{-\left( a_1 T_1+ a_2 (T_2-T_1) +a_3 (x-T_2)\right)}\right)^b \tau ^{1-\left(1-e^{-\left( a_1 T_1+ a_2 (T_2-T_1) +a_3 (x-T_2)\right)}\right)^b} \right. \\& \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \left. \left[1-\log (\tau ) \left(1-e^{-\left( a_1 T_1+ a_2 (T_2-T_1) +a_3 (x-T_2)\right)}\right)^b\right]\right\} \; \; T_2\le x\le T_3. \end{aligned} \end{equation} (7.4)

    Assume that in a bivariate SSALT, x_{ij} represents the observations produced from a PTIC sample with random deletions, where i = 1, 2, 3, j = 1, 2, ..., n_i . Each unit is excluded from the test with the same probability p , and the number of items removed from the test at any one time is distributed binomially. In other words,

    \begin{equation} C_i = \left\{ \begin{array}{c} c_1 \approx binomial(N-n_1, p), \\ c_2|c_1 = c_2 \approx binomial(N-n_1-n_2-c_1, p), \\ c_3 = N-n_1-n_2-n_3-c_1-c_2. \end{array} \right. \end{equation} (7.5)

    The joint log-LLF of the bivariate SSALT model under the PTIC sample is as follows if C_i is independent of x_{ij} for all i .

    \begin{equation} L(\Theta, p|C) = L_1\left(\Theta\right) P(c_1, p) P(c_2|c_1, p), \end{equation} (7.6)

    where

    \begin{equation} L_1(\Theta) = \prod\limits_{i = 1}^{3} \prod\limits_{j = 1}^{n_i} f_i(x_{ij}) \left[1-F_i(x_{ij})\right]^{c_i} , \end{equation} (7.7)

    where in (7.1)–(7.4), F_i(x_{ij}) and f_i(x_{ij}) will be replaced for F_i(x_{ij}) and f_i(x_{ij}) , respectively.

    The ML estimators of the model under bivariate SSALT based on the PTIC sample are shown in Tables 17 and 18, respectively, when p = 0 and p = 0.2. The results in Tables 17 and 18 indicate that the model's effectiveness rises as the probability of binomial elimination rises and the AINC and BINC values fall.

    Table 17.  MLE under bivariate SSALT based on PTIC sample when p = 0.
    Data T_1 T_2 T_3 n_1 n_2 n_3 \alpha_1 \alpha_2 \alpha_3 \beta \tau Llog AI BI
    I 1.6 1.9 3 6 7 5 2.5353 4.2746 3.3228 1.8354 0.0020 -7.2028 24.4055 29.3842
    3.5 6 2.4710 3.8668 2.3909 2.0295 0.0031 -10.4644 30.9287 35.9074
    2.2 3 9 3 2.5416 3.5990 5.0954 1.9838 0.0026 -7.1745 24.3490 29.3277
    3.5 4 2.5352 3.0753 2.9460 1.9840 0.0008 -10.8706 31.7412 36.7198
    1.8 1.9 3 11 2 5 2.8502 4.7026 3.3463 1.4596 0.0034 -7.6071 25.2142 30.1929
    3.5 6 2.7474 4.0312 2.4071 1.7368 0.0024 -10.7940 31.5879 36.5666
    2.2 3 4 3 2.9864 3.0214 5.1299 1.3835 0.0007 -7.4430 24.8859 29.8646
    3.5 4 2.8427 2.4470 2.9661 1.9249 0.0025 -10.9378 31.8756 36.8543
    II 8 14 22 22 21 24 0.0842 0.1251 0.3435 1.4147 0.8461 -207.0863 424.1727 436.5022
    38 36 0.0463 0.0689 0.1152 1.3591 1.4858 -278.0608 566.1216 578.4511
    18 30 35 14 0.1071 0.1562 0.2666 1.2760 0.3879 -231.5655 473.1311 485.4606
    38 22 0.0929 0.1258 0.1248 1.2874 0.4486 -278.8941 567.7881 580.1177
    10 14 30 28 15 28 0.0546 0.0970 0.2060 1.4255 1.5355 -229.6798 469.3596 481.6891
    38 36 0.0473 0.0790 0.1146 1.3702 1.5078 -277.6793 565.3585 577.6881
    18 30 29 14 0.0908 0.1687 0.2639 1.3715 0.6488 -230.6346 471.2691 483.5987
    38 22 0.0642 0.1176 0.1199 1.4065 1.0223 -278.2243 566.4487 578.7782
    III 1.1 1.6 2.4 21 17 18 1.9285 1.9888 3.3652 2.1804 0.0428 -42.3850 94.7701 106.1534
    3 26 1.8135 1.6050 2.1656 2.1324 0.0408 -61.6277 133.2554 144.6387
    1.9 2.4 25 10 1.9262 2.1187 4.8965 2.1808 0.0427 -41.3863 92.7727 104.1560
    3 18 1.8140 1.6102 2.5898 2.1043 0.0396 -60.9120 131.8240 143.2073
    1.3 1.6 2.4 30 8 18 2.0586 1.6644 3.3873 2.4176 0.0402 -42.2304 94.4608 105.8442
    3 26 1.8815 1.2926 2.1763 2.2743 0.0399 -61.2000 132.4000 143.7833
    1.9 2.4 16 10 2.0571 1.9902 4.9177 2.4155 0.0401 -41.4372 92.8744 104.2577
    3 18 1.8835 1.4376 2.6025 2.2621 0.0392 -60.5813 131.1625 142.5459

     | Show Table
    DownLoad: CSV
    Table 18.  MLE under bivariate SSALT based on PTIC sample when p = 0.2.
    Data T_1 T_2 T_3 n_1 n_2 n_3 \alpha_1 \alpha_2 \alpha_3 \beta \tau Llog AI BI
    I 1.6 1.9 3 6 7 2 2.7800 6.6237 5.1808 1.5332 0.0019 -1.3345 12.6689 17.6476
    3.5 3 2.6606 5.5631 2.0821 1.5061 0.0026 -5.5431 21.0862 26.0648
    2.2 3.1 9 2 2.5638 4.3445 2.5229 1.7539 0.0021 -6.6903 23.3806 28.3592
    3.5 2 2.5638 4.3445 2.5229 1.7539 0.0001 -6.6903 23.3806 28.3592
    1.8 1.9 3 11 1 2 3.3879 5.5803 2.5550 1.4507 0.0012 -4.0139 18.0277 23.0064
    3.5 3 3.5248 3.7242 1.6542 2.0645 0.0018 -7.1073 24.2145 29.1932
    2.2 3 3 1 3.2535 4.6798 10.2574 1.5629 0.0019 -3.0837 16.1675 21.1461
    3.5 1 3.2535 4.6798 10.2574 1.5629 0.0029 -3.0837 16.1675 21.1461
    II 8 14 22 22 18 16 0.1221 0.1552 0.3637 1.3846 0.5564 -171.7641 353.5283 365.8578
    38 25 0.0621 0.0835 0.1128 1.4401 1.4256 -226.8644 463.7287 476.0583
    18 22 29 5 0.1362 0.2049 0.5140 1.3076 0.3588 -171.8571 353.7143 366.0438
    38 15 0.1127 0.1369 0.1093 1.2970 0.4134 -230.3447 470.6895 483.0190
    10 14 22 28 12 16 0.0711 0.1187 0.3461 1.5427 1.6947 -169.7180 349.4361 361.7656
    38 24 0.0584 0.0858 0.1120 1.4557 1.6740 -220.9976 451.9953 464.3248
    18 22 24 5 0.1297 0.2358 0.5680 1.3375 0.4332 -173.7040 357.4080 369.7376
    38 13 0.1069 0.1581 0.1051 1.3487 0.5302 -224.0241 458.0481 470.3777
    III 1.1 1.6 2.4 21 13 9 2.2016 2.4738 4.1560 2.3470 0.0482 -27.9595 65.9191 77.3024
    3 13 2.1023 2.0038 2.3040 2.2828 0.0463 -39.9871 89.9742 101.3575
    1.9 2.4 21 5 2.0900 2.4406 5.7452 2.3197 0.0480 -32.3110 74.6221 86.0054
    3 9 2.0104 1.9690 2.9062 2.2560 0.0457 -43.2342 96.4684 107.8517
    1.3 1.6 2.4 30 6 10 2.3723 1.9721 3.2473 2.7184 0.0406 -32.2770 74.5541 85.9374
    3 14 2.2271 1.5491 2.2233 2.5817 0.0408 -42.5040 95.0080 106.3914
    1.9 2.4 12 8 2.2277 1.8942 4.5920 2.5778 0.0406 -36.5661 83.1323 94.5156
    3 10 2.1666 1.6701 3.5295 2.5178 0.0404 -41.6866 93.3732 104.7565

     | Show Table
    DownLoad: CSV

    In this article, we derived and studied a new three-parameter lifetime distribution called the GAPEED. Some important statistical and mathematical features (quantile function, ordinary moments, incomplete moments, and moment generating function) were computed. Eight different estimation methods for the distribution parameters, ML, AD, CVM, MPS, LS, RTAD, WLS, and LTAD, were proposed. The Monte Carlo technique was employed to evaluate the quality of different estimators. The importance and flexibility of the GAPEED were demonstrated by utilizing three real datasets. For the GAPEED model, a bivariate SSALT based on PTIC was presented. An optimal test plan under PTIC is expressed by minimizing the asymptotic variance of the MLE of the log of the scale parameter at design stress. Tables 17 and 18 compare the approaches based on various binomial removal values. We conclude from these findings that the effectiveness of this model increases as the value of the binomial removals rises.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-RG23142).

    This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-RG23142).

    The authors declare no conflict of interest.



    [1] M. M. Abdelwahab, A. B. Ghorbal, A. S. Hassan, M. Elgarhy, E. M. Almetwally, A. F. Hashem, Classical and bayesian inference for the Kavya-Manoharan generalized exponential distribution under generalized progressively hybrid censored data, Symmetry, 15 (2023). https://doi.org/10.3390/sym15061193
    [2] A. A. Alahmadi, M. Alqawba, W. Almutiry, A. W. Shawki, S. Alrajhi, S. Al-Marzouki, et al., A new version of weighted Weibull distribution: Modelling to COVID-19 data, Discrete Dyn. Nat. Soc., 2022 (2022). https://doi.org/10.1155/2022/3994361
    [3] Z. Ahmad, M. Elgarhy, G. Hamedani, N. S. Butt, Odd generalized NH generated family of distributions with application to exponential model, Pak. J. Stat. Oper. Res., 16 (2020), 53–71. https://doi.org/10.18187/pjsor.v16i1.2295 doi: 10.18187/pjsor.v16i1.2295
    [4] H. Al-Mofleh, M. Elgarhy, A. Afify, M. Zannon, Type II exponentiated half logistic generated family of distributions with applications, Electron. J. Appl. Stat., 13 (2020), 536–561.
    [5] A. M. Basheer, E. M. Almetwally, H. M. Okasha, Marshall-olkin alpha power inverse Weibull distribution: Non Bayesian and Bayesian estimations, J. Stat. Appl. Probab., 10 (2021), 327–345. https://doi.org/10.18576/jsap/100205 doi: 10.18576/jsap/100205
    [6] E. M. Almetwally, Marshall olkin alpha power extended Weibull distribution: Different methods of estimation based on type I and type II censoring, Gazi U. J. Sci., 35 (2022), 293–312. https://doi.org/10.35378/gujs.741755 doi: 10.35378/gujs.741755
    [7] E. M. Almetwally, The odd Weibull inverse Topp-Leone distribution with applications to COVID-19 data, Ann. Data Sci., 9 (2022), 121–140. https://doi.org/10.1007/s40745-021-00329-w doi: 10.1007/s40745-021-00329-w
    [8] N. Alotaibi, I. Elbatal, E. M. Almetwally, S. A. Alyami, A. S. Al-Moisheer, M. Elgarhy, Truncated Cauchy power Weibull-G class of distributions: Bayesian and non-Bayesian inference modelling for COVID-19 and carbon fiber data, Mathematics, 10 (2022). https://doi.org/10.3390/math10091565
    [9] N. Alotaibi, I. Elbatal, E. M. Almetwally, S. A. Alyami, A. Al-Moisheer, M. Elgarhy, Bivariate step-stress accelerated life tests for the Kavya-Manoharan exponentiated Weibull model under progressive censoring with applications, Symmetry, 14 (2022). https://doi.org/10.3390/sym14091791
    [10] R. Alotaibi, A. Al Mutairi, E. M. Almetwally, C. Park, H. Rezk, Optimal design for a bivariate step-stress accelerated life test with alpha power exponential distribution based on type-I progressive censored samples, Symmetry, 14 (2022). https://doi.org/10.3390/sym14040830
    [11] S. A. Alyami, I. Elbatal, N. Alotaibi, E. M. Almetwally, H. M. Okasha, M. Elgarhy, Topp-Leone modified Weibull model: Theory and applications to medical and engineering data, Appl. Sci., 12 (2022). https://doi.org/10.3390/app122010431
    [12] C. B. Ampadu, Gull Alpha power of the Ampadu-type: Properties and applications, Earthline J. Math. Sci., 6 (2021), 187–207. https://doi.org/10.34198/ejms.6121.187207 doi: 10.34198/ejms.6121.187207
    [13] T. W. Anderson, D. A. Darling, Asymptotic theory of certain "goodness of fit" criteria based on stochastic processes, Ann. Math. Stat., 23 (1952), 193–212. https://doi.org/10.1214/aoms/1177729437 doi: 10.1214/aoms/1177729437
    [14] J. M. Astorga, Y. A. Iriarte, H. W. Gómez, H. Bolfarine, Modified slashed generalized exponential distribution, Commun. Stat.-Theory M., 49 (2020), 4603–4617. https://doi.org/10.1080/03610926.2019.1604959 doi: 10.1080/03610926.2019.1604959
    [15] N. Balakrishnan, D. Han, G. Iliopoulos, Exact inference for progressively type-I censored exponential failure data, Metrika, 73 (2011), 335–358. https://doi.org/10.1007/s00184-009-0281-0 doi: 10.1007/s00184-009-0281-0
    [16] R. A. R. Bantan, C. Chesneau, F. Jamal, I. Elbatal, M. Elgarhy, The truncated burr XG family of distributions: Properties and applications to actuarial and financial data, Entropy, 23 (2021), 1088. https://doi.org/10.3390/e23081088 doi: 10.3390/e23081088
    [17] R. A. Bantan, F. Jamal, C. Chesneau, M. Elgarhy, On a new result on the ratio exponentiated general family of distributions with applications, Mathematics, 8 (2020), 598. https://doi.org/10.3390/math8040598 doi: 10.3390/math8040598
    [18] K. V. P. Barco, J. Mazucheli, V. Janeiro, The inverse power Lindley distribution, Commun. Stat.-Simul. C., 46 (2017), 6308–6323. https://doi.org/10.1080/03610918.2016.1202274 doi: 10.1080/03610918.2016.1202274
    [19] W. B. Souza, A. H. Santos, G. M. Cordeiro, The beta generalized exponential distribution, J. Stat. Comput. Sim., 80 (2010), 159–172. https://doi.org/10.1080/00949650802552402 doi: 10.1080/00949650802552402
    [20] M. Capanu, M. Giurcanu, C. B. Begg, M. Gönen, Subsampling based variable selection for generalized linear models, Comput. Stat. Data An., 184 (2023), 107740. https://doi.org/10.1016/j.csda.2023.107740 doi: 10.1016/j.csda.2023.107740
    [21] J. M. Carrasco, E. M. Ortega, G. M. Cordeiro, A generalized modified Weibull distribution for lifetime modeling, Computat. Stat. Data An., 53 (2008), 450–462. https://doi.org/10.1016/j.csda.2008.08.023 doi: 10.1016/j.csda.2008.08.023
    [22] A. K. Chaudhary, L. P. Sapkota, V. Kumar, Half-Cauchy generalized exponential distribution: Theory and application, J. Nepal Math. Soc., 5 (2022), 1–10. https://doi.org/10.3126/jnms.v5i2.50018 doi: 10.3126/jnms.v5i2.50018
    [23] K. Choi, W. G. Bulgren, An estimation procedure for mixtures of distributions, J. Roy. Stat. Soc. B, 30 (1968), 444–460. https://doi.org/10.1111/j.2517-6161.1968.tb00743.x doi: 10.1111/j.2517-6161.1968.tb00743.x
