The continuous evolution of digital medical imaging underscores the critical importance of ensuring image security. Conventional watermarking techniques for robustness typically embed copyright details into the image, thereby altering its original form and making them unsuitable for domains such as the military and medicine, where absolute image fidelity is essential. To address this limitation, this paper proposes a robust zero-watermarking algorithm that enables copyright protection of medical images without modifying the host image. In this approach, fractional-order polar harmonic Fourier moments (FrPHFMs) were employed as invariant geometric descriptors in the construction of zero-watermarks. First, FrPHFMs were computed, and then the most accurate descriptors were selected to provide improved performance and strong geometric invariance. The extracted features are then integrated with a binary watermark using a 1D chaotic map (1D-RSS), formulated from reciprocal and squared sine functions and incorporating an exclusive or (XOR) operation, to construct the zero-watermark. Building on this design, a hybrid FrPHFM-chaos zero-watermarking algorithm was introduced, in which FrPHFMs ensure strong resilience to geometric distortions, while the chaotic map enhances security through its sensitivity to initial parameters. Experimental results demonstrated that the proposed algorithm exhibits high resistance to geometric distortions, conventional attacks, and combined attacks, outperforming existing methods. It achieves bit error rate (BER) < 0.001 and normalized correlation (NC) > 0.9, confirming its superior robustness.
Citation: Abdallah Abdelaziz, Mohamed M. Darwish, Mohamed A. Barakat. Fractional-order polar harmonic Fourier moments and 1D chaotic mapping for robust zero-watermarking of medical images[J]. AIMS Mathematics, 2025, 10(12): 30354-30383. doi: 10.3934/math.20251333
The continuous evolution of digital medical imaging underscores the critical importance of ensuring image security. Conventional watermarking techniques for robustness typically embed copyright details into the image, thereby altering its original form and making them unsuitable for domains such as the military and medicine, where absolute image fidelity is essential. To address this limitation, this paper proposes a robust zero-watermarking algorithm that enables copyright protection of medical images without modifying the host image. In this approach, fractional-order polar harmonic Fourier moments (FrPHFMs) were employed as invariant geometric descriptors in the construction of zero-watermarks. First, FrPHFMs were computed, and then the most accurate descriptors were selected to provide improved performance and strong geometric invariance. The extracted features are then integrated with a binary watermark using a 1D chaotic map (1D-RSS), formulated from reciprocal and squared sine functions and incorporating an exclusive or (XOR) operation, to construct the zero-watermark. Building on this design, a hybrid FrPHFM-chaos zero-watermarking algorithm was introduced, in which FrPHFMs ensure strong resilience to geometric distortions, while the chaotic map enhances security through its sensitivity to initial parameters. Experimental results demonstrated that the proposed algorithm exhibits high resistance to geometric distortions, conventional attacks, and combined attacks, outperforming existing methods. It achieves bit error rate (BER) < 0.001 and normalized correlation (NC) > 0.9, confirming its superior robustness.
| [1] |
M. S. Moad, M. R. Kafi, A. Khaldi, A wavelet based medical image watermarking scheme for secure transmission in telemedicine applications, Microprocess. Microsy., 90 (2022), 104490. https://doi.org/10.1016/j.micpro.2022.104490 doi: 10.1016/j.micpro.2022.104490
