Image restoration is essential for computer vision and medical imaging yet faces challenges from complex degradations, motivating the need for unified multitask frameworks that handle diverse tasks simultaneously. This paper proposed an adaptive radial basis function (RBF) framework designed to achieve high-fidelity restoration across super-resolution, inpainting, denoising, deraining, dehazing, and deshadowing. The method employed Fourier decomposition for spectral feature extraction, an improved random walk algorithm for offline optimal shape parameter labeling, and an Adaptive Moment Estimation-optimized Back Propagation neural network (Adam-BP) for online prediction of the multiquadric shape parameter $c_{\text{opt}}$. A key contribution was the degradation-aware spectral selection mechanism, which automatically adapted RBF kernel sharpness based on frequency content, enabling sharper kernels for resolution-critical tasks and smoother kernels for noise-dominated scenarios. This implicit mechanism, supported by theoretical guarantees of existence, uniqueness, strict convexity, and Lipschitz continuity, facilitated fully automated parameter selection without manual tuning. Experiments on natural and medical images confirmed the framework's effectiveness, with efficient inference times and superior performance over baselines.
Citation: Xiaolu Liu, Jian Sun, Ruxuan Gao. Trustworthy multitask image restoration with an adaptive radial basis function framework: spectral features and neural-driven shape parameter optimization[J]. AIMS Mathematics, 2025, 10(12): 30851-30878. doi: 10.3934/math.20251354
Image restoration is essential for computer vision and medical imaging yet faces challenges from complex degradations, motivating the need for unified multitask frameworks that handle diverse tasks simultaneously. This paper proposed an adaptive radial basis function (RBF) framework designed to achieve high-fidelity restoration across super-resolution, inpainting, denoising, deraining, dehazing, and deshadowing. The method employed Fourier decomposition for spectral feature extraction, an improved random walk algorithm for offline optimal shape parameter labeling, and an Adaptive Moment Estimation-optimized Back Propagation neural network (Adam-BP) for online prediction of the multiquadric shape parameter $c_{\text{opt}}$. A key contribution was the degradation-aware spectral selection mechanism, which automatically adapted RBF kernel sharpness based on frequency content, enabling sharper kernels for resolution-critical tasks and smoother kernels for noise-dominated scenarios. This implicit mechanism, supported by theoretical guarantees of existence, uniqueness, strict convexity, and Lipschitz continuity, facilitated fully automated parameter selection without manual tuning. Experiments on natural and medical images confirmed the framework's effectiveness, with efficient inference times and superior performance over baselines.
| [1] |
J. J. Jiang, Z. Y. Zuo, G. Wu, K. Jiang, X. M. Liu, A survey on all-in-one image restoration: taxonomy, evaluation and future trends, IEEE T. Pattern Anal., 47 (2025), 11892–11911. https://doi.org/10.1109/TPAMI.2025.3598132 doi: 10.1109/TPAMI.2025.3598132
|
| [2] |
J. Li, H. Wang, Y. J. Li, H. C. Zhang, A Comprehensive review of image restoration research based on diffusion models, Mathematics, 13 (2025), 2079. https://doi.org/10.3390/math13132079 doi: 10.3390/math13132079
|
| [3] |
L. J. Zhai, Y. H. Wang, S. X. Cui, Y. Zhou, A comprehensive review of deep learning-based real-world image restoration, IEEE Access, 11 (2023), 21049–21067. https://doi.org/10.1109/ACCESS.2023.3250616 doi: 10.1109/ACCESS.2023.3250616
|
| [4] |