    [24] G. M. Cordeiro, E. M. Ortega, A. J. Lemonte, The exponential-Weibull lifetime distribution, J. Stat. Comput. Sim., 84 (2014), 2592–2606. https://doi.org/10.1080/00949655.2013.797982 doi: 10.1080/00949655.2013.797982
    [25] G. M. Cordeiro, E. M. Ortega, S. Nadarajah, The Kumaraswamy Weibull distribution with application to failure data, J. Franklin I., 347 (2010), 1399–1429. https://doi.org/10.1016/j.jfranklin.2010.06.010 doi: 10.1016/j.jfranklin.2010.06.010
    [26] G. M. Cordeiro, M. Alizadeh, G. Ozel, B. Hosseini, E. M. M. Ortega, E. Altun, The generalized odd log-logistic class of distributions: Properties, regression models and applications, J. Stat. Comput. Sim., 87 (2017), 908–932. https://doi.org/10.1080/00949655.2016.1238088 doi: 10.1080/00949655.2016.1238088
    [27] A. H. El-Bassiouny, N. F. Abdo, H. S. Shahen, Exponential Lomax distribution, Int. J. Comput. Appl., 121 (2015). https://doi.org/10.5120/21602-4713
    [28] E. A. ElSherpieny, E. M. Almetwally, The exponentiated generalized Alpha power family of distribution: Properties and applications, Pak. J. Stat. Oper. Res., 18 (2022), 349–367. https://doi.org/10.18187/pjsor.v18i2.3515 doi: 10.18187/pjsor.v18i2.3515
    [29] R. C. Gupta, P. L. Gupta, R. D. Gupta, Modeling failure time data by Lehman alternatives, Commun. Stat.-Theor. M., 27 (1998), 887–904. https://doi.org/10.1080/03610929808832134 doi: 10.1080/03610929808832134
    [30] N. Hakamipour, Approximated optimal design for a bivariate step-stress accelerated life test with generalized exponential distribution under type-I progressive censoring, Int. J. Qual. Reliab. Ma., 38 (2021), 1090–1115. https://doi.org/10.1108/IJQRM-05-2020-0150 doi: 10.1108/IJQRM-05-2020-0150
    [31] M. A. Haq, M. Elgarhy, S. Hashmi, The generalized odd Burr III family of distributions: Properties, applications and characterizations, J. Taibah Univ. Sci., 13 (2019), 961–971. https://doi.org/10.1080/16583655.2019.1666785 doi: 10.1080/16583655.2019.1666785
    [32] E. A. Hassan, M. Elgarhy, E. A. Eldessouky, O. H. M. Hassan, E. A. Amin, E. M. Almetwally, Different estimation methods for new probability distribution approach based on environmental and medical data, Axioms, 12 (2023), 220. https://doi.org/10.3390/axioms12020220 doi: 10.3390/axioms12020220
    [33] W. He, Z. Ahmad, A. Z. Afify, H. Goual, The arcsine exponentiated-X family: Validation and insurance application, Complexity, 20 (2020), 8394815. https://doi.org/10.1155/2020/8394815 doi: 10.1155/2020/8394815
    [34] M. Ijaz, S. M. A. Alamgir, M. Farooq, S. A. Khan, S. Manzoor, A Gull Alpha Power Weibull distribution with applications to real and simulated data, Plos One, 15 (2020). https://doi.org/10.1371/journal.pone.0233080
    [35] F. Jamal, M. A. Nasir, G. Ozel, M. Elgarhy, N. M. Khan, Generalized inverted Kumaraswamy generated family of distributions: Theory and applications, J. Appl. Stat., 46 (2019), 2927–2944. https://doi.org/10.1080/02664763.2019.1623867 doi: 10.1080/02664763.2019.1623867
    [36] F. Jamal, C. Chesneau, K. Aidi, The sine extended odd Fréchet-G family of distribution with applications to complete and censored data, Math. Slovaca, 71 (2021), 961–982. https://doi.org/10.1515/ms-2021-0033 doi: 10.1515/ms-2021-0033
    [37] J. H. K. Kao, Computer methods for estimating Weibull parameters in reliability studies, IRE T. Reliab. Qual. Contr., 1958, 15–22. https://doi.org/10.1109/IRE-PGRQC.1958.5007164
    [38] H. A. Khogeer, A. Alrumayh, M. M. Abd El-Raouf, M. Kilai, R. Aldallal, Exponentiated gull alpha exponential distribution with application to COVID-19 data, J. Math., 2022 (2022). https://doi.org/10.1155/2022/4255079
    [39] M. Kilai, G. A. Waititu, W. A. Kibira, H. M. Alshanbari, M. El-Morshedy, A new generalization of Gull Alpha Power family of distributions with application to modeling COVID-19 mortality rates, Results Phys., 36 (2022), 105339. https://doi.org/10.1016/j.rinp.2022.105339 doi: 10.1016/j.rinp.2022.105339
    [40] D. Kumar, U. Singh, S. K. Singh, A new distribution using sine function its application to bladder cancer patients data, J. Stat. Appl. Pro., 4 (2015), 417–427.
    [41] A. Mahdavi, D. Kundu, A new method for generating distributions with an application to exponential distribution, Commun. Stat.-Theor. M., 46 (2017), 6543–6557. https://doi.org/10.1080/03610926.2015.1130839 doi: 10.1080/03610926.2015.1130839
    [42] M. Kpangay, L. O. Odongo, G. O. Orwa, The Kumaraswamy-Gull Alpha Power Rayleigh distribution: Properties and application to HIV/AIDS data, Int. J. Sci. Res. Eng., 37 (2023), 431–442.
    [43] E. M. Almetwally, R. Alotaibi, H. Rezk, Estimation and prediction for Alpha-Power Weibull distribution based on hybrid censoring, Symmetry, 15 (2023), 1687. https://doi.org/10.3390/sym15091687 doi: 10.3390/sym15091687
    [44] G. S. Mudholkar, D. K. Srivastava, Exponentiated Weibull family for analyzing bathtub failure-rate data, IEEE T. Reliab., 42 (1993), 299–302. https://doi.org/10.1109/24.229504 doi: 10.1109/24.229504
    [45] G. S. Mudholkar, D. K. Srivastava, M. Freimer, The exponentiated Weibull family: A reanalysis of the bus-motor-failure data, Technometrics, 37 (1995), 436–445. https://doi.org/10.1080/00401706.1995.10484376 doi: 10.1080/00401706.1995.10484376
    [46] M. Muhammad, R. A. R. Bantan, L. Liu, C. Chesneau, M. H. Tahir, F. Jamal, et al., The truncated Burr XG family of distributions: Properties and applications to actuarial and financial data, Mathematics, 9 (2021), 2758. https://doi.org/10.3390/math9212758 doi: 10.3390/math9212758
    [47] M. S. Mukhtar, M. El-Morshedy, M. S. Eliwa, H. M. Yousof, Expanded Fréchet model: Mathematical properties, copula, different estimation methods, applications and validation testing, Mathematics, 8 (2020), 1949. https://doi.org/10.3390/math8111949 doi: 10.3390/math8111949
    [48] S. Nadarajah, The exponentiated exponential distribution: A survey, ASTA-Adv. Stat. Anal., 95 (2011), 219–251. https://doi.org/10.1007/s10182-011-0154-5 doi: 10.1007/s10182-011-0154-5
    [49] W. B. Nelson, Accelerated testing: Statistical models, test plans, and data analysis, John Wiley & Sons, 2009.
    [50] Z. M. Nofal, A. Z. Afify, H. M. Yousof, G. M. Cordeiro, The generalized transmuted-G family of distributions, Commun. Stat.-Theor. M., 46 (2017), 4119–4136. https://doi.org/10.1080/03610926.2015.1078478 doi: 10.1080/03610926.2015.1078478
    [51] A. H. Tolba, A. H. Muse, A. Fayomi, H. M. Baaqeel, E. M. Almetwally, The Gull Alpha Power Lomax distributions: Properties, simulation, and applications to modeling COVID-19 mortality rates, Plos One, 18 (2023). https://doi.org/10.1371/journal.pone.0283308
    [52] M. M. Ristic, D. Kundu, Marshall-Olkin generalized exponential distribution, J. Stat. Comput. Sim., 73 (2015), 317–333. https://doi.org/10.1007/s40300-014-0056-x doi: 10.1007/s40300-014-0056-x
    [53] T. Ruzgas, M. Lukauskas, G. Čepkauskas, Nonparametric multivariate density estimation: Case study of Cauchy mixture model, Mathematics, 9 (2021), 2717. https://doi.org/10.3390/math9212717 doi: 10.3390/math9212717
    [54] L. P. Sapkota, V. Kumar, Odd lomax generalized exponential distribution: Application to engineering and COVID-19 data, Pak. J. Stat. Oper. Res., 18 (2022), 883–900. https://doi.org/10.18187/pjsor.v18i4.4149 doi: 10.18187/pjsor.v18i4.4149
    [55] D. C. U. Sivakumar, R. Kanaparthi, G. S. Rao, K. Kalyani, The odd generalized exponential log-logistic distribution group acceptance sampling plan, Stat. Transition New Series, 20 (2019), 103–116. https://doi.org/10.21307/stattrans-2019-006 doi: 10.21307/stattrans-2019-006
    [56] L. Souza, W. Junior, C. de Brito, C. Chesneau, R. Fernandes, T. Ferreira, Tan-G class of trigonometric distributions and its applications, Cubo, 23 (2021), 1–20. https://doi.org/10.4067/S0719-06462021000100001 doi: 10.4067/S0719-06462021000100001
    [57] L. Souza, W. R. O. Junior, C. C. R. de Brito, C. Chesneau, T. A. E. Ferreira, L. Soares, General properties for the Cos-G class of distributions with applications, Eurasian Bull. Math., 2 (2019), 63–79.
    [58] J. J. Swain, S. Venkatraman, J. R. Wilson, Least-squares estimation of distribution functions in Johnson's translation system, J. Stat. Comput. Sim., 29 (1988), 271–297. https://doi.org/10.1080/00949658808811068 doi: 10.1080/00949658808811068
    [59] H. Torabi, N. H. Montazeri, The logistic-uniform distribution and its application, Commun. Stat.-Simul. C., 43 (2014), 2551–2569. https://doi.org/10.1080/03610918.2012.737491 doi: 10.1080/03610918.2012.737491
    [60] X. Romao, R. Delgado, A. Costa, An empirical power comparison of univariate goodness-of-fit tests for normality, J. Stat. Computat. Sim., 80 (2010), 545–591. https://doi.org/10.1080/00949650902740824 doi: 10.1080/00949650902740824
    [61] R. A. ZeinEldin, C. Chesneau, F. Jamal, M. Elgarhy, A. M. Almarashi, S. Al-Marzouki, Generalized truncated Fréchet generated family distributions and their applications, CMES-Comp. Model. Eng., 126 (2021), 791–819. https://doi.org/10.32604/cmes.2021.012169 doi: 10.32604/cmes.2021.012169
    [62] C. Zhao, R. Zhuang, Statistical solutions and Liouville theorem for the second order lattice systems with varying coefficients, J. Differ. Equations, 372 (2023), 194–234. https://doi.org/10.1016/j.jde.2023.06.040 doi: 10.1016/j.jde.2023.06.040
    [63] S. Zhou, A. Xu, Y. Tang, L. Shen, Fast Bayesian inference of reparameterized Gamma process with random effects, IEEE T. Reliab., 2023 (2023) 1–14. https://doi.org/10.1109/TR.2023.3263940
  • This article has been cited by:

    1. M. G. M. Ghazal, Yusra A. Tashkandy, Oluwafemi Samson Balogun, M. E. Bakr, Exponentiated extended extreme value distribution: Properties, estimation, and applications in applied fields, 2024, 9, 2473-6988, 17634, 10.3934/math.2024857
    2. Ronghua Wang, Beiqing Gu, Xiaoling Xu, RELIABILITY STATISTICAL ANALYSIS OF TWO-PARAMETER EXPONENTIAL DISTRIBUTION UNDER CONSTANT STRESS ACCELERATED LIFE TEST WITH INVERSE POWER LAW MODEL, 2024, 14, 2156-907X, 2993, 10.11948/20240017
    3. Naif Alotaibi, Actuarial and various entropy measures for a new extended log Kumaraswamy model: Properties and applications, 2025, 126, 11100168, 377, 10.1016/j.aej.2025.04.039
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1475) PDF downloads(91) Cited by(3)

Figures and Tables

Figures(14)  /  Tables(18)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog