Research article

The structure of fuzzy extended $ b $-metric spaces and some fixed-point theorems with applications

  • Published: 30 December 2025
  • MSC : 35R13, 65M06, 65M12

  • This paper establishes a novel concept of fuzzy extended $ b $-metric space, which serves as an extension to both fuzzy metric spaces and extended $ b $-metric spaces. The introduction of fuzzy extended $ b $-metric spaces is motivated by the need to model uncertainty and vagueness in real-world problems, where classical metric spaces may fail to capture imprecise relationships. This framework extends traditional $ b $-metric spaces, enhancing their applicability in fuzzy environments and providing a foundation for advanced fixed-point results and applications. By utilizing the extended $ b $-comparison function, some contractive type fixed-point theorems are proved. As an application, we study the homeomorphism between the fuzzy extended $ b $-metric space and the extended $ b $-metric space. In addition, the existence and uniqueness of solutions to the Fredholm integral equation is presented.

    Citation: Yanrong An, Muhammad Aamir Ali, Jarunee Sirisin, Thanin Sitthiwirattham. The structure of fuzzy extended $ b $-metric spaces and some fixed-point theorems with applications[J]. AIMS Mathematics, 2025, 10(12): 30785-30805. doi: 10.3934/math.20251351

    Related Papers:

  • This paper establishes a novel concept of fuzzy extended $ b $-metric space, which serves as an extension to both fuzzy metric spaces and extended $ b $-metric spaces. The introduction of fuzzy extended $ b $-metric spaces is motivated by the need to model uncertainty and vagueness in real-world problems, where classical metric spaces may fail to capture imprecise relationships. This framework extends traditional $ b $-metric spaces, enhancing their applicability in fuzzy environments and providing a foundation for advanced fixed-point results and applications. By utilizing the extended $ b $-comparison function, some contractive type fixed-point theorems are proved. As an application, we study the homeomorphism between the fuzzy extended $ b $-metric space and the extended $ b $-metric space. In addition, the existence and uniqueness of solutions to the Fredholm integral equation is presented.



    加载中


    [1] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
    [2] S. S. L. Chang, L. A. Zadeh, On fuzzy mapping and control, IEEE Trans. Syst. Man Cybernet., SMC-2 (1972), 30–34. https://doi.org/10.1109/TSMC.1972.5408553
    [3] D. Dubois, H. Prade, Operations on fuzzy numbers, Int. J. Syst. Sci., 9 (1978), 613–626. https://doi.org/10.1080/00207727808941724
    [4] O. Kaleva, Fuzzy differential equations, Fuzzy Sets Syst., 24 (1987), 301–317. https://doi.org/10.1016/0165-0114(87)90029-7
    [5] G. X. Wang, C. X. Wu, Fuzzy $n$-cell numbers and the differential of fuzzy $n$-cell number value mappings, Fuzzy Sets Syst., 130 (2002), 367–381. https://doi.org/10.1016/S0165-0114(02)00113-6 doi: 10.1016/S0165-0114(02)00113-6
    [6] D. Miheţ, On fuzzy contractive mappings in fuzzy metric spaces, Fuzzy Sets Syst., 158 (2007), 915–921. https://doi.org/10.1016/j.fss.2006.11.012 doi: 10.1016/j.fss.2006.11.012
    [7] O. Kaleva, S. Seikkala, On fuzzy metric spaces, Fuzzy Sets Syst., 12 (1984), 215–229. https://doi.org/10.1016/0165-0114(84)90069-1
    [8] P. J. He, The variational principle in fuzzy metric spaces and its applications, Fuzzy Sets Syst., 45 (1992), 389–394. https://doi.org/10.1016/0165-0114(92)90157-Y doi: 10.1016/0165-0114(92)90157-Y
    [9] J. Zhu, C. K. Zhong, G. P. Wang, Vector-valued variational principle in fuzzy metric space and its applications, Fuzzy Sets Syst., 119 (2001), 343–354. https://doi.org/10.1016/S0165-0114(99)00096-2 doi: 10.1016/S0165-0114(99)00096-2
    [10] M. Jleli, E. Karapınar, B. Samet, On cyclic $(\psi, \varphi)$-contractions in Kaleva-Seikkala's type fuzzy metric spaces, J. Intell. Fuzzy Syst., 27 (2014), 2045–2053.
    [11] S. Heilpern, Fuzzy mappings and fixed point theorem, J. Math. Anal. Appl., 83 (1981), 566–569. https://doi.org/10.1016/0022-247X(81)90141-4 doi: 10.1016/0022-247X(81)90141-4
    [12] D. Qiu, L. Shu, J. Guan, Common fixed point theorems for fuzzy mappings under $\phi$-contraction condition, Chaos Soliton. Fract., 41 (2009), 360–367. https://doi.org/10.1016/j.chaos.2008.01.003 doi: 10.1016/j.chaos.2008.01.003
    [13] M. Abbas, D. Turkoglu, Fixed point theorem for a generalized contractive fuzzy mapping, J. Intell. Fuzzy Syst., 26 (2014), 33–36. https://doi.org/10.3233/IFS-120712 doi: 10.3233/IFS-120712
    [14] J. Q. Liu, G. H. Yu, Fuzzy Kakutani-Fan-Glicksberg fixed point theorem and existence of Nash equilibria for fuzzy games, Fuzzy Sets Syst., 447 (2022), 100–112. https://doi.org/10.1016/j.fss.2022.02.002 doi: 10.1016/j.fss.2022.02.002
    [15] J. Z. Xiao, X. H. Zhu, X. Jin, Fixed point theorems for nonlinear contractions in Kaleva–Seikkala's type fuzzy metric spaces, Fuzzy Sets Syst., 200 (2012), 65–83. https://doi.org/10.1016/j.fss.2011.10.010 doi: 10.1016/j.fss.2011.10.010
    [16] R. Irkin, N. Y. Özgür, N. Taş, Optimization of lactic acid bacteria viability using fuzzy soft set modelling, IJOCTA, 8 (2018), 266–275. https://doi.org/10.11121/ijocta.01.2018.00457 doi: 10.11121/ijocta.01.2018.00457
    [17] I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., 30 (1989), 26–37.
    [18] S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Inform. Univ. Ostra., 1 (1993), 5–11.
    [19] T. Kamran, M. Samreen, Q. U. Ain, A generalization of $b$-metric space and some fixed point theorems, Mathematics, 5 (2017), 19. https://doi.org/10.3390/math5020019 doi: 10.3390/math5020019
    [20] A. Latif, V. Parvaneh, P. Salimi, A. E. Al-Mazrooei, Various Suzuki type theorems in $b$-metric spaces, J. Nonlinear Sci. Appl., 8 (2015), 363–377. https://doi.org/10.22436/jnsa.008.04.09 doi: 10.22436/jnsa.008.04.09
    [21] M. Samreen, T. Kamran, M. Postolache, Extended $b$-metric space, extended $b$-comparison function and nonlinear contractions, U.P.B. Sci. Bull., Ser. A, 80 (2018), 21–28.
    [22] Ş. Cobzaş, S. Czerwik, The completion of generalized $b$-metric spaces and fixed points, Fixed Point Theory, 21 (2020), 133–150. https://doi.org/10.24193/fpt-ro.2020.1.10 doi: 10.24193/fpt-ro.2020.1.10
    [23] L. Guran, M. F. Bota, Existence of the solutions of nonlinear fractional differential equations using the fixed point technique in extended $b$-metric spaces, Symmetry, 13 (2021), 158. https://doi.org/10.3390/sym13020158 doi: 10.3390/sym13020158
    [24] N. Mlaiki, S. K. Shah, M. Sarwar, Rational-type contractions and their applications in extended $b$-metric spaces, Results Control Optim., 16 (2024), 100456. https://doi.org/10.1016/j.rico.2024.100456 doi: 10.1016/j.rico.2024.100456
    [25] W. Shatanawi, T. A. M. Shatnawi, Some fixed point results based on contractions of new types for extended $b$-metric spaces, AIMS Math., 8 (2023), 10929–10946. https://doi.org/10.3934/math.2023554 doi: 10.3934/math.2023554
    [26] Á. Antón-Sancho, Fixed points of principal $E_6$-bundles over a compact algebraic curve, Quaest. Math., 47 (2024), 501–513. https://doi.org/10.2989/16073606.2023.2229559 doi: 10.2989/16073606.2023.2229559
    [27] Á. Antón-Sancho, Fixed points of automorphisms of the vector bundle moduli space over a compact Riemann surface, Mediterr. J. Math., 21 (2024), 20. https://doi.org/10.1007/s00009-023-02559-z doi: 10.1007/s00009-023-02559-z
    [28] Á. Antón-Sancho, Spin$(8, \mathbb C)$-higgs bundles and the Hitchin integrable system, Mathematics, 12 (2024), 3436. https://doi.org/10.3390/math12213436 doi: 10.3390/math12213436
    [29] E. Frenkel, Lectures on the Langlands program and conformal field theory, In: P. Cartier, P. Moussa, B. Julia, P. Vanhove, Frontiers in number Theory, physics, and geometry II, Springer Berlin Heidelberg, 2007,387–533. https://doi.org/10.1007/978-3-540-30308-4_11
    [30] S. Nădăban, Fuzzy $b$-metric spaces, Int. J. Comput. Commun. Control, 11 (2016), 273–281. https://doi.org/10.15837/ijccc.2016.2.2443
    [31] F. Mehmood, R. Ali, C. Ionescu, T. Kamran, Extended fuzzy $b$-metric spaces, J. Math. Anal., 8 (2017), 124–131.
    [32] F. Mehmood, R. Ali, N. Hussain, Contractions in fuzzy rectangular $b$-metric spaces with application, J. Intell. Fuzzy Syst., 37 (2019), 1275–1285. https://doi.org/10.3233/JIFS-182719 doi: 10.3233/JIFS-182719
    [33] M. Asim, M. Imdad, S. Radenović, Fixed point results in extended rectangular $b$-metric spaces with an application, U.P.B. Sci. Bull., Ser. A, 81 (2019), 43–50.
    [34] N. Saleem, H. Işik, S. Furqan, C. Park, Fuzzy double controlled metric spaces and related results, J. Intell. Fuzzy Syst., 40 (2021), 9977–9985. https://doi.org/10.3233/JIFS-202594 doi: 10.3233/JIFS-202594
    [35] T. Abdeljawad, N. Mlaiki, H. Aydi, N. Souayah, Double controlled metric type spaces and some fixed point results, Mathematics, 6 (2018), 320. https://doi.org/10.3390/math6120320 doi: 10.3390/math6120320
    [36] N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, Controlled metric type spaces and the related contraction principle, Mathematics, 6 (2018), 194. https://doi.org/10.3390/math6100194 doi: 10.3390/math6100194
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(0) PDF downloads(0) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog