We proposed the doubly generalized exponential-geometric frailty (DGEGF) distribution, a hierarchical lifetime model for settings with a decreasing hazard, a random number of failure-prone components, and shared latent heterogeneity. The construction combined a geometric $ k $-out-of-$ n $ failure rule, in which the system failed at the $ k $th component failure rather than at the first, with gamma frailty acting on exponential component lifetimes. This hierarchy implied that every member of the family has a strictly decreasing failure rate, so the model was intended for burn-in or early-failure reliability data and for heterogeneous survival cohorts where risk decayed over time. We derived closed-form expressions for the marginal density, distribution, and survival functions and showed that the model was identifiable for both fixed and unknown $ k $. A Monte Carlo study over several parameter regimes indicated that the baseline rate and geometric parameter were accurately estimated in moderate samples, whereas the frailty parameter can be highly variable in small samples, in line with known numerical-identifiability issues in multi-parameter lifetime models. In four benchmark applications, we compared DGEGF with exponential, exponential-geometric, and shared-frailty alternatives. The results showed that, under decreasing hazards, DGEGF offered a transparent way to encode redundancy and unobserved heterogeneity while remaining competitive in fit. We also indicated how the same hierarchical construction can be coupled with Weibull or log-logistic baselines to accommodate non-monotone hazards when needed.
Citation: Mohieddine Rahmouni. The doubly generalized exponential-geometric frailty distribution[J]. AIMS Mathematics, 2025, 10(12): 30384-30428. doi: 10.3934/math.20251334
We proposed the doubly generalized exponential-geometric frailty (DGEGF) distribution, a hierarchical lifetime model for settings with a decreasing hazard, a random number of failure-prone components, and shared latent heterogeneity. The construction combined a geometric $ k $-out-of-$ n $ failure rule, in which the system failed at the $ k $th component failure rather than at the first, with gamma frailty acting on exponential component lifetimes. This hierarchy implied that every member of the family has a strictly decreasing failure rate, so the model was intended for burn-in or early-failure reliability data and for heterogeneous survival cohorts where risk decayed over time. We derived closed-form expressions for the marginal density, distribution, and survival functions and showed that the model was identifiable for both fixed and unknown $ k $. A Monte Carlo study over several parameter regimes indicated that the baseline rate and geometric parameter were accurately estimated in moderate samples, whereas the frailty parameter can be highly variable in small samples, in line with known numerical-identifiability issues in multi-parameter lifetime models. In four benchmark applications, we compared DGEGF with exponential, exponential-geometric, and shared-frailty alternatives. The results showed that, under decreasing hazards, DGEGF offered a transparent way to encode redundancy and unobserved heterogeneity while remaining competitive in fit. We also indicated how the same hierarchical construction can be coupled with Weibull or log-logistic baselines to accommodate non-monotone hazards when needed.
| [1] |
J. Guo, X. Kong, N. Wu, L. Xie, Evaluating the lifetime distribution parameters and reliability of products using successive approximation method, Qual. Reliab. Eng. Int., 40 (2024), 3280–3303. https://doi.org/10.1002/qre.3559 doi: 10.1002/qre.3559
|
| [2] |
M. Xu, H. Mao, q-Weibull distributions: Perspectives and applications in reliability engineering, IEEE T. Reliab., 74 (2025), 3112–3125. https://doi.org/10.1109/TR.2024.3448289 doi: 10.1109/TR.2024.3448289
|
| [3] |
Y. J. Yang, W. Wang, X. Y. Zhang, Y. L. Xiong, G. H. Wang, Lifetime data modelling and reliability analysis based on modified weibull extension distribution and bayesian approach, J. Mech. Sci. Technol., 32 (2018), 5121–5126. https://doi.org/10.1007/s12206-018-1009-8 doi: 10.1007/s12206-018-1009-8
|
| [4] |
E. Alshawarbeh. A new modified-X family of distributions with applications in modeling biomedical data, Alex. Eng. J., 93 (2024), 189–206. https://doi.org/10.1016/j.aej.2024.03.009 doi: 10.1016/j.aej.2024.03.009
|
| [5] |
M. E. Bakr, O. S. Balogun, A. A. El-Toony, A. M. Gadallah, Reliability analysis for unknown age class of lifetime distribution with real applications in medical science, Symmetry, 16 (2024), 1514. https://doi.org/10.3390/sym16111514 doi: 10.3390/sym16111514
|
| [6] |
I. Elbatal, S. Khan, T. Hussain, M. Elgarhy, N. Alotaibi, H. E. Semary, et al., A new family of lifetime models: Theoretical developments with applications in biomedical and environmental data, Axioms, 11 (2022), 361. https://doi.org/10.3390/axioms11080361 doi: 10.3390/axioms11080361
|
| [7] |
N. Feroze, U. Tahir, M. Noor-ul Amin, K. S. Nisar, M. S. Alqahtani, M. Abbas, et al., Applicability of modified weibull extension distribution in modeling censored medical datasets: a bayesian perspective, Sci. Rep., 12 (2022), 17157. https://doi.org/10.1038/s41598-022-21326-w doi: 10.1038/s41598-022-21326-w
|
| [8] |
I. Daigo, K. Iwata, M. Oguchi, Y. Goto, Lifetime distribution of buildings decided by economic situation at demolition: D-based lifetime distribution, Procedia CIRP, 61 (2017), 146–151. https://doi.org/10.1016/j.procir.2016.11.221 doi: 10.1016/j.procir.2016.11.221
|
| [9] | C. Kleiber, S. Kotz, Statistical size distributions in economics and actuarial sciences, John Wiley & Sons, 2003. https://doi.org/10.1002/0471457175 |
| [10] |
N. M. Alfaer, A. M. Gemeay, H. M. Aljohani, A. Z. Afify, The extended log-logistic distribution: Inference and actuarial applications, Mathematics, 9 (2021), 1386. https://doi.org/10.3390/math9121386 doi: 10.3390/math9121386
|
| [11] |
F. H. Riad, A. Radwan, E. M. Almetwally, M. Elgarhy, A new heavy tailed distribution with actuarial measures, J. Radiat. Res. Appl. Sci., 16 (2023), 100562. https://doi.org/10.1016/j.jrras.2023.100562 doi: 10.1016/j.jrras.2023.100562
|
| [12] | R. E. Barlow, F. Proschan, Statistical theory of reliability and life testing: Probability models, New York: Holt, 1975. |
| [13] | N. Balakrishnan, Asit P. Basu, The exponential distribution: Theory, methods and applications, Philadelphia: Gordon and Breach Science Publishers, 1995. |
| [14] | P. Hougaard, Analysis of multivariate survival data, New York: Springer, 2000. https://doi.org/10.1007/978-1-4612-1304-8 |
| [15] |
H. Pham, C. D. Lai, On recent generalizations of the weibull distribution, IEEE T. Reliab., 56 (2007), 454–458. https://doi.org/10.1109/TR.2007.903352 doi: 10.1109/TR.2007.903352
|
| [16] |
S. J. Almalki, S. Nadarajah, Modifications of the weibull distribution: A review, Reliab. Eng. Syst. Safe., 124 (2014), 32–55. https://doi.org/10.1016/j.ress.2013.11.010 doi: 10.1016/j.ress.2013.11.010
|
| [17] |
S. K. Maurya, S. Nadarajah, Poisson generated family of distributions: A review, Sankhyā B, 83 (2021), 484–540. https://doi.org/10.1007/s13571-020-00237-8 doi: 10.1007/s13571-020-00237-8
|
| [18] | A. Wienke. Frailty models in survival analysis, New York: Chapman and Hall/CRC, 2010. https://doi.org/10.1201/9781420073911 |
| [19] |
K. Adamidis, S. Loukas, A lifetime distribution with decreasing failure rate, Stat. Probabil. Lett., 39 (1998), 35–42. https://doi.org/10.1016/S0167-7152(98)00012-1 doi: 10.1016/S0167-7152(98)00012-1
|
| [20] |
W. Barreto-Souza, A. L. Morais, G. M. Cordeiro, The weibull-geometric distribution, J. Stat. Comput. Sim., 81 (2011), 645–657. https://doi.org/10.1080/00949650903436554 doi: 10.1080/00949650903436554
|
| [21] | A. R. E. Alosey, A. M. Gemeay, A novel version of geometric distribution: Method and application, Comput. J. Math. Stat. Sci., 4 (2025), 1–16. |
| [22] |
C. Kuş. A new lifetime distribution, Comput. Stat. Data An., 51 (2007), 4497–4509. https://doi.org/10.1016/j.csda.2006.07.017 doi: 10.1016/j.csda.2006.07.017
|
| [23] | H. A. David, H. N. Nagaraja, Order statistics, John Wiley & Sons, 2004. |
| [24] |
U. Kamps, A concept of generalized order statistics, J. Stat. Plan. Infer., 48 (1995), 1–23. https://doi.org/10.1016/0378-3758(94)00147-N doi: 10.1016/0378-3758(94)00147-N
|
| [25] |
M. Rahmouni, A. Orabi, A generalization of the gxponential-logarithmic distribution for reliability and life data analysis, Life Cycle Reliab. Saf. Eng., 7 (2018), 159–171. https://doi.org/10.1007/s41872-018-0049-5 doi: 10.1007/s41872-018-0049-5
|
| [26] |
M. Rahmouni, A. Orabi, The exponential-generalized truncated geometric (EGTG) distribution: A new lifetime distribution, Int. J. Stat. Probab., 7 (2018), 1–20. https://doi.org/10.5539/ijsp.v7n1p1 doi: 10.5539/ijsp.v7n1p1
|
| [27] |
M. Rahmouni, A. Orabi, A reverse exponential-generalized truncated logarithmic (Rev-EGTL) distribution for ordered spacing statistics, J. Stat. Appl. Pro., 12 (2023), 39–48. https://doi.org/10.18576/jsap/120104 doi: 10.18576/jsap/120104
|
| [28] |
M. A. Jazi, C. D. Lai, M. H. Alamatsaz, A discrete inverse Weibull distribution and estimation of its parameters, Stat. Methodol., 7 (2010), 121–132. https://doi.org/10.1016/j.stamet.2009.11.001 doi: 10.1016/j.stamet.2009.11.001
|
| [29] |
A. D. Hutson, A. Vexler, A cautionary note on beta families of distributions and the aliases within, Am. Stat., 72 (2018), 121–129. https://doi.org/10.1080/00031305.2016.1213661 doi: 10.1080/00031305.2016.1213661
|
| [30] |
A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc. B, 39 (1977), 1–22. https://doi.org/10.1111/j.2517-6161.1977.tb01600.x doi: 10.1111/j.2517-6161.1977.tb01600.x
|
| [31] |
N. Lid Hjort, I. W. McKeague, I. Van Keilegom, Hybrid combinations of parametric and empirical likelihoods, Stat. Sinica, 28 (2018), 2389–2407. https://doi.org/10.5705/ss.202017.0291 doi: 10.5705/ss.202017.0291
|
| [32] |
N. L. Hjort, I. W. McKeague, I. Van Keilegom, Extending the scope of empirical likelihood, Ann. Statist., 37 (2009), 1079–1111. https://doi.org/10.1214/07-AOS555 doi: 10.1214/07-AOS555
|
| [33] | D. R. Cox, D. V. Hinkley, Theoretical statistics, New York: Chapman and Hall/CRC, 1979. https://doi.org/10.1201/b14832 |
| [34] | E. L. Lehmann, G. Casella, Theory of point estimation, New York: Springer, 1998. |
| [35] |
A. R. El Saeed, E. M. Almetwally, On algorithms and approximations for progressively type-Ⅰ censoring schemes, Stat. Anal. Data Min., 17 (2024), e11717. https://doi.org/10.1002/sam.11717 doi: 10.1002/sam.11717
|