This article investigates a Kirchhoff problem by introducing a delayed Kirchhoff plate equation with polynomial nonlinearity. For initial data with negative energy, we establish the blow-up of local solutions by employing energy methods together with appropriate functional inequalities.
Citation: Louiza Dehbi, Ahlem Merah, Mohammed Z. Alqarni, Ibrahim Mekawy, Mohamed Abdalla, Fares Yazid. Finite-time blow-up in semilinear Kirchhoff-type plate equations with distributed delay and polynomial source term[J]. AIMS Mathematics, 2025, 10(12): 30773-30784. doi: 10.3934/math.20251350
This article investigates a Kirchhoff problem by introducing a delayed Kirchhoff plate equation with polynomial nonlinearity. For initial data with negative energy, we establish the blow-up of local solutions by employing energy methods together with appropriate functional inequalities.
| [1] |
T. Ueda, Non-linear free vibrations of conical shells, J. Sound Vib., 64 (1979), 85–95. https://doi.org/10.1016/0022-460X(79)90574-1 doi: 10.1016/0022-460X(79)90574-1
|
| [2] |
G. C. Tsiatas, A new Kirchhoff plate model based on a modified couple stress theory, Int. J. Solids Struct., 46 (2009), 2757–2764. https://doi.org/10.1016/j.ijsolstr.2009.03.004 doi: 10.1016/j.ijsolstr.2009.03.004
|
| [3] |
A. Choucha, S. Boulaaras, M. Haiour, M. Shahrouzi, R. Jan, M. Abdalla, Growth and blow-up of solutions for a viscoelastic wave equation with logarithmic source, fractional conditions, and non-linear boundary feedback, J. Pseudo-Differ. Oper. Appl., 16 (2025), 29. https://doi.org/10.1007/s11868-025-00687-6 doi: 10.1007/s11868-025-00687-6
|
| [4] | G. Kirchhoff, Vorlesungen über mechanik, Leipzig: B. G. Teubner, 1883. |
| [5] | A. Arosio, Global (in time) solution of the approximate nonlinear string equation of GF Carrier and R. Narasimha, Comment. Math. Univ. Carol., 26 (1985), 169–172. |
| [6] |
R. Narasimha, Non-linear vibration of an elastic string, J. Sound Vib., 8 (1968), 134–146. https://doi.org/10.1016/0022-460X(68)90200-9 doi: 10.1016/0022-460X(68)90200-9
|
| [7] | G. F. Carrier, On the non-linear vibration problem of the elastic string, Quart. Appl. Math., 3 (1945), 157–165. |
| [8] |
A. Arosio, S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc., 348 (1996), 305–330. https://doi.org/10.1090/S0002-9947-96-01532-2 doi: 10.1090/S0002-9947-96-01532-2
|
| [9] |
Y. Han, Q. Li, Threshold results for the existence of global and blow-up solutions to Kirchhoff equations with arbitrary initial energy, Comput. Math. Appl., 75 (2018), 3283–3297. https://doi.org/10.1016/j.camwa.2018.01.047 doi: 10.1016/j.camwa.2018.01.047
|
| [10] |
D. Pereira, H. Nguyen, C. Raposo, C. Maranhão, On the solutions for an extensible beam equation with internal damping and source terms, Differ. Equat. Appl., 11 (2019), 367–377. https://doi.org/10.7153/dea-2019-11-17 doi: 10.7153/dea-2019-11-17
|
| [11] |
D. Pereira, C. Raposo, A. Cattai, Global existence and energy decay for a coupled system of Kirchhoff beam equations with weakly damping and logarithmic source, Turk. J. Math., 46 (2022), 465–480. https://doi.org/10.3906/mat-2106-6 doi: 10.3906/mat-2106-6
|
| [12] |
F. Ekinci, E. Pişkin, Stability of solutions for a Kirchhoff-type plate equation with degenerate damping, Communications in Advanced Mathematical Sciences, 5 (2022), 131–136. https://doi.org/10.33434/cams.1118409 doi: 10.33434/cams.1118409
|
| [13] | D. Pereira, S. Cordeiro, C. Raposo, C. Maranhao, Solutions of Kirchhoff plate equations with internal damping and logarithmic nonlinearity, Electron. J. Differ. Eq., 2021 (2021), 1–14. |
| [14] |
Q. Dai, Z. Yang, Global existence and exponential decay of the solution for a viscoelastic wave equation with a delay, Z. Angew. Math. Phys., 65 (2014), 885–903. https://doi.org/10.1007/s00033-013-0365-6 doi: 10.1007/s00033-013-0365-6
|
| [15] |
H. Yüksekkaya, E. Pișkin, S. M. Boulaaras, B. B. Cherif, S. A. Zubair, Existence, nonexistence, and stability of solutions for a delayed plate equation with the logarithmic source, Adv. Math. Phys., 2021 (2021), 8561626. https://doi.org/10.1155/2021/8561626 doi: 10.1155/2021/8561626
|
| [16] |
Q. Peng, Z. Zhang, Stabilization and blow-up for a class of weakly damped Kirchhoff plate equation with logarithmic nonlinearity, Indian J. Pure Appl. Math., 56 (2025), 711–727. https://doi.org/10.1007/s13226-023-00518-8 doi: 10.1007/s13226-023-00518-8
|
| [17] |
J. Lei, H. Suo, Multiple solutions of Kirchhoff type equations involving Neumann conditions and critical growth, AIMS Mathematics, 6 (2021), 3821–3837. https://doi.org/10.3934/math.2021227 doi: 10.3934/math.2021227
|
| [18] |
G. Liu, L. Diao, Energy decay of the solution for a weak viscoelastic equation with a time-varying delay, Acta Appl. Math., 155 (2018), 9–19. https://doi.org/10.1007/s10440-017-0142-1 doi: 10.1007/s10440-017-0142-1
|
| [19] |
Z. Hajjej, H. Zhang, Exponential stability of a Kirchhoff plate equation with structural damping and internal time delay, Symmetry, 16 (2024), 1427. https://doi.org/10.3390/sym16111427 doi: 10.3390/sym16111427
|
| [20] |
A. Benguessoum, Global existence and energy decay of solutions for a wave equation with a time-varying delay term, Mathematica, 63 (2021), 32–46. https://doi.org/10.24193/mathcluj.2021.1.04 doi: 10.24193/mathcluj.2021.1.04
|
| [21] |
H. Yüksekkaya, E. Pișkin, Blow-up results for a viscoelastic plate equation with distributed delay, Journal of Universal Mathematics, 4 (2021), 128–139. https://doi.org/10.33773/jum.957748 doi: 10.33773/jum.957748
|
| [22] |
A. Choucha, M. Shahrouzi, R. Jan, S. Boulaaras, Blow-up of solutions for a system of nonlocal singular viscoelastic equations with sources and distributed delay terms, Bound. Value Probl., 2024 (2024), 77. https://doi.org/10.1186/s13661-024-01888-6 doi: 10.1186/s13661-024-01888-6
|
| [23] |
S. Boulaaras, A. Choucha, M. Abdalla, K. Rajagopal, S. Idris, Blow-up of solutions for a coupled nonlinear viscoelastic equation with degenerate damping terms: without Kirchhoff term, Complexity, 2021 (2021), 6820219. https://doi.org/10.1155/2021/6820219 doi: 10.1155/2021/6820219
|
| [24] |
S. Boulaaras, A. Choucha, B. Cherif, S. Alharbi, M. Abdalla, Blow up of solutions for a system of two singular nonlocal viscoelastic equations with damping, general source terms and a wide class of relaxation functions, AIMS Mathematics, 6 (2021), 4664–4676. https://doi.org/10.3934/math.2021274 doi: 10.3934/math.2021274
|
| [25] |
Z. Hajjej, S. Park, Asymptotic stability of a quasi-linear viscoelastic Kirchhoff plate equation with logarithmic source and time delay, AIMS Mathematics, 8 (2023), 24087–24115. https://doi.org/10.3934/math.20231228 doi: 10.3934/math.20231228
|
| [26] |
A. Alharbi, A. Choucha, S. Boulaaras, Blow-up of solutions for a viscoelastic Kirchhoff equation with a logarithmic nonlinearity, delay and Balakrishnan-Taylor damping terms, Filomat, 38 (2024), 9237–9247. https://doi.org/10.2298/FIL2426237A doi: 10.2298/FIL2426237A
|
| [27] |
C. Lv, X. Chen, C. Du, Global dynamics of a cytokine-enhanced viral infection model with distributed delays and optimal control analysis, AIMS Mathematics, 10 (2025), 9493–9515. https://doi.org/10.3934/math.2025438 doi: 10.3934/math.2025438
|
| [28] | A. Choucha, M. Haiour, R. Jan, M. Shahrouzi, P. Agarwal, M. Abdalla, Growth and blow-up of viscoelastic wave equation solutions with logarithmic source, acoustic and fractional conditions, and nonlinear boundary delay, Discrete Cont. Dyn.-S, in press. https://doi.org/10.3934/dcdss.2025009 |
| [29] |
M. Abdalla, S. Boulaaras, M. Akel, On Fourier-Bessel matrix transforms and applications, Math. Method. Appl. Sci., 44 (2021), 11293–11306. https://doi.org/10.1002/mma.7489 doi: 10.1002/mma.7489
|
| [30] |
M. Saker, N. Boumaza, B. Gheraibia, Dynamics properties for a viscoelastic Kirchhoff-type equation with nonlinear boundary damping and source terms, Bound. Value Probl., 2023 (2023), 58. https://doi.org/10.1186/s13661-023-01746-x doi: 10.1186/s13661-023-01746-x
|
| [31] |
S. Nicaise, C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay, Differ. Integral Equ., 21 (2008), 935–958. https://doi.org/10.57262/die/1356038593 doi: 10.57262/die/1356038593
|
| [32] |
A. Choucha, D. Ouchenane, S. Boulaaras, Blow-up of a nonlinear viscoelastic wave equation with distributed delay combined with strong damping and source terms, J. Nonlinear Funct. Anal., 2020 (2020), 31. https://doi.org/10.23952/jnfa.2020.31 doi: 10.23952/jnfa.2020.31
|