N. Singhal, A. Kadam, P. Kumar, H. Singh, A. Thakur, Pranay, Study of recent image restoration techniques: A comprehensive survey, Jordanian Journal of Computers and Information Technology, 11 (2025), 211–237. https://doi.org/10.5455/jjcit.71-1735034495 doi: 10.5455/jjcit.71-1735034495
|
| [5] |
A. S. Anandhi, M. Jaiganesh, An enhanced image restoration using deep learning and transformer based contextual optimization algorithm, Sci. Rep., 15 (2025), 10324. https://doi.org/10.1038/s41598-025-94449-5 doi: 10.1038/s41598-025-94449-5
|
| [6] |
Y. Pang, J. W. Mao, L. B. He, H. Lin, Z. P. Qiang, An improved face image restoration method based on denoising diffusion probabilistic models, IEEE Access, 12 (2024), 3581–3596. https://doi.org/10.1109/ACCESS.2024.3349423 doi: 10.1109/ACCESS.2024.3349423
|
| [7] | A. Buades, B. Coll, J. M. Morel, A non-local algorithm for image denoising, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), San Diego, CA, USA, 2005, 60–65. https://doi.org/10.1109/CVPR.2005.38 |
| [8] |
K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian, Image denoising by sparse 3-D transform-domain collaborative filtering, IEEE T. Image Process., 16 (2007), 2080–2095. https://doi.org/10.1109/TIP.2007.901238 doi: 10.1109/TIP.2007.901238
|
| [9] | B. Y. Li, X. Liu, P. Hu, Z. Q. Wu, J. C. Lv, X. Peng, All-in-one image restoration for unknown corruption, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 2022, 17431–17441. https://doi.org/10.1109/CVPR52688.2022.01693 |
| [10] |
C. Dong, C. C. Loy, K. M. He, X. O. Tang, Image super-resolution using deep convolutional networks, IEEE T. Pattern Anal., 38 (2016), 295–307. https://doi.org/10.1109/TPAMI.2015.2439281 doi: 10.1109/TPAMI.2015.2439281
|
| [11] | J. Kim, J. K. Lee, K. M. Lee, Accurate image super-resolution using very deep convolutional networks, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016, 1646–1654. https://doi.org/10.1109/CVPR.2016.182 |
| [12] |
K. Zhang, W. M. Zuo, Y. J. Chen, D. Y. Meng, L. Zhang, Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising, IEEE T. Image Process., 26 (2017), 3142–3155. https://doi.org/10.1109/TIP.2017.2662206 doi: 10.1109/TIP.2017.2662206
|
| [13] | B. Lim, S. Son, H. Kim, S. Nah, K. M. Lee, Enhanced deep residual networks for single image super-resolution, 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 2017,136–144. https://doi.org/10.1109/CVPRW.2017.151 |
| [14] | J. H. Yu, Z. Lin, J. M. Yang, X. H. Shen, X. Lu, T. Huang, Free-form image inpainting with gated convolution, 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019, 4470–4479. lhttps://doi.org/10.1109/ICCV.2019.00457 |
| [15] | S. Nah, T. H. Kim, K. M. Lee, Deep multi-scale convolutional neural network for dynamic scene deblurring, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017,257–265. https://doi.org/10.1109/CVPR.2017.35 |
| [16] | T. Garber, T. Tirer, Image restoration by denoising diffusion models with iteratively preconditioned guidance, 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 2024, 25245–25254. https://doi.org/10.1109/CVPR52733.2024.02385 |
| [17] |
D. H. Zhang, X. Y. Hao, D. C. Wang, C. B. Qin, B. Zhao, L. L. Liang, et al., An efficient lightweight convolutional neural network for industrial surface defect detection, Artif. Intell. Rev., 56 (2023), 10651–10677. https://doi.org/10.1007/s10462-023-10438-y doi: 10.1007/s10462-023-10438-y
|
| [18] |
D. H. Zhang, C. C. Yu, Z. Li, C. B. Qin, R. X. Xia, A Lightweight network enhanced by attention-guided cross-scale interaction for underwater object detection, Appl. Soft Comput., 184 (2025), 113811. https://doi.org/10.1016/j.asoc.2025.113811 doi: 10.1016/j.asoc.2025.113811
|
| [19] |
C. B. Qin, X. T. Ran, D. H. Zhang, Unsupervised image stitching based on generative adversarial networks and feature frequency awareness algorithm, Appl. Soft Comput., 183 (2025), 113466. https://doi.org/10.1016/j.asoc.2025.113466 doi: 10.1016/j.asoc.2025.113466
|
| [20] |
D. H. Zhang, Y. C. Wang, L. Meng, J. Y. Yan, C. B. Qin, Adaptive critic design for safety-optimal FTC of unknown nonlinear systems with asymmetric constrained-input, ISA T., 155 (2024), 309–318. https://doi.org/10.1016/j.isatra.2024.09.018 doi: 10.1016/j.isatra.2024.09.018
|
| [21] |
Y. W. Zhang, B. Zhao, D. R. Liu, Distributed optimal containment control of wheeled mobile robots via adaptive dynamic programming, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 55 (2025), 5876–5886. https://doi.org/10.1109/TSMC.2025.3573738 doi: 10.1109/TSMC.2025.3573738
|
| [22] |
D. H. Zhang, Q. S. Yuan, L. Meng, R. X. Xia, W. Liu, C. B. Qin, Reinforcement learning for single-agent to multi-agent systems: from basic theory to industrial application progress, a Survey, Artif. Intell. Rev., (2025). https://doi.org/10.1007/s10462-025-11439-9 doi: 10.1007/s10462-025-11439-9
|
| [23] |
C. B. Qin, M. Y. Pang, Z. W. Wang, S. Y. Hou, D. H. Zhang, Observer based fault tolerant control design for saturated nonlinear systems with full state constraints via a novel event-triggered mechanism, Eng. Appl. Artif. Intell., 161 (2025), 112221. https://doi.org/10.1016/j.engappai.2025.112221 doi: 10.1016/j.engappai.2025.112221
|
| [24] | O. Kupyn, T. Martyniuk, J. R. Wu, Z. Y. Wang, DeblurGAN-v2: Deblurring (orders-of-magnitude) faster and better, 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019, 8877–8886. https://doi.org/10.1109/ICCV.2019.00897 |
| [25] | C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, Photo-realistic single image super-resolution using a generative adversarial network, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017,105–114. https://doi.org/10.1109/CVPR.2017.19 |
| [26] |
K. C. K. Chan, X. Y. Xu, X. T. Wang, J. W. Gu, C. C. Loy, GLEAN: Generative latent bank for image super-resolution and beyond, IEEE T. Pattern Anal., 45 (2023), 3154–3168. https://doi.org/10.1109/TPAMI.2022.3186715 doi: 10.1109/TPAMI.2022.3186715
|
| [27] | X. T. Wang, K. Yu, S. X. Wu, J. J. Gu, Y. H. Liu, C. Dong, et al., ESRGAN: Enhanced super-resolution generative adversarial networks, Computer Vision–ECCV 2018 Workshops, Cham: Springer, 2018, 63–79. https://doi.org/10.1007/978-3-030-11021-5_5 |
| [28] | A. Lugmayr, M. Danelljan, L. V. Gool, R. Timofte, SRFlow: Learning the super-resolution space with normalizing flow, Computer Vision–ECCV 2020), Cham: Springer, 2020,715–732. https://doi.org/10.1007/978-3-030-58558-7_42 |
| [29] | J. Ho, A. Jain, P. Abbeel, Denoising diffusion probabilistic models, Advances in Neural Information Processing Systems, 33 (2020), 6840–6851. |
| [30] | P. Osuna-Vargas, M. H. Wehrheim, L. Zinz, J. Rahm, A. Balakrishnan, A. Kaminer, et al., Denoising diffusion models for high-resolution microscopy image restoration, 2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Tucson, AZ, USA, 2025, 4320–4330. https://doi.org/10.1109/WACV61041.2025.00424 |
| [31] |
M. W. Jian, R. Wang, X. Y. Yu, F. Xu, H. Yu, K. M. Lam, UniFRD: A unified method for facial image restoration based on diffusion probabilistic model, IEEE T. Circ. Syst. Vid., 34 (2024), 13494–13506. https://doi.org/10.1109/TCSVT.2024.3450493 doi: 10.1109/TCSVT.2024.3450493
|
| [32] |
C. S. Dong, H. Z. Fu, A. L. He, T. Li, B. Pan, Z. N. Shi, et al., Resfusion: Denoising diffusion probabilistic models for image restoration based on prior residual noise, Advances in Neural Information Processing Systems, 37 (2024), 130664–130693. https://doi.org/10.52202/079017-4153 doi: 10.52202/079017-4153
|
| [33] |
B. Fei, Y. X. Li, W. D. Yang, H. J. Gao, J. Y. Xu, L. P. Ma, et al., A diffusion model for universal medical image enhancement, Commun. Med., 5 (2025), 294. https://doi.org/10.1038/s43856-025-00998-1 doi: 10.1038/s43856-025-00998-1
|
| [34] |
B. Kawar, M. Elad, S. Ermon, J. Song, Denoising diffusion restoration models, Adv. Neural Inf. Process. Syst., 35 (2022), 23593–23606. https://doi.org/10.48550/arXiv.2201.11793 doi: 10.48550/arXiv.2201.11793
|
| [35] | W. T. Xu, J. B. Jiao, Revisiting implicit neural representations in low-level vision, (2023), arXiv: 2304.10250. https://doi.org/10.48550/arXiv.2304.10250 |
| [36] | V. Sitzmann, J. Martel, A. Bergman, D. Lindell, G. Wetzstein, Implicit neural representations with periodic activation functions, Advances in Neural Information Processing Systems, 33 (2020), 7462–7473. |
| [37] | D. Jayasundara, H. Zhao, D. Labate, V. M. Patel, MIRE: Matched implicit neural representations, 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2025, 8279–8288. https://doi.org/10.1109/CVPR52734.2025.00775 |
| [38] |
S. L. Hauser, J. Brosig, B. Murthy, A. Attardo, Implicit neural representations in light microscopy, Biomed. Opt. Express, 15 (2024), 2175–2186. https://doi.org/10.1364/BOE.515517 doi: 10.1364/BOE.515517
|
| [39] |
Z. X. Huang, S. M. Erfani, S. Y. Lu, M. M. Gong, Efficient neural implicit representation for 3D human reconstruction, Pattern Recogn., 156 (2024), 110758. https://doi.org/10.1016/j.patcog.2024.110758 doi: 10.1016/j.patcog.2024.110758
|
| [40] | X. Lin, J. T. Yue, K. C. K. Chan, L. Qi, C. Ren, J. S. Pan, et al., Multi-task image restoration guided by robust DINO features, (2023), arXiv: 2312.01677. https://doi.org/10.48550/arXiv.2312.01677 |
| [41] | B. Y. Li, H. Y. Zhao, W. X. Wang, P. Hu, Y. B. Gou, X. Peng, MAIR: A locality-and continuity-preserving mamba for image restoration, 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 2025, 7491–7501. https://doi.org/10.1109/CVPR52734.2025.00702 |
| [42] |
W. Y. Bian, A. Jang, F. Liu, Multi-task magnetic resonance imaging reconstruction using meta-learning, Magn. Reson. Imaging, 116 (2025), 110278. https://doi.org/10.1016/j.mri.2024.110278 doi: 10.1016/j.mri.2024.110278
|
| [43] | J. Y. Liang, J. Z. Cao, G. L. Sun, K. Zhang, L. V. Gool, R. Timofte, SwinIR: Image restoration using swin transformer, 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada, 2021, 1833–1844. https://doi.org/10.1109/ICCVW54120.2021.00210 |
| [44] | A. Molaei, A. Aminimehr, A. Tavakoli, A. Kazerouni, B. Azad, R. Azad, et al., Implicit neural representation in medical imaging: A comparative survey, 2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Paris, France, 2023, 2373–2383. https://doi.org/10.1109/ICCVW60793.2023.00252 |
| [45] |
Y. J. Zhu, Y. Y. Liu, Y. H. Zhang, D. Liang, Implicit neural representation for medical image reconstruction, Phys. Med. Biol., 70 (2025), 12TR01. https://doi.org/10.1088/1361-6560/addfa5 doi: 10.1088/1361-6560/addfa5
|
| [46] |
H. Chen, W. C. Zhao, T. F. Xu, G. K. Shi, S. Y. Zhou, P. F. Liu, et al., Spectral-wise implicit neural representation for hyperspectral image reconstruction, IEEE T. Circ. Syst. Vid., 34 (2024), 3714–3727. https://doi.org/10.1109/TCSVT.2023.3318366 doi: 10.1109/TCSVT.2023.3318366
|
| [47] |
J. Sun, W. S. Wang, Adaptive selection of shape parameters for MQRBF in arbitrary scattered data: enhancing finite difference solutions for complex PDEs, Comp. Appl. Math., 43 (2024), 449. https://doi.org/10.1007/s40314-024-02970-6 doi: 10.1007/s40314-024-02970-6
|
| [48] | B. Y. Li, X. Liu, P. Hu, Z. Q. Wu, J. C. Lv, X. Peng, All-in-one image restoration for unknown corruption, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 2022, 17431–17441. https://doi.org/10.1109/CVPR52688.2022.01693 |
| [49] | Z. D. Wang, X. D. Cun, J. M. Bao, W. G. Zhou, J. Z. Liu, H. Q. Li, Uformer: A general U-shaped transformer for image restoration, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 2022, 17662–17672. https://doi.org/10.1109/CVPR52688.2022.01716 |