Research article

Soliton wave phenomena of the complex hyperbolic nonlinear Schrödinger equation via emerging WAS-Exp neural network method and qualitative analysis

  • Published: 30 December 2025
  • MSC : 35A20, 35C08, 35Q55, 37K10

  • The main goal of this work was to develop the new analytical neural network technique known as WAS-Exp neural network method. A mathematical analytical technique that could produce solitary, hyperbolic, trigonometric, and rational wave structures in a single framework to build accurate solutions. An essential model for explaining nonlinear wave propagation in dispersive media like optical fibers and plasma channels is the complex hyperbolic nonlinear Schrödinger dynamical equation, which we examined in this work. In contrast to its classical version, the model improves capture memory and non locality and anomalous dispersion by introducing hyperbolic dispersion. We execute the newly proposed technique on this model and a variety of analytical solutions are obtained using this procedure. The resultant solutions provided new insights into the dynamics of nonlinear systems and their possible applications in plasma physics, optical communications, and related domains by demonstrating the wave behavior through the 3D and 2D surfaces. Furthermore, machine learning analysis was executed on the obtained solution for examining the wave dynamic behavior of the actual and predicted outcomes. Lastly, we plotted the x-asymptotic, y-asymptotic and t-asymptotic of the gain solutions through the 2D surfaces.

    Citation: Waseem Razzaq, Asim Zafar, Ahmed Al Nuaim, Naif Almusallam. Soliton wave phenomena of the complex hyperbolic nonlinear Schrödinger equation via emerging WAS-Exp neural network method and qualitative analysis[J]. AIMS Mathematics, 2025, 10(12): 30806-30827. doi: 10.3934/math.20251352

    Related Papers:

  • The main goal of this work was to develop the new analytical neural network technique known as WAS-Exp neural network method. A mathematical analytical technique that could produce solitary, hyperbolic, trigonometric, and rational wave structures in a single framework to build accurate solutions. An essential model for explaining nonlinear wave propagation in dispersive media like optical fibers and plasma channels is the complex hyperbolic nonlinear Schrödinger dynamical equation, which we examined in this work. In contrast to its classical version, the model improves capture memory and non locality and anomalous dispersion by introducing hyperbolic dispersion. We execute the newly proposed technique on this model and a variety of analytical solutions are obtained using this procedure. The resultant solutions provided new insights into the dynamics of nonlinear systems and their possible applications in plasma physics, optical communications, and related domains by demonstrating the wave behavior through the 3D and 2D surfaces. Furthermore, machine learning analysis was executed on the obtained solution for examining the wave dynamic behavior of the actual and predicted outcomes. Lastly, we plotted the x-asymptotic, y-asymptotic and t-asymptotic of the gain solutions through the 2D surfaces.



    加载中


    [1] British Association for the Advancement of Science, Report of the annual meeting, 1845.
    [2] P. G. Drazin, R. S. Johnson, Solitons: an introduction, Cambridge University Press, 1989.
    [3] P. R. Kundu, M. R. A. Fahim, M. E. Islam, M. A. Akbar, The sine-Gordon expansion method for higher-dimensional NLEEs and parametric analysis, Heliyon, 7 (2021), e06458. https://doi.org/10.1016/j.heliyon.2021.e06459 doi: 10.1016/j.heliyon.2021.e06459
    [4] A. Irshad, N. Ahmed, U. Khan, S. T. Mohyud-Din, I. Khan, E. S. M. Sherif, Optical solutions of Schrödinger equation using extended sinh-Gordon equation expansion method, Front. Phys., 8 (2020), 73. https://doi.org/10.3389/fphy.2020.00073 doi: 10.3389/fphy.2020.00073
    [5] M. Ozisik, A. Secer, M. Bayram, Obtaining analytical solutions of (2+1)-dimensional nonlinear Zoomeron equation by using modified $F$-expansion and modified generalized Kudryashov methods, Eng. Comput., 41 (2024), 1105–1120. https://doi.org/10.1108/EC-10-2023-0688 doi: 10.1108/EC-10-2023-0688
    [6] P. F. Han, T. Bao, Novel hybrid-type solutions for the (3+1)-dimensional generalized Bogoyavlensky-Konopelchenko equation with time-dependent coefficients, Nonlinear Dyn., 107 (2022), 1163–1177. https://doi.org/10.1007/s11071-021-07019-5 doi: 10.1007/s11071-021-07019-5
    [7] S. Kumar, S. Rani, Symmetries of optimal system, various closed-form solutions, and propagation of different wave profiles for the Boussinesq-Burgers system in ocean waves, Phys. Fluids, 34 (2022), 037109. https://doi.org/10.1063/5.0085927 doi: 10.1063/5.0085927
    [8] A. M. Wazwaz, Extended (3+1)-dimensional Kairat-II and Kairat-X equations: Painlevé integrability, multiple soliton solutions, lump solutions, and breather wave solutions, Int. J. Numer. Methods Heat Fluid Flow, 34 (2024), 2177–2194. https://doi.org/10.1108/HFF-01-2024-0053 doi: 10.1108/HFF-01-2024-0053
    [9] A. Yokus, M. Yavuz, Novel comparison of numerical and analytical methods for fractional Burger-Fisher equation, Discrete Contin. Dyn. Syst. Ser. S, 14 (2021), 2591–2606. https://doi.org/10.3934/dcdss.2020258 doi: 10.3934/dcdss.2020258
    [10] Y. Pandir, A. Ekin, New solitary wave solutions of the Korteweg-de Vries (KdV) equation by new version of the trial equation method, Electron. J. Appl. Math., 1 (2023), 101–113. https://doi.org/10.61383/ejam.20231130 doi: 10.61383/ejam.20231130
    [11] A. R. Alharbi, M. B. Almatrafi, M. A. E. Abdelrahman, Analytical and numerical investigation for Kadomtsev-Petviashvili equation arising in plasma physics, Phys. Scr., 95 (2020), 045215. https://doi.org/10.1088/1402-4896/ab6ce4 doi: 10.1088/1402-4896/ab6ce4
    [12] A. Khan, S. Saifullah, S. Ahmad, M. A. Khan, M. ur Rahman, Dynamical properties and new optical soliton solutions of a generalized nonlinear Schrödinger equation, Eur. Phys. J. Plus, 138 (2023), 1059. https://doi.org/10.1140/epjp/s13360-023-04697-5 doi: 10.1140/epjp/s13360-023-04697-5
    [13] A. Zafar, M. Shakeel, A. Ali, H. Rezazadeh, A. Bekir, Analytical study of complex Ginzburg-Landau equation arising in nonlinear optics, J. Nonlinear Opt. Phys. Mater., 32 (2023), 2350010. https://doi.org/10.1142/S0218863523500108 doi: 10.1142/S0218863523500108
    [14] A. Zafar, W. Razzaq, H. Rezazadeh, M. Eslami, The complex hyperbolic Schrödinger dynamical equation with a truncated $M$-fractional by using simplest equation method, Comput. Methods Differ. Equ., 12 (2024), 44–55. https://doi.org/10.22034/cmde.2022.40084.1747 doi: 10.22034/cmde.2022.40084.1747
    [15] W. O. Apeanti, A. R. Seadawy, D. C. Lu, Complex optical solutions and modulation instability of hyperbolic Schrödinger dynamical equation, Results Phys., 12 (2019), 2091–2097. https://doi.org/10.1016/j.rinp.2019.02.014 doi: 10.1016/j.rinp.2019.02.014
    [16] S. Correia, M. Figueira, The hyperbolic nonlinear Schrödinger equation, 2015, arXiv: 1510.08745V1.
    [17] M. A. Bakar, S. Owyed, W. A. Faridi, M. A. El-Rahman, M. Sallah, The first integral of the dissipative nonlinear Schrödinger equation with Nucci's direct method and explicit wave profile formation, Fractal Fract., 7 (2023), 1–18. https://doi.org/10.3390/fractalfract7010038 doi: 10.3390/fractalfract7010038
    [18] V. Kumar, R. Jiwari, A. R. Djurayevich, M. U. Khudoyberganov, Hyperbolic (3+1)-dimensional nonlinear Schrödinger equation: Lie symmetry analysis and modulation instability, J. Math., 2022 (2022), 9050272. https://doi.org/10.1155/2022/9050272 doi: 10.1155/2022/9050272
    [19] S. Akram, M. ur Rahman, L. A. Al-Essa, Lump-breather interactions and inelastic wave dynamics in KdV hierarchy systems via the bilinear neural network-based approach, Int. J. Theor. Phys., 64 (2025), 1–15. https://doi.org/10.1007/s10773-025-06173-5 doi: 10.1007/s10773-025-06173-5
    [20] D. Baleanu, K. Hosseini, S. Salahshour, K. Sadri, M. Mirzazadeh, C. Park, et al., The (2+1)-dimensional hyperbolic nonlinear Schrödinger equation and its optical solitons, AIMS Math., 6 (2021), 9568–9581. https://doi.org/ 10.3934/math.2021556 doi: 10.3934/math.2021556
    [21] D. Sherriffe, D. Behera, P. Nagarani, Different forms for exact traveling wave solutions of unstable and hyperbolic nonlinear Schrödinger equations, Int. J. Mod. Phys. B, 38 (2024), 2450131. https://doi.org/10.1142/S0217979224501315 doi: 10.1142/S0217979224501315
    [22] S. Kumar, A. Kukkar, Dynamics of several optical soliton solutions of a (3+1)-dimensional nonlinear Schrödinger equation with parabolic law in optical fibers, Mod. Phys. Lett. B, 39 (2025), 2450453. https://doi.org/10.1142/S0217984924504530 doi: 10.1142/S0217984924504530
    [23] M. M. Rahman, A. Aktar, K. C. Roy, Analytical solutions of nonlinear coupled Schrödinger-KdV equation via advance exponential expansion, Amer. J. Math. Comput. Model., 3 (2018), 46–51. https://doi.org/10.11648/j.ajmcm.20180303.11 doi: 10.11648/j.ajmcm.20180303.11
    [24] A. Ghaffar, A. Ali, S. Ahmed, S. Akram, M. U. D. Junjua, D. Baleanu, et al., A novel analytical technique to obtain the solitary solutions for nonlinear evolution equation of fractional order, Adv. Differ. Equ., 2020 (2020), 308. https://doi.org/10.1186/s13662-020-02751-5 doi: 10.1186/s13662-020-02751-5
    [25] S. Ahmed, B. S. T. Alkahtani, S. S. Alzaid, Wave propagation and soliton behaviors for the strain equation by using the sub-ODE method and expansion technique, Int. J. Appl. Comput. Math., 10 (2024), 122. https://doi.org/10.1007/s40819-024-01761-1 doi: 10.1007/s40819-024-01761-1
    [26] A. Ciancio, H. M. Baskonus, T. A. Sulaiman, H. Bulut, New structural dynamics of isolated waves via the coupled nonlinear Maccari's system with complex structure, Indian J. Phys., 92 (2018), 1281–1290. https://doi.org/10.1007/s12648-018-1204-6 doi: 10.1007/s12648-018-1204-6
    [27] E. Hussain, Z. Li, S. A. A. Shah, E. A. Az-Zo'bi, M. Hussien, Dynamics study of stability analysis, sensitivity insights and precise soliton solutions of the nonlinear (STO)-Burger equation, Opt. Quantum Electron., 55 (2023), 1274. https://doi.org/10.1007/s11082-023-05588-w doi: 10.1007/s11082-023-05588-w
    [28] A. Fahad, H. Ur Rehman, I. Iqbal, Y. H. Qian, M. S. Saleem, Optimizing space curve motion in Kuralay model through diverse soliton approaches, Opt. Quantum Electron., 56 (2024), 788. https://doi.org/10.1007/s11082-024-06568-4 doi: 10.1007/s11082-024-06568-4
    [29] W. B. Ma, S. Bilige, Novel interaction solutions to the (3+1)-dimensional Hirota bilinear equation by bilinear neural network method, Mod. Phys. Lett. B, 38 (2024), 2450240. https://doi.org/10.1142/S0217984924502403 doi: 10.1142/S0217984924502403
    [30] W. Razzaq, A. Zafar, Bilinearization of generalized Bogoyavlensky-Konopelchenko equation for solitons with neural networks: Painleve analysis, Nonlinear Dyn., 113 (2025), 25083–25096. https://doi.org/10.1007/s11071-025-11384-w doi: 10.1007/s11071-025-11384-w
    [31] W. Razzaq, A. Zafar, Machine learning-enhanced soliton solutions for the Lonngren-wave equation: an integration of Painlevé analysis and Hirota bilinear method, Rend. Lincei Sci. Fis. Nat., 36 (2025), 917–932. https://doi.org/10.1007/s12210-025-01354-0 doi: 10.1007/s12210-025-01354-0
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1) PDF downloads(0) Cited by(0)

Article outline

Figures and Tables

Figures(18)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog