In this paper, assuming the Landau's conjecture, we obtained an explicit numerical upper bound for the prime modulus of arithmetic progressions, in which the ternary Goldbach problem is solvable. Our result on the quantitative upper bound improved the previous results.
Citation: Yafang Kong, Ziyi Song, Lingli Ma, Dengzhe Wang. The ternary Goldbach problem with primes in arithmetic progressions modulus prime numbers[J]. AIMS Mathematics, 2025, 10(12): 30828-30850. doi: 10.3934/math.20251353
In this paper, assuming the Landau's conjecture, we obtained an explicit numerical upper bound for the prime modulus of arithmetic progressions, in which the ternary Goldbach problem is solvable. Our result on the quantitative upper bound improved the previous results.
| [1] |
R. Ayoub, On rademacher's extension of the Goldbach-Vinogradoff theorem, T. Am. Math. Soc., 74 (1953), 482–491. https://dx.doi.org/10.2307/1990813 doi: 10.2307/1990813
|
| [2] |
A. Balog, A. Perelli, Exponential sums over primes in an arithmetic progression, P. Am. Math. Soc., 93 (1985), 578–582. https:/dx.doi.org/10.1090/S0002-9939-1985-0776182-0 doi: 10.1090/S0002-9939-1985-0776182-0
|
| [3] | H. Davenport. Multiplicative number theory, 74 (2000), Springer-Verlag, New York. Available from: https://link.springer.com/book/9780387950976. |
| [4] |
M. Huxley, M. Jutila, Large values of dirichlet polynomials, IV, Acta Arith., 32 (1977), 297–312. https://dx.doi.org/10.4064/aa-32-3-297-312 doi: 10.4064/aa-32-3-297-312
|
| [5] | M. Jutila, On Linnik's constant, Math. Scand., 41 (1977), 45–62. Available from: http://www.jstor.org/stable/24490938. |
| [6] |
J. Liu, T. Zhan, The ternary Goldbach problem in arithmetic progressions, Acta Arith., 82 (1997), 197–227. https://dx.doi.org/10.4064/AA-82-3-197-227 doi: 10.4064/AA-82-3-197-227
|
| [7] | M. C. Liu, K. M. Tsang, Small prime solutions of linear equations, Théorie des nombres, 1989,595–624. https://dx.doi.org/10.1515/9783110852790.595 |
| [8] |
M. C. Liu, T. Z. Wang, A numerical bound for small prime solutions of some ternary linear equations, Acta Arith., 86 (1998), 343–383. https://dx.doi.org/10.4064/aa-86-4-343-383 doi: 10.4064/aa-86-4-343-383
|
| [9] | M. C. Liu, T. Z. Wang, On the equation $a_1p_1+ a_2p_2+ a_3p_3 = b $ with prime variables in arithmetic progressions, In CRM Proceedings and Lecture Notes, AMS Press, 19 (1999), 243–263. https://dx.doi.org/10.1090/crmp/019 |
| [10] | M. C. Liu, T. Zhan, The Goldbach problem with primes in arithmetic progressions, London Mathematical Society Lecture Note Swries, 1997,227–252. https://dx.doi.org/10.1017/CBO9780511666179.016 |
| [11] | I. M. Vinogradow, Some theorems concerning the theory of primes, Mat. Sb.-New Ser., 2 (1937), 179–195. Available from: http://mi.mathnet.ru/eng/sm5565. |
| [12] |
Z. F. Zhang, Exponential sums over primes in an arithmetic progression, J. Henan Univ. (Nat. Sci.), 2 (2001), 17–20. http://dx.doi.org/10.15991/j.cnki.411100.2001.02.004 doi: 10.15991/j.cnki.411100.2001.02.004
|
| [13] |
Z. F. Zhang, T. Z. Wang, The ternary Goldbach problem with primes in arithmetic progressions, Acta Math. Sin., 17 (2001), 679–696. https://doi.org/10.1007/s101140100125 doi: 10.1007/s101140100125
|
| [14] |
A. Zulauf, Beweis einer erweiterung des satzes von Goldbach-Vinogradov, J. Reine Angew. Math., 190 (1952), 169–198. http://dx.doi.org/10.1515/crll.1952.190.169 doi: 10.1515/crll.1952.190.169
|