|
| [2] |
A. F. Qasim, F. Meziane, R. Aspin, Digital watermarking: Applicability for developing trust in medical imaging workflows state of the art review, Comp. Sci. Rev., 27 (2018), 45–60. https://doi.org/10.1016/j.cosrev.2017.11.003 doi: 10.1016/j.cosrev.2017.11.003
|
| [3] |
S. P. Vaidya, Fingerprint‐based robust medical image watermarking in hybrid transform, Vis. Comput., 39 (2023), 2245–2260. https://doi.org/10.1007/s00371-022-02406-4 doi: 10.1007/s00371-022-02406-4
|
| [4] |
H. Shi, S. Zhou, M. Chen, M. Li, A novel zero-watermarking algorithm based on multi-feature and DNA encryption for medical images, Multimed. Tools Appl., 82 (2023), 36507–36552. https://doi.org/10.1007/s11042-023-15074-w doi: 10.1007/s11042-023-15074-w
|
| [5] |
M. M. Sayah, K. M. Redouane, K. Amine, Secure transmission and integrity verification for color medical images in telemedicine applications, Multimed Tools Appl., 81 (2022), 43613–43638. https://doi.org/10.1007/s11042-021-11791-2 doi: 10.1007/s11042-021-11791-2
|
| [6] | S. Gaur, V. Barthwal, An extensive analysis of digital image watermarking techniques, Int. J. Intell. Syst. Appl. Eng., 12 (2023), 121–145. |
| [7] |
S. Gull, S.A. Parah, Advances in medical image watermarking: a state of the art review, Multimed Tools Appl., 83 (2024), 1407–1447. https://doi.org/10.1007/s11042-023-15396-9 doi: 10.1007/s11042-023-15396-9
|
| [8] |
Y. Shen, C. Tang, Z. Fan, T. Wu, Z. Lei, Blind watermarking scheme for medical and non-medical images copyright protection using the QZ algorithm, Expert Syst. Appl., 241 (2024), 122547. https://doi.org/10.1016/j.eswa.2023.122547 doi: 10.1016/j.eswa.2023.122547
|
| [9] |
O. P. Singh, K. N. Singh, A. K. Singh, A. K. Agrawal, H. Zhou, An improved robust algorithm for optimisation-based colour medical image watermarking, Comput. Electr. Eng., 117 (2024), 109278. https://doi.org/10.1016/j.compeleceng.2024.109278 doi: 10.1016/j.compeleceng.2024.109278
|
| [10] |
X. Zhang, Q. Su, Y. Sun, S. Chen, A robust and high-efficiency blind watermarking method for color images in the spatial domain, Multimed. Tools Appl., 82 (2023), 27217–27243. https://doi.org/10.1007/s11042-023-14479-x doi: 10.1007/s11042-023-14479-x
|
| [11] |
A. Soualmi A, L. Laouamer, A. Alti, A blind watermarking approach based on hybrid imperialistic competitive algorithm and SURF points for color images' authentication, Biomed. Signal Proces., 84 (2023), 105007. https://doi.org/10.1016/j.bspc.2023.105007 doi: 10.1016/j.bspc.2023.105007
|
| [12] |
K. M. Hosny, M. M. Darwish, Invariant image watermarking using accurate Polar harmonic transforms, Comput. Electr. Eng., 62 (2017), 429–447. https://doi.org/10.1016/j.compeleceng.2017.05.015 doi: 10.1016/j.compeleceng.2017.05.015
|
| [13] |
C. Wang, Q. Zhang, X. Wang, L. Zhou, Q. Li, Z. Xia, et al., Light-field image multiple reversible robust watermarking against geometric attacks, IEEE T. Depend. Secure, 22 (2025), 5861–5875. https://doi.org/10.1109/TDSC.2025.3576223 doi: 10.1109/TDSC.2025.3576223
|
| [14] |
K. Fares, A. Khaldi, K. Redouane, E. Salah, DCT & DWT based watermarking scheme for medical information security, Biomed. Signal Proces., 66 (2021), 102403. https://doi.org/10.1016/j.bspc.2020.102403 doi: 10.1016/j.bspc.2020.102403
|
| [15] |
F. Naz, A. Khan, M. Ahmed, M. I. Khan, S. Din, A. Ahmad, et al., Watermarking as a service (WaaS) with anonymity, Multimed. Tools Appl., 79 (2020), 16051–16075, https://doi.org/10.1007/s11042-018-7074-2 doi: 10.1007/s11042-018-7074-2
|
| [16] |
A. Roček, M. Javorník, K. Slavíček, O. Dostál, Zero watermarking: Critical analysis of its role in current medical imaging, J. Digit. Imaging, 34 (2021), 204–211. https://doi.org/10.1007/s10278-020-00396-0 doi: 10.1007/s10278-020-00396-0
|
| [17] |
M. Magdy, N. I. Ghali, S. Ghoniemy, K. M. Hosny, Multiple zero-watermarking of medical images for internet of medical things, IEEE Access, 10 (2022), 38821–38831. https://doi.org/10.1109/ACCESS.2022.3165813 doi: 10.1109/ACCESS.2022.3165813
|
| [18] |
G. Yang, X. Lu, Y. Lu, X. Xiong, Robust zero-watermarking method for medical images based on FFST and Daisy descriptor, J. Inf. Secur. Appl., 93 (2025), 104193. https://doi.org/10.1016/j.jisa.2025.104193 doi: 10.1016/j.jisa.2025.104193
|
| [19] |
G. Yang, X. Lu, Y. Lu, J. Tang, X. Xiong, Robust zero-watermarking method for multiple medical images using wavelet fusion and DTCWT-QR, J. Inf. Secur. Appl., 90 (2025), 104028. https://doi.org/10.1016/j.jisa.2025.104028 doi: 10.1016/j.jisa.2025.104028
|
| [20] |
T. Huang, J. Xu, Y. Yang, B. Han, Robust zero-watermarking algorithm for medical images using double-tree complex wavelet transform and hessenberg decomposition, Mathematics, 10 (2022), 1154. https://doi.org/10.3390/math10071154 doi: 10.3390/math10071154
|
| [21] |
J. Yang, K. Hu, X. Wang, H. Wang, Q. Liu, Y. Mao, An efficient and robust zero watermarking algorithm, Multimed. Tools Appl., 81 (2022), 20127–20145. https://doi.org/10.1007/s11042-022-12115-8 doi: 10.1007/s11042-022-12115-8
|
| [22] |
P. Meesala, D. M. Thounaojam, Integrating Fresnelet transform and spiking cortical model for robust medical image cryptosystem in zero-watermarking, Comput. Electr. Eng., 118 (2024), 109371. https://doi.org/10.1016/j.compeleceng.2024.109371 doi: 10.1016/j.compeleceng.2024.109371
|
| [23] | Q. Wen, T. Sun, S. Wang, Concept and application of zero watermarking, Acta Automat. Sinica, 31 (2003), 214–216. |
| [24] |
Y. Lu, X. Lu, G. Yang, X. Xiong, Robust zero-watermarking algorithm for multi-medical images based on FFST-Schur and Tent mapping, Biomed. Signal Proces., 96 (2024), 106557. https://doi.org/10.1016/j.bspc.2024.106557 doi: 10.1016/j.bspc.2024.106557
|
| [25] |
Y. Fang, J. Liu, J. Li, J. Chen, J. Hu, D. Yi, et al., Robust zero-watermarking algorithm for medical images based on SIFT and Bandelet-DCT, Multimed. Tools Appl., 81 (2022), 16863–16879. https://doi.org/10.1007/s11042-022-12592-x doi: 10.1007/s11042-022-12592-x
|
| [26] |
K. Hu, X. Wang, J. Hu, H. Wang, H. Qin, A novel robust zero-watermarking algorithm for medical images, Vis. Comput., 37 (2021), 2841–2853. https://doi.org/10.1007/s00371-021-02168-5 doi: 10.1007/s00371-021-02168-5
|
| [27] |
M. A. Barakat, Comprehensive weighted newton inequalities for broad function classes via generalized proportional fractional operators, Axioms, 14 (2025), 234. https://doi.org/10.3390/axioms14040234 doi: 10.3390/axioms14040234
|
| [28] |
C. Wang, X. Wang, Y. Li, Z. Xia, C. Zhang, Quaternion polar harmonic Fourier moments for color images, Inf. Sci., 450 (2018), 141–156. https://doi.org/10.1016/j.ins.2018.03.038 doi: 10.1016/j.ins.2018.03.038
|
| [29] |
Z. Xia, X. Wang, M. Wang, S. Unar, C. Wang, Y. Liu, et al., Geometrically invariant color medical image null-watermarking based on precise quaternion polar harmonic Fourier moments, IEEE Access, 7 (2019), 122544–122560. https://doi.org/10.1109/ACCESS.2019.2937985 doi: 10.1109/ACCESS.2019.2937985
|
| [30] |
Y. Liu, C. Wang, M. Lu, J. Yang, J. Gui, S. Zhang, From simple to complex scenes: Learning robust feature representations for accurate human parsing, IEEE T. Pattern Anal., 46 (2024), 5449–5462. https://doi.org/10.1109/TPAMI.2024.3364951 doi: 10.1109/TPAMI.2024.3364951
|
| [31] |
Z. Xia, X. Wang, C. Wang, C. Wang, B. Ma, Q. Li, et al., A robust zero-watermarking algorithm for lossless copyright protection of medical images, Appl. Intell., 52 (2021), 1–15. https://doi.org/10.1007/s10489-021-02324-x doi: 10.1007/s10489-021-02324-x
|
| [32] |
K. Hosny, M. Darwish, New geometrically invariant multiple zero-watermarking algorithm for color medical images, Biomed. Signal Proces., 70 (2021), 103007. https://doi.org/10.1016/j.bspc.2021.103007 doi: 10.1016/j.bspc.2021.103007
|
| [33] |
D. S. Khafaga, F. K. Karim, M. M. Darwish, K. M. Hosny, Robust zero-watermarking of color medical images using multi-channel Gaussian-Hermite moments and 1D Chebyshev chaotic map, Sensors, 22 (2022), 5612. https://doi.org/10.3390/s22155612 doi: 10.3390/s22155612
|
| [34] |
X. Wang, Y. Zhang, J. Tian, P. Niu, H. Yang, Accurate quaternion fractional-order pseudo-Jacobi-Fourier moments, Pattern Anal. Appl., 25 (2022), 731–755. https://doi.org/10.1007/s10044-022-01071-6 doi: 10.1007/s10044-022-01071-6
|
| [35] |
Z. Xia, X. Wang, W. Zhou, R. Li, C. Wang, C. Zhang, Color medical image lossless watermarking using chaotic system and accurate quaternion polar harmonic transforms, Signal Process., 157 (2019), 108–118. https://doi.org/10.1016/j.sigpro.2018.11.011 doi: 10.1016/j.sigpro.2018.11.011
|
| [36] |
C. P. Wang, X. Y. Wang, X. J. Chen, C. Zhang, Robust zero watermarking algorithm based on polar complex exponential transform and logistic mapping, Multimed. Tools Appl., 76 (2017), 26355–26376. https://doi.org/10.1007/s11042-016-4182-1 doi: 10.1007/s11042-016-4182-1
|
| [37] |
H. Wang, Y. Chen, T. Zhao, Modified Zernike moments and its application in geometrically resilient image zero-watermarking, Circuits Syst. Signal Prcess., 41 (2022), 6844–6861. https://doi.org/10.1007/s00034-022-02076-6 doi: 10.1007/s00034-022-02076-6
|
| [38] |
Z. Xia, X. Wang, X. Li, C. Wang, S. Unar, M. Wang, et al., Efficient copyright protection for three CT images based on quaternion polar harmonic Fourier moments, Signal Process., 164 (2019), 368–379. https://doi.org/10.1016/j.sigpro.2019.06.025 doi: 10.1016/j.sigpro.2019.06.025
|
| [39] |
K. El-Khanchouli, H. Mansouri, N. E. Ghouate, H. Karmouni, N. E. Joudar, M. Sayyouri, et al., Protecting medical images using a zero-watermarking approach based on fractional Racah moments, IEEE Access, 13 (2025), 16978–17001. https://doi.org/10.1109/ACCESS.2025.3532747 doi: 10.1109/ACCESS.2025.3532747
|
| [40] | A. F. Radilla, M. N. Miyatake, M. C. Hernandez, A robust image zero-watermarking using convolutional neural networks, In: 2019 7th International Workshop on Biometrics and Forensics (IWBF), 2019, 1–5. https://doi.org/10.1109/IWBF.2019.8739245 |
| [41] |
G. Liu, R. Xiang, J. Liu, R. Pan, Z. Zhang, An invisible and robust watermarking scheme using convolutional neural networks, Expert Syst. Appl., 210 (2022), 118529. https://doi.org/10.1016/j.eswa.2022.118529 doi: 10.1016/j.eswa.2022.118529
|
| [42] |
B. Han, J. Du, Y. Jia, H. Zhu, Zero-watermarking algorithm for medical image based on VGG19 deep convolution neural network, J. Healthc. Eng., 2021 (2021), 5551520. https://doi.org/10.1155/2021/5551520 doi: 10.1155/2021/5551520
|
| [43] |
M. M. Darwish, A. A. Farhat, T. M. El-Gindy, Convolutional neural network and 2D logistic-adjusted-Chebyshev-based zero-watermarking of color images, Multimed. Tools Appl., 83 (2023), 29969–29995. https://doi.org/10.1007/s11042-023-16649-3 doi: 10.1007/s11042-023-16649-3
|
| [44] |
A. A. Farhat, M. M. Darwish, T. M. El-Gindy, Resnet50 and logistic Gaussian map-based zero-watermarking algorithm for medical color images, Neural Comput. Appl., 36 (2024), 19707–19727. https://doi.org/10.1007/s00521-024-10121-5 doi: 10.1007/s00521-024-10121-5
|
| [45] |
T. Huang, J. Xu, S. Tu, B. Han, Robust zero-watermarking scheme based on a depthwise overparameterized VGG network in healthcare information security, Biomed. Signal Proces., 81 (2023), 104478. https://doi.org/10.1016/j.bspc.2022.104478 doi: 10.1016/j.bspc.2022.104478
|
| [46] |
B. Han, H. Wang, D. Qiao, J. Xu, T. Yan, Application of zero-watermarking scheme based on Swin transformer for securing the metaverse healthcare data, IEEE J. Biomed. Health, 28 (2024), 6360–6369. https://doi.org/10.1109/JBHI.2023.3257340 doi: 10.1109/JBHI.2023.3257340
|
| [47] |
A. Anand, J. Bedi, A. Aggarwal, M. A. Khan, I. Rida, Authenticating and securing healthcare records: A deep learning-based zero watermarking approach, Image Vis. Comput., 145 (2024), 104975. https://doi.org/10.1016/j.imavis.2024.104975 doi: 10.1016/j.imavis.2024.104975
|
| [48] |
M. M. Abdel-Aziz, N. A. Lashin, H. M. Hamza, K. M. Hosny, ZWNet: Darknet53-based zero watermarking method for authentication of medical images inspired by Fibonacci Q-matrix and stationary wavelet transform, Biomed. Signal Process. Control, 100 (2025), 107044. https://doi.org/10.1016/j.bspc.2024.107044 doi: 10.1016/j.bspc.2024.107044
|
| [49] |
F. Dong, J. Li, U. A. Bhatti, J. Liu, Y. W. Chen, and D. Li, Robust Zero Watermarking Algorithm for Medical Images Based on Improved NasNet-Mobile and DCT, Electronics, 12 (2023), 3444. https://doi.org/10.3390/electronics12163444 doi: 10.3390/electronics12163444
|
| [50] |
C. Gong, J. Liu, M. Gong, J. Li, U. A. Bhatti, J. Ma, Robust medical zero-watermarking algorithm based on residual-DenseNet, IET Biometrics, 11 (2022), 547–556. https://doi.org/10.1049/bme2.12100 doi: 10.1049/bme2.12100
|
| [51] |
R. Xiang, G. Liu, K. Li, J. Liu, Z. Zhang, M. Dang, Zero-watermark scheme for medical image protection based on style feature and ResNet, Biomed. Signal Proces., 86 (2023), 105127. https://doi.org/10.1016/j.bspc.2023.105127 doi: 10.1016/j.bspc.2023.105127
|
| [52] |
M. Sheng, J. Li, U. A. Bhatti, J. Liu, M. Huang, Y. W. Chen, Zero watermarking algorithm for medical image based on resnet50-DCT, Comput. Mater. Contin., 75 (2023), 293–309. https://doi.org/10.32604/cmc.2023.036438 doi: 10.32604/cmc.2023.036438
|
| [53] |
S. A. Nawaz, J. Li, M. U. Shoukat, U. A. Bhatti, M. A. Raza, Hybrid medical image zero watermarking via discrete wavelet transform-ResNet101 and discrete cosine transform, Comput. Electr. Eng., 112 (2023), 108985. https://doi.org/10.1016/j.compeleceng.2023.108985 doi: 10.1016/j.compeleceng.2023.108985
|
| [54] |
Y. Fan, J. Li, U. A. Bhatti, C. Shao, C. Gong, J. Cheng, et al., A multi-watermarking algorithm for medical images using inception V3 and DCT, Comput. Mater. Contin., 74 (2023), 1279–1302. https://doi.org/10.32604/cmc.2023.031445 doi: 10.32604/cmc.2023.031445
|
| [55] |
W. Zhang, J. Li, U. A. Bhatti, J. Liu, J. Zheng, Y. W. Chen, Robust multi-watermarking algorithm for medical images based on GoogLeNet and Henon map, Comput. Mater. Contin., 75 (2023), 565–586. https://doi.org/10.32604/cmc.2023.036317 doi: 10.32604/cmc.2023.036317
|
| [56] |
D.Tong, H. Hongxin, L. Can, W. Fengting, K. Weilong, R. Na, ConZWNet: A contrastive learning-based zero-watermarking network for high robustness and distinguishability, J. Inf. Secur. Appl., 93 (2025), 104139. https://doi.org/10.1016/j.jisa.2025.104139 doi: 10.1016/j.jisa.2025.104139
|
| [57] |
J. Li, R. Wei, X. Xi, G. Zhang, Z. Yang, F. Zhang, Dual-branch cnn-transformer network for robust zero-watermarking of medical images, Inf. Sci., 720 (2025), 122511. https://doi.org/10.1016/j.ins.2025.122511 doi: 10.1016/j.ins.2025.122511
|
| [58] |
C. Wang, H. Gao, M. Yang, J. Li, B. Ma, Q. Hao, Invariant image representation using novel fractional-order Polar harmonic Fourier moments, Sensors, 21 (2021), 1544. https://doi.org/10.3390/s21041544 doi: 10.3390/s21041544
|
| [59] |
M. A. Midoun, X. Cai, M. Z. Talhaoui, D. E. Mekkaoui, A. Smaili, Rotary combination permutation and image tiling to safeguard real-time image-based systems through a new 1D-chaotic map, Expert Syst. Appl., 275 (2025), 126201. https://doi.org/10.1016/j.eswa.2024.126201 doi: 10.1016/j.eswa.2024.126201
|