This paper establishes a novel concept of fuzzy extended $ b $-metric space, which serves as an extension to both fuzzy metric spaces and extended $ b $-metric spaces. The introduction of fuzzy extended $ b $-metric spaces is motivated by the need to model uncertainty and vagueness in real-world problems, where classical metric spaces may fail to capture imprecise relationships. This framework extends traditional $ b $-metric spaces, enhancing their applicability in fuzzy environments and providing a foundation for advanced fixed-point results and applications. By utilizing the extended $ b $-comparison function, some contractive type fixed-point theorems are proved. As an application, we study the homeomorphism between the fuzzy extended $ b $-metric space and the extended $ b $-metric space. In addition, the existence and uniqueness of solutions to the Fredholm integral equation is presented.
Citation: Yanrong An, Muhammad Aamir Ali, Jarunee Sirisin, Thanin Sitthiwirattham. The structure of fuzzy extended $ b $-metric spaces and some fixed-point theorems with applications[J]. AIMS Mathematics, 2025, 10(12): 30785-30805. doi: 10.3934/math.20251351
This paper establishes a novel concept of fuzzy extended $ b $-metric space, which serves as an extension to both fuzzy metric spaces and extended $ b $-metric spaces. The introduction of fuzzy extended $ b $-metric spaces is motivated by the need to model uncertainty and vagueness in real-world problems, where classical metric spaces may fail to capture imprecise relationships. This framework extends traditional $ b $-metric spaces, enhancing their applicability in fuzzy environments and providing a foundation for advanced fixed-point results and applications. By utilizing the extended $ b $-comparison function, some contractive type fixed-point theorems are proved. As an application, we study the homeomorphism between the fuzzy extended $ b $-metric space and the extended $ b $-metric space. In addition, the existence and uniqueness of solutions to the Fredholm integral equation is presented.
| [1] | L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X |
| [2] | S. S. L. Chang, L. A. Zadeh, On fuzzy mapping and control, IEEE Trans. Syst. Man Cybernet., SMC-2 (1972), 30–34. https://doi.org/10.1109/TSMC.1972.5408553 |
| [3] | D. Dubois, H. Prade, Operations on fuzzy numbers, Int. J. Syst. Sci., 9 (1978), 613–626. https://doi.org/10.1080/00207727808941724 |
| [4] | O. Kaleva, Fuzzy differential equations, Fuzzy Sets Syst., 24 (1987), 301–317. https://doi.org/10.1016/0165-0114(87)90029-7 |
| [5] |
G. X. Wang, C. X. Wu, Fuzzy $n$-cell numbers and the differential of fuzzy $n$-cell number value mappings, Fuzzy Sets Syst., 130 (2002), 367–381. https://doi.org/10.1016/S0165-0114(02)00113-6 doi: 10.1016/S0165-0114(02)00113-6
|
| [6] |
D. Miheţ, On fuzzy contractive mappings in fuzzy metric spaces, Fuzzy Sets Syst., 158 (2007), 915–921. https://doi.org/10.1016/j.fss.2006.11.012 doi: 10.1016/j.fss.2006.11.012
|
| [7] | O. Kaleva, S. Seikkala, On fuzzy metric spaces, Fuzzy Sets Syst., 12 (1984), 215–229. https://doi.org/10.1016/0165-0114(84)90069-1 |
| [8] |
P. J. He, The variational principle in fuzzy metric spaces and its applications, Fuzzy Sets Syst., 45 (1992), 389–394. https://doi.org/10.1016/0165-0114(92)90157-Y doi: 10.1016/0165-0114(92)90157-Y
|
| [9] |
J. Zhu, C. K. Zhong, G. P. Wang, Vector-valued variational principle in fuzzy metric space and its applications, Fuzzy Sets Syst., 119 (2001), 343–354. https://doi.org/10.1016/S0165-0114(99)00096-2 doi: 10.1016/S0165-0114(99)00096-2
|
| [10] | M. Jleli, E. Karapınar, B. Samet, On cyclic $(\psi, \varphi)$-contractions in Kaleva-Seikkala's type fuzzy metric spaces, J. Intell. Fuzzy Syst., 27 (2014), 2045–2053. |
| [11] |
S. Heilpern, Fuzzy mappings and fixed point theorem, J. Math. Anal. Appl., 83 (1981), 566–569. https://doi.org/10.1016/0022-247X(81)90141-4 doi: 10.1016/0022-247X(81)90141-4
|
| [12] |
D. Qiu, L. Shu, J. Guan, Common fixed point theorems for fuzzy mappings under $\phi$-contraction condition, Chaos Soliton. Fract., 41 (2009), 360–367. https://doi.org/10.1016/j.chaos.2008.01.003 doi: 10.1016/j.chaos.2008.01.003
|
| [13] |
M. Abbas, D. Turkoglu, Fixed point theorem for a generalized contractive fuzzy mapping, J. Intell. Fuzzy Syst., 26 (2014), 33–36. https://doi.org/10.3233/IFS-120712 doi: 10.3233/IFS-120712
|
| [14] |
J. Q. Liu, G. H. Yu, Fuzzy Kakutani-Fan-Glicksberg fixed point theorem and existence of Nash equilibria for fuzzy games, Fuzzy Sets Syst., 447 (2022), 100–112. https://doi.org/10.1016/j.fss.2022.02.002 doi: 10.1016/j.fss.2022.02.002
|
| [15] |
J. Z. Xiao, X. H. Zhu, X. Jin, Fixed point theorems for nonlinear contractions in Kaleva–Seikkala's type fuzzy metric spaces, Fuzzy Sets Syst., 200 (2012), 65–83. https://doi.org/10.1016/j.fss.2011.10.010 doi: 10.1016/j.fss.2011.10.010
|
| [16] |
R. Irkin, N. Y. Özgür, N. Taş, Optimization of lactic acid bacteria viability using fuzzy soft set modelling, IJOCTA, 8 (2018), 266–275. https://doi.org/10.11121/ijocta.01.2018.00457 doi: 10.11121/ijocta.01.2018.00457
|
| [17] | I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., 30 (1989), 26–37. |
| [18] | S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Inform. Univ. Ostra., 1 (1993), 5–11. |
| [19] |
T. Kamran, M. Samreen, Q. U. Ain, A generalization of $b$-metric space and some fixed point theorems, Mathematics, 5 (2017), 19. https://doi.org/10.3390/math5020019 doi: 10.3390/math5020019
|
| [20] |
A. Latif, V. Parvaneh, P. Salimi, A. E. Al-Mazrooei, Various Suzuki type theorems in $b$-metric spaces, J. Nonlinear Sci. Appl., 8 (2015), 363–377. https://doi.org/10.22436/jnsa.008.04.09 doi: 10.22436/jnsa.008.04.09
|
| [21] | M. Samreen, T. Kamran, M. Postolache, Extended $b$-metric space, extended $b$-comparison function and nonlinear contractions, U.P.B. Sci. Bull., Ser. A, 80 (2018), 21–28. |
| [22] |
Ş. Cobzaş, S. Czerwik, The completion of generalized $b$-metric spaces and fixed points, Fixed Point Theory, 21 (2020), 133–150. https://doi.org/10.24193/fpt-ro.2020.1.10 doi: 10.24193/fpt-ro.2020.1.10
|
| [23] |
L. Guran, M. F. Bota, Existence of the solutions of nonlinear fractional differential equations using the fixed point technique in extended $b$-metric spaces, Symmetry, 13 (2021), 158. https://doi.org/10.3390/sym13020158 doi: 10.3390/sym13020158
|
| [24] |
N. Mlaiki, S. K. Shah, M. Sarwar, Rational-type contractions and their applications in extended $b$-metric spaces, Results Control Optim., 16 (2024), 100456. https://doi.org/10.1016/j.rico.2024.100456 doi: 10.1016/j.rico.2024.100456
|
| [25] |
W. Shatanawi, T. A. M. Shatnawi, Some fixed point results based on contractions of new types for extended $b$-metric spaces, AIMS Math., 8 (2023), 10929–10946. https://doi.org/10.3934/math.2023554 doi: 10.3934/math.2023554
|
| [26] |
Á. Antón-Sancho, Fixed points of principal $E_6$-bundles over a compact algebraic curve, Quaest. Math., 47 (2024), 501–513. https://doi.org/10.2989/16073606.2023.2229559 doi: 10.2989/16073606.2023.2229559
|
| [27] |
Á. Antón-Sancho, Fixed points of automorphisms of the vector bundle moduli space over a compact Riemann surface, Mediterr. J. Math., 21 (2024), 20. https://doi.org/10.1007/s00009-023-02559-z doi: 10.1007/s00009-023-02559-z
|
| [28] |
Á. Antón-Sancho, Spin$(8, \mathbb C)$-higgs bundles and the Hitchin integrable system, Mathematics, 12 (2024), 3436. https://doi.org/10.3390/math12213436 doi: 10.3390/math12213436
|
| [29] | E. Frenkel, Lectures on the Langlands program and conformal field theory, In: P. Cartier, P. Moussa, B. Julia, P. Vanhove, Frontiers in number Theory, physics, and geometry II, Springer Berlin Heidelberg, 2007,387–533. https://doi.org/10.1007/978-3-540-30308-4_11 |
| [30] | S. Nădăban, Fuzzy $b$-metric spaces, Int. J. Comput. Commun. Control, 11 (2016), 273–281. https://doi.org/10.15837/ijccc.2016.2.2443 |
| [31] | F. Mehmood, R. Ali, C. Ionescu, T. Kamran, Extended fuzzy $b$-metric spaces, J. Math. Anal., 8 (2017), 124–131. |
| [32] |
F. Mehmood, R. Ali, N. Hussain, Contractions in fuzzy rectangular $b$-metric spaces with application, J. Intell. Fuzzy Syst., 37 (2019), 1275–1285. https://doi.org/10.3233/JIFS-182719 doi: 10.3233/JIFS-182719
|
| [33] | M. Asim, M. Imdad, S. Radenović, Fixed point results in extended rectangular $b$-metric spaces with an application, U.P.B. Sci. Bull., Ser. A, 81 (2019), 43–50. |
| [34] |
N. Saleem, H. Işik, S. Furqan, C. Park, Fuzzy double controlled metric spaces and related results, J. Intell. Fuzzy Syst., 40 (2021), 9977–9985. https://doi.org/10.3233/JIFS-202594 doi: 10.3233/JIFS-202594
|
| [35] |
T. Abdeljawad, N. Mlaiki, H. Aydi, N. Souayah, Double controlled metric type spaces and some fixed point results, Mathematics, 6 (2018), 320. https://doi.org/10.3390/math6120320 doi: 10.3390/math6120320
|
| [36] |
N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, Controlled metric type spaces and the related contraction principle, Mathematics, 6 (2018), 194. https://doi.org/10.3390/math6100194 doi: 10.3390/math6100194